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A GENERAL LOCAL ERGODIC THEOREM IN Lλ

M. A. AKCOGLU AND M. FALKOWITZ

Let (X,^,μ) be a σ-fίnite measure space and let L1 denote the
usual Banach space of equivalence classes of real valued integrable
functions on X. We shall not distinguish between the equivalence classes
and the functions themselves. Relations between functions are assumed
to hold in an a.e. sense.

Throughout this paper {Tt}t>0 will denote a strongly continuous
semigroup of linear contractions on Lv That is:

(i) each Tt is a linear operator on Lλ, with norm not more than 1,

(iii) for all/ e Lιsmdt> 0,lim^, i J > 0; | |2;/- TJ || = 0.
We will prove the pointwise local ergodic theorem for such a semi

group.

THEOREM 1.1. /// e Ll9 then l i m ^ ^ l / * ) / ^ TJds exists a.e. on X.

Here JQ TJ ds is defined as the strong limit of the usual Riemann
sums. To give a meaning to the a.e. limit one either has to use the usual
conventions in ergodic theory (p. 686 in [4]), or, equivalently, to avoid
these conventions, has to restrict the range of t in lim,^0+ to a countable
dense subset of (0, oo), for example to the set of positive rational numbers
(p. 200 in [3]). The same remarks also apply to Theorem 1.2 below.

Various special cases of this theorem have already been proved, going
back to Wiener's local ergodic theorem [11], in which {Tt) is induced by a
measure preserving flow of X. The modern form of the theory started with
the results of Krengel [6] and Ornstein [8], where the local ergodic
theorem is proved under the following two additional assumptions on

TO:
(iv) Positivity: TtL± c L^ for all t > 0, where L± is the positive cone

ofLv

(v) Continuity at the origin: There is an operator To on Lx such that
lim,_0+ | |7;/ - TJ || = 0 for all/ e Lv

Later the theorem has been proved assuming (iv) only [1], or assuming
(v) only [5], [7], [10], in addition to (i), (ii) and (iii). Here we will prove the
local ergodic theorem without any additional assumptions.
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We will, in fact, prove Theorem 1.2 below, which generalizes both

Theorem 1.1 and a weaker form of a differentiation theorem of Akcoglu-

Krengel [3]. We define, as in [3], a ΓΓadditive process as a family {Ft}t>0

of Lλ functions such that Ft + TtFs = Ft+S for all /, s > 0. If

then [Ft} is called a bounded additive process, and K is called the bound

of the process. Note that Ft = /0' TJ ds defines a bounded additive

process for any / G L V Another example of an additive process is Ft =

(1 — Tt) f,f^ Lλ, which may or may not be bounded.

THEOREM 1.2. If {Ft}t>0 is a bounded additive process with respect to

{ Tt}t>o then there is a function f ^ Lλ such that lim,^0+ \/tFt = / a.e. on

X. Furthermore, lim,^0+ 1/ί/0' TJds = f a.e.

The advantage of considering additive processes is that we can then

assume the continuity of {Tt} at the origin, without any loss of generality.

To see this we first collect a few results which will also be used later in the

proof Theorem 1.2.

THEOREM 1.3 ([10], [5]). Given a strongly continuous semi group {T t} t > 0

of L^contractions, there exists a strongly continuous semi-group {τt}t>0 of

positive L^contractions such that \TJ \ < τt\ f\for any t > 0 andf ^ Lv

Such a semi group {τt}t>0 will be called a linear modulus of {T t} ί > 0 .

Furthermore, if a linear modulus for {Tt} is continuous at the origin then

{Tt) is also continuous at the origin (Lemma 1 in [9]).

THEOREM 1.4 ([1]). Given a strongly continuous semi group {τt}t>0 of

positive L ̂ contractions, there exists a unique partition {C, D) of X into two

sets such that

(i) XDrJ = Ofor all t > 0 andf e= Ll9

(ii) the restriction of {τdt}ί>0 to Lλ(C) is a strongly continuous semi

group of Lλ(C)-contractions which is also continuous at the origin.

Here χ denotes the characteristic function of its subscript and Lλ(C)

LEMMA 1.1. // { Ft) is a bounded Tt-additive process and if {C, D) is

the partition of X given in Theorem 1.4 with respect to a linear modulus {τt}

of{Tt) thenχDFt = 0 a.e. for all t > 0.
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Proof. Let 0 < ε < t. Then

ε\<\Fε\+τε\Ft_ε

shows that χD\ Ft\ < χD\ Fε\, since χDτε\ Ft_ε\ = 0. Hence | | χ D | Ft\ \\ < \\ Fε\\

< Kε, where K is the bound of { Ft}.
This lemma shows that Ft e Lλ(C). If ft is the restriction of Tt to

Lλ{C), then Ft is also a bounded 7^-additive process. But now {ft} is
continuous at the origin, since {τt) restricted to Lλ(C) is a linear modulus
for {t t} and is continuous at the origin. Therefore we may and do assume,
in the proof of Theorem 1.2, that {Tt} is continuous at the origin. (Note
that this assumption can not be made in Theorem 1.1, because/may not
be in LλC.)

THEOREM 1.5 ([3]). Let {Ht} be a bounded additive process with respect
to a strongly continuous semigroup {τt} of positive Lγ contractions. Then
there is an Lx function h such that \m\t_04^/t)Ht = h a.e. and such that

τsh ds = h a.e.τs

Although the final conclusion of this theorem is not explicitly stated
in [3], it follows easily from (3.8) of that paper.

2. Proof of the main result. Given a bounded additive process one
can construct a dominating positive additive process with respect to the
linear modulus. For this the continuity at the origin is not needed.

THEOREM 2.1. Let { Ft}t>0 be a bounded Tradditive process and let {τt}
be a linear modulus of {Tt}. Then there is a ^-additiveprocess {Ht}, such
that (i) I Ft\ < Ht a.e. for each t > 0, (ii) { Ht) has the same bound as { Ft}.

Proof. Let K = sup,>0(l/011^,11 be the bound of {Ft}. To construct
Ht for a certain fixed /, we consider the family £P of partitions of [0, t] of
the form P = {α0, al9.. .,an) with 0 = α0 < aλ < < an = t and n >
2.

Define
n-l

a, * al + l-ot,

The family of Lx functions, {H?\ P e ^ } , fullfils

(l)

(2) if P' e ^refines P e ^then H^P)
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The validity of (1) follows immediately from the definition and bounded-
ness of { Ft}:

n-l

\ i-l /

In order to prove (2), let us first note that it is clearly sufficient to
consider the case where P = {α0, α1 ?.. .,αn} is refined by adding one
point, say α. If 0 < a < αx then, indeed,

Similarly, for the case at < a < ai+1 with 1 < i < n — 1,

α ι
= T F 4- T F

i—CL\ θί\ a. — a- a — OL OL+I~

^ T J F 1 , ¥ _ J + τ/vτ_\FίV

= T IF1

«—«,ι

Now, since for any two partitions there is one that refines both (take
their union), there is a sequence Pz Ξ ^ such that Ht

(Pι) is increasing and
p) | | . We define

Ht = Urn a.e.

Clearly any other such sequence would yield the same limit. Since for any
partition of the form P == (0, α, /} we have

lFl = l F + Γ F \<\F\+τ\F \ = H(P)

(i) is proved. Considering (1) above, we also have (ii). The proof of the
theorem will be completed by showing the additivity of { Ht} with respect
to{τ,}.

Fix t > 0, s > 0 and consider arbitrary partitions P' = ( α 0 , . . . ,αM}
and P" = { β 0,... ,βm} with n > 2, m > 2, of [0, /] and [0, s] respectively.
Denote by P'P" the partition {α0,... ,«„, t 4- β,...,/ + βm} of [0, / -h j].
Then

=\F

m - l

+ Σ τ H
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Let then {P/} and {P/'} be sequences of partitions such that the

sequences Ht

{Pι) and H^p'f) are increasing and converge to Ht and Hs

respectively. Since τt is a positive operator, τtH^p'f) -> τtHs a.e. Let us

take limits, as / -> oo, in

Since the left-hand side is increasing, by our definition Ht+S >

hmi_+QOHt(+ίP")9 a n ( * w e °btain Ht+S > Ht + τtHs. On the other hand,

given a partition P of [0, / + s], refine it (if necessary) to include the point

t, and consider P ' and P " , on [0, t] and [0, 5] respectively: P ' is the

partition induced by P on [0, /] and P " is the one induced by P on

[ί, t + 51] and "shifted" to [0, s\ A similar argument, choosing a sequence

P, such that Pi+ι refines Pi91 e P, and / / / ^ converges to Ht+S a.e., shows

Ht+S < lim ^ ( / > ; ) + τt lim fl,<^> < fl, + τtHs.
* 00 / — » 0 0

Note that in the construction above we actually use only the process

{I ^l}/>o a n ( i Λe semigroup {T,}. The additivity of {i^} with respect to

{Tt] makes {| Ft\] subadditive with respect to {τ t); that is | Ft+S\ < \ Ft\ +

TJ /^| for all t > 0, 5 > 0. Thus we have the following theorem.

THEOREM 2.2. A bounded positive process, subadditive with respect to a

strongly continuous semigroup of positive linear contractions, has a dominat-

ing, positive and additive process, with the same bound.

In proving Theorem 1.2 we shall find it convenient to use the

following notation: ft = (\/t)Ft, ht = (\/t)Ht; also, w-lim and s-lim will

denote the weak and strong limits in Lv The Lλ function/in Theorem 1.2

shall be obtained as the limit of a weakly convergent sequence. It is

known that a bounded sequence in Lλ which is dominated by a fixed Lλ

positive function is weakly sequentially compact (see Theorem IV.8.9 in

[4]). For our purposes a certain sharpening of that result is needed.

LEMMA 2.1. Let φn e Lγ and \φn\ < ψn e L\ such that there exists

ψ e L ^ with | |ψΛ — ψ|| -> 0. Then {φn} is weakly sequentially compact.
n—*• oo

Proof. Let ψ'n = ψn A ψ; then 0 < ψ'rt < ψΛ. Now write φn as φΛ =

ψ; + φ;' where
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For the sequence φ'n we have \φ'n\ < ψ and by the theorem mentioned

above is weakly sequentially compact. As for φ", by definition

This implies that || φ Ί̂ I -* 0.
n —»op

We shall also need the following fact; here again continuity at the

origin is not needed.

LEMMA 2.2. For any t > 0, Ft = s-limε_^0+ /0' Tsfεds.

Proof.

ff τ^ds = iff
1 rt + ε

e

d s

1 ft

s _ - Fsds.
ε J0

F o r ε < / w e get

rt 1 rί + ε 1 rε

J τjεds = -f Fsds-- Fsds.
J0 ε Jt ε J0

Now, since the process is bounded, the first term converges in norm to Fn

whereas the second term converges to zero.

Proof of Theorem 1.2. Let Ht be the dominating positive process for Fn

constructed in Theorem 2.1. Let ]imt_>041/t)Hf = lim/_0+ ht = h a.e., as

given in Theorem 1.5. Define a process Hf

t by

H; = Γ Ίsh ds

and consider the decomposition

Ht = H; -f Ht".

Then the following holds:

H" is positve and lim (l/t)Ht" = 0 a.e.

To see that, we take any sequence εn -> 0 and consider the sequence

ψn = A Λ A. Then 0 < ψn < h and, obviously, ψn -> h a.e. Being bounded

by h e Ll9 by the dominated convergence theorem it also converges in

norm:

-ψn\\= ί ( h - ψ n ) 0.
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Since /0' τsgds, for a fixed t, acting on g e Lv is a bounded linear
operator in Ll9 we also got

/•/ rt

s-lim / τ5ψw ds = I τsh ds.

Therefore, using Lemma 2.2,
ft ft ft

Ht = s-lim / τshε ds > s-lim / τ5ψΛ ds = I τsh ds = if/.
Aί —> 00 «^0 " /ί —• 00 * 0 *H)

Pointwise convergence of (l/t)Ht" to zero is given in Theorem 1.5.
Now we obtain the Lx function/in Theorem 1.2. Let

Then |φj < ψΛ, so that the sequences φn and ψAZ fullfil the condition of
Lemma 2.1 (with ψ in the Lemma equal to h). Thus, by passing to a
subsequence, if necessary, we may assume that φn converges weakly, say to
/* e Lv P u t / = Tof*. Define a process F/ = /J ΓA./ώ and consider the
decomposition Ft = F/ + F/'. By the results in [5], [7] and [10],
limt^041/t)F/ = Tof = f a.e. Hence the proof shall be completed by
showing that hm^Jl/ήF," = 0 a.e. This will follow from | Ft"\ < H't\
which we now prove.

Observe, first, as in the proof of Lemma 2.1, that we have | / — φn\
< he — ψw. To evalaute Ft" express Ft, Ft\ Ht and H't as the limits of
integrals. From Lemma 2.2:

ft ft
Ft = s-lim I TJe ds and Ht = s-lim / τshF ds;

n -* oo * 0 " n ~^ oo JQ ' "

actually only weak convergence will be needed. Since /0' Ts.gds (or
/J τvg ds) applied to g e Lx is a bounded linear operator,

/* == w-limφw implies
rt—• 00

Γ Γ t /ώ = Γ Γ,/* ώ = w-lim Γ Tsφn ds, and

h = s-lim ψw implies

/!-* 00

f τv/z ίfa = s-lim / τ vψn ίfc = w-lim I τvψM ώ .

() A7 -* 00 *^0 \ «-• 00 »Ό /
Now

F/' = Ft- f TJds = w-lim Γ Γv/f J5 - w-lim f Γvφ/;

= w-lim /' Γv(/ε - φ j ώ .
«—»• 00 «Ό
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Since | /,__ - φa\ < hen - ψΛ, this gives

\Ft"\ < w-limΓ rs{hεn - ψ j = w-lim/' τ,Aβ. ds

= w-lim Γ τsψn ds = Ht- Γ τsh ds = Ht".

This completes the proof.
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