
PACIFIC JOURNAL OF MATHEMATICS

Vol. 128, No. 1,1987

EXTENSIONS OF GENERALIZED HOMOLOGY
THEORIES

FRIEDRICH W. BAUER

James Dugundji in memoriam

Relations between different kinds of homology theories on the
category Com (of compacta) resp. the related strong shape category Com
are studied. In particular homology theories satisfying a clusίeraxiom (as
for example the strong shape homology Et with coefficients in a spec-
trum Ey for a restricted class of spectra being defined on the category of
finite dimensional compacts) allow interesting characterizations. As an
application this provides new proofs of classical theorems concerning
Steenrod-Sitnikov homology theories, including a result on the Brown-
Douglas-Fillmore homology ε*.

0. Let E be any CW-spectrum and E* the corresponding homology
theory [1] on the category Po of based, finite CW-spaces.

We are concerned with the following questions:
(1) Can E* be extended over the categories Com (= based compact

metric spaces) or alternatively over K, the strong shape category?
(2) Under what circumstances is such an extension uniquely de-

termined?
These two problems are both extension problems. The first one deals

with the extension of E* itself, while the second one requires the extension
of a given isomorphism between two homology theories.

The solution of both problems deserves interest because it turns out
that numerous problems in topology and analysis can be reduced to (1) or

(2).
There are for example two "natural" (not in the sense of "canonical")

extensions of complex ΛMiomology BU* over a category containing Po:
(1) The homology theory BU* defined on Com (the subcategory of K,
determined by compact metric spaces) and (2) the Brown-Douglas-Fill-
more homology theory ε* defined on Com ([6], [8], [9]) by purely func-
tional analytic methods. Theorem 6.6 confirms that ε* and E+ are
naturally isomorphic for finite dimensional spaces in Com.

D. Edwards and H. Hastings [7] as well as the authors of [8] also dealt
with the problem of establishing generalized, so called Steenrod homology
theories. The relation between the homology theory Έ* of [8] and our E+
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is the subject of [3], while Theorem 5.7 of the present paper confirms the
existence of an isomorphism between SE+ and the Edwards-Hastings kind
of Steenrod extensions of a homology theory (cf. remark at the end of §7).
The strong shape category K (resp. the homotopy category Kh (which is
used in this paper (cf. §7) differs formally from that of [7]. However Ju.
Lisica [11] established in the meantime the equivalence of Kh with the
strong shape category s-Sh of [7]. This clarifies the relations between
different concepts of Steenrod homology theories, shape homology theo-
ries resp. the related strong shape categories, which were introduced
independently but approximately at the same time.

J. Milnor characterized in [12] ordinary homology theories (i.e. those
with E = K(G), an Eilenberg-Mac Lane spectrum) on Com axiomati-
cally. We get back this result in the following form (Theorem 6.4.): K(G)*
on Com, is up to an isomorphism, uniquely determined by the Eilenberg-
Steenrod axioms with a strong excision axiom (§5 A2)) and the cluster-
axiom (§5 Al)). This is a corollary of a more general result (Corollary 5.7)
which deals with arbitrary CW-spectra E having the property that a
clusteraxiom for E* on compact metric spaces is valid. Because the
spectrum BU (the classifying spectrum of complex X-theory [1]) turns out
to be, at least for finite dimensional compact metric spaces (Proposition
4.4), of this kind, the above mentioned result on ε* is another corollary of
this assertion.

The extension problem can be approached from a somewhat different
point of view leading to the concept of shape singular homology theory
with coefficients in a CW spectrum E (§§1-3): Let K be the strong shape
category with arbitrary based spaces. Does there exist an extension of E*
over Kh (the corresponding homotopy category) having the following two
properties:

(1) Every weak homotopy equivalence in Kh (Definition 1.2) induces
an isomorphism of the homology groups.

(2) The extended homology theory has compact carrier (Definition
1.7)?

Theorem 1.6 provides us with an affirmative answer to this question.
Moreover the extension (denoted by E*) is unique up to an isomorphism
(Theorem 3.1).

Even for compact metric X we can in general not expect to obtain an
isomorphism E*(X) « E#(X). However one has for all X an isomor-
phism (Theorem 6.1):

Em(X)~E.(\S(X)\),
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where S(X) denotes the shape-singular complex of the space X. So E*
reveals itself as shape singular homology. The question under what
circumstances E* is isomorphic to E+ is settled in Theorem 6.1. This result
in combination with Theorem 6.2 (asserting that Steenrod-Sitnikov ho-
mology groups H£(X; G) being for all compact metric X and all abelian
groups G naturally isomorphic to K(G)*(X)) yields another proof of
Theorem 7.7 in [2], claiming that Hξ(X\ S) is naturally isomorphic to
H*(\S(X)\; Z) for shape connected compacta X. It turns out that for
.s-continua, E* can be regarded as the appropriate generalization of
Borel-Moore homology theory (cf. [10]) while E* corresponds to
Steenrod-Sitnikov homology theory. In a final section (§7) we indicate the
construction of the shape category and of the shape homology in this
category with coefficients in a CW-spectrum. This is done without going
into the details, referring to the relevant expositions (cf. [4]). The present
paper is very closely related (but independent of) [3], which has already
appeared. Therefore [3] refers occasionally to the present paper (concern-
ing some details of proofs).

1. The existence theorem. Unless stated otherwise, we denote in
the first three sections by K the category Top0. We are working within the
strong shape category K resp. the associated homotopy category Kh9

whose construction is briefly recorded in §7. For more details see [3], [4].

1.1. DEFINITION. A morphism / e K(X,Y) = K((X,x0), (Y, y0)) is
called a weak homotopy equivalence whenever

\s(f)\eτop0(\s(x)\,\s(γ)\)

is a homotopy equivalence, S( ) denoting the shape singular complex, cf.
§7. Let $* = {§„}:£/,-* Ab (= category of Z-graded abelian groups)
be a functor, then we introduce the following Whitehead axiom:

1.2. DEFINITION. (W) Let feK(X, Y) be a weak homotopy equiva-
lence, then $*(/) is an isomorphism.

1.3. DEFINITION. A functor φ*: Kh -> Abz together with a natural
transformation σ: ίp * ( ) - > § * + x ( 2 ) ( 2 = reduced suspension) is called
a shape singular homology theory $* = {§„,σ} on Kh whenever $*
satisfies the Whitehead axiom (W). We will during this and the two
ensuing sections simply talk about a homology theory §+. A natural
transformation φ: φ* -* § * between the functors φ # , φ * is called a
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transformation of homology theories whenever φ commutes with the corre-
sponding transformations σ: φ*( ) - > $ • +χ(Σ) resp. σ': $'*( ) -»

REMARK. Here we do not require that the natural transformation σ is
an isomorphism. This changes in §5.

Let Px (PQ) be the category of (compact) CW-spaces, understood as a
subcategory of K. Because of 7.1 Pιh is a full subcategory of Kh. Our first
aim is to extend a given homology theory §*: Plh -» Ab over Kh. We
need ([2] Theorem 5.1.c).

1.4. LEMMA. Let X e Top0 be any based space, then the natural
transformation

(cf. §7) is a weak homotopy equivalence. Every weak homotopy equivalence
induces isomorphisms

π*(f) {with πn(X,x0) = Kh((S", * ) , (X,x0))).

Suppose that I J G Top0 are ^-connected (= shape connected, i.e. πo(X)
= ΪTQ(Y) — 0); then also the converse holds.

Proof. The first part follows because \S(ωx)\\ \S(\S{X)\)\ ̂  \S(X)\ is
evidently (because everything happens in Pλ) a homotopy equivalence. Let
/ e K(X, Y) be a weak homotopy equivalence. Then we have the com-
mutative diagram

X Λ Y

f t (δ^), ^*(ωy) being isomoφhisms. We have π*(\S(X)\) « ^ (
(resp. for Y) so that together with π*(f#) also π*(f#) and therefore ίr*
is an isomorphism. This proves the second part. Assume X, Y being
^-connected; then |S( JQI, 1*̂ (̂ )1 a r e connected. Suppose that π#(/) is an
isomorphism; then π*(/#) is an isomoφhism and the conclusion follows
from the classical Whitehead theorem.

This enables us to define:

(1)
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and toτ any f e K(X,Y)

(2) δ.(/>« (|S(/)|).
We get a natural transformation σ: §*( ) -» Φ* + i(Σ ) as follows: We

have a natural mapping

λ: ^

for any space X (cf. Theorem 4.1 in [4] and Theorem 2.1 below). So we

can define

σ: Q

by composing σ with φ* + 1 (λ) . Lemma 1.4 implies:

1.5. LEMMA. Lei φ * : Plh -» Ab be a given homology theory, then φ * :

1£Λ -> Ab is β homology theory (i.e. one, satisfying the Whitehead axiom

W). Moreover the natural transformation ω: |S( ) | -> 1^ induces a natural

isomorphism

We summarize:

1.6. THEOREM. TO each homology theory § * : Plh -> Ab ίΛere exΰϋ α

homology theory | ) * : ^ Λ -> Ab αm/tf natural isomorphism $ * | P X « φ#.

The importance of the concept of compact support is well-known from

classical algebraic topology. In shape theory we have to define this notion

in the following way:

1.7. DEFINITION. A homology theory «§*: Kh -» Ab is defined to

have compact support whenever the following holds:

(C) (a) To any ξ e S&n(X\ X e K there exists a compact metric K, a.

/ e f(iϊ:, JΓ) and a Γ e φ^A') such that

(b) Let ξ', K, f be as in (a) and assume that /*(£") = 0. Then there

exists a homotopy commutative diagram in K

r\ S1 t

L

with compact metric L, such that r*(ξ') = 0. D
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On the other hand let §*: Pιh -> Ab be a homology theory, then we
say that § * has compact support, whenever the following holds:

(PC) (a) Let ζ e §*(X) be any element, then there exists a compact
subspace K c X, K e Px and a Γ e £ * ( # ) such that §*(/)(Π = £,
i: K <z X denoting the inclusion.

(b) Let f', A, be as in (a) such that now /*(£') = Φ*(0(Π = 0, then
there exists a i e P 0 , ί c i c l , such that φ*(./)(Γ) = 0 (7: ί c L
being the inclusion).

REMARK. The difference between (C) and (PC) is caused by the fact
that a continuous mapping /: K -> X e P1? JζΓ compact, has always a
compact image. This is no longer true for shape mappings: Even for a
point * and a shape mapping f£:K(*,X) into a non-compact space X,
there does in general not exist a compact K <z X over which / factors.

The relation between (C) and (PC) is embodied in the following:

1.8. PROPOSITION. Let $* : Plh -» Ab Z>e <z homology theory satisfying

(PC). 77*6W ίλe extension §*( ) = φ*(]S( )|): Kh -> AbZ c/ φ * o ^ r ̂ Λ

satisfies (C).

Proof. Let f G ̂ ^((^(X)!) be a given element, then there exists a
finite subcomplex K c |S(Jf)| and a ζ" e φ*(AΓ) such that $•(/)(£") =

Moreover we have the following commutative diagram

K Λ

- \S(X)\
\S(ωχ)\

where ωκ is a homotopy equivalence in K between CW spaces, hence
homotopic to a continuous homotopy equivalence ω in K (cf. 7.1). The
mapping $*(ωx) = Φ*(\S(ωx)\) is an isomorphism (cf. Lemma 1.5).
Setting ξ' = ίQ*(ω)~\ξr/) and / = ωxi, we conclude
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therefore

This proves (C) (a). The proof of (C) (b) is similar.

2. The homology theory E*. A spectrum E={En,σn: En -»
£ Λ + 1 , w e Z } is a sequence of based spaces and continuous maps σn. A
CW spectrum has the additional property that all En are CW complexes
and that all σn are supposed to be cellular. The category Spec has
these CW spectra as objects and so-called functions of spectra / =
{ fn: En -> Fn} as morphisms, where we assume that the fn are compatible
with the corresponding σn: ΣEn -> En+1 resp. ΣFn -> fn+1.

The following full subcategory CSpec c Spec deserves particular in-
terest: Its objects are those spectra E = {£„}, having the property that
(1) all m-skeletons (En)

m are for all m and all n e Z compact and that
(2) there exists a n0 such that all £„, n > n0 are simply connected. We
call such a spectrum also a cs-spectrum. It can be verified that an
Eilenberg-Mac Lane spectrum K(G) for finitely generated abelian group
G has this property.

Let Com c K be the full subcategory of based compacta, then we
have defined in [4] the homology theory

(1) En(X)= H r n U ^ A l ) , XeCom.
k

We have that E*\ ComΛ -> Ab is a functor. Moreover there are natural
isomorphisms σ = σn: En « En+ι Σ. However the Whitehead axiom (W)
is not necessarily fulfilled so E* = {En,σ} is not always a shape singular
homology theory (cf. Definition 1.3).

A space X e Com is called s-continuum, whenever πo(X) = 0.
So the solenoid for example is not ^-connected, while it can be proved

that the double suspension of the solenoid is a ̂ -continuum. Let £ b e a
CW complex, X a. compactum, then we have a homotopy equivalence

E Λ\S(X)\j*\S(E)\_Λ\S(X)\_

and a continuous mapping λ: \S(E)\ Λ \S(X)\ ^> \S(E Λ X)\. As a, con-
sequence of Theorem 4.1 in [4] we have:

2.1. THEOREM. Let X be α s-continuum, E α simply connected CW
complex of finite type {i.e. all mskeletons are compact), then λ induces a
natural homotopy equivalence
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rendering the following diagram homotopy commutative'.

|S(£) |Λ |S(*) | "βlι EA\S(X)\

J, l\ ψ 1 Λ ωx

\S(E~ΛX)\ _ ^ EΊ\X

We define En(X) = hmkπn+k(Ek A X) (all mappings and homo-

topies being continuous). As a consequence we have:

2.2. THEOREM. (CF. [4] Theorem 4.2.) Let the s-continuum X and the
spectrum E e CSpec be given, then there exists a natural isomorphism

Em{X)*Em(\S{X)\).

Proof. We have the following series of isomorphisms

En{X) = lim 7fn+k{Ek^X) * lim «n+k(\s(EkT;X

« hmπn+k(EkΛ\S(X)\) = En(

k

which are clearly compatible with the natural transformations σ.

In accordance with §1(1), (2) we denote the homology theory

2.3. PROPOSITION. Let f: E -* F be any morphism in Spec, then we
have (1) an induced natural transformation

f#:E*~>F*

and (2) a natural transformation

Proof. This is in both cases an immediate consequence of the defini-

tions of E+ resp. of E*: For example in the first case we have

Ek~ΛX ± FkΊ\X
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which is well-defined (cf. [4] §2). This provides us easily with the required

/#• °

2.4. PROPOSITION. Let E e Spec, l e i and ζ ^ En(X) be given,

then there exists (1) a cs-spectrum Ef (2) a φ e Spcc(E\E) and (3) a
ζ' ^ E'n{X) such that φ#(£") = ξ. Moreover assume ξ'9 E\ φ be given
such that φ#(f ') = 0, then there exists aE" e CSpec as well as a factoriza-
tion

E' ^ E

ψ \ /I η

E"

such that ψ # (Γ) = 0.

Proof. We abbreviate \S(X)\ by 7 and call a is e Spec s/'mp/e
whenever there exists a w0 e Z such that all En, n > n0 are simply
connected. Let us in a first step deal with a simple spectrum E. We
construct E\ φ in the following way:

Let (/: S"""1"* -> Ek Λ 7) be a representative of £ (observe that 7 is a
CW space!). Then there exists a compact Ek c ϋ^ such that / factors
over Ek A 7. By eventually suspending / we obtain a Ek which is simply
connected. Now we set El = * for / < k. In order to establish E'k+1 we
take σk(ΣEk) c Ek+ι and kill the fundamental group of this space in
Efc+i (which is by assumption simply connected). This provides us with a
Ek+1 c Ek+ι and a σk: ΣEk -» 2^+ 1. Proceeding inductively we obtain a
φ: E'^>E such that £ ' e CSpec and a Γ e £*(7) with φ # (Γ) = ξ.
The second statement is proved similarly.

This completes the proof of the assertion for simple spectra. In order
to get rid of this last assumption, we construct to any E e Spec the
following spectrum E = {En}:

n n — z "

This spectrum is clearly simple. There exists a morphism τE = r: E -> E,
τn = an_x Σσw_2: En = Σ2En_2-+En, r e Spec(£, £) ." On £ this
transformation clearly induces a natural isomoφhism

τ«: En() * £ „ ( ) ,

hence a natural isomoφhism
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Now we can apply the previous construction of Ef to E (instead of E)
thereby completing the proof of 2.4.

REMARK. There exist a ^-continuum X and a not finitely generated
abelian group G such that

K{G)n{X)*K(G)n{X).

(Cf. remark following 6.5.)
In particular this confirms that 2.4 does not hold for K(G)* (even not

for s-connected compacta).

2.5. THEOREM. The homology theory E*: Kh -> Ab has compact
support {i.e. satisfies C) in Definition 1.7.

Proof. The fact that E* is a homology theory follows from Lemma
1.5. Because we have a natural isomorphism E*() « E*() on Px and since
E+ on Pλ has compact support, the assertion follows from 1.8. D

REMARK. In general we cannot expect that

a: En(X) ^ En+1(ΣX)

is becoming an isomorphism, unless X is a shape simply connected
compactum (i.e. one has v^X) — 0 for i == 0,1). In the latter case we
have due to Theorem 4.1 in [4] a homotopy equivalence

Λ Z ) ! = 5 1 A jS(X)j

furnishing an isomorphism

En(X) = En(\S(X) I) « EΛ+ι(Sι A \S(X) I) = Ϊ n + 1 (ΣX).

3. The uniqueness theorem. Let §*,§ '*: Kh -» Ab be two ho-
mology theories (i.e. those satisfying (W)). Suppose we have a natural
transformation of homology theories α: φ*|P1 Λ -> §*|PiΛ

3.1. THEOREM. ΓAere X̂W/Λ α unique extension a: ίQ* -^ $'* of a over

Proof. The natural transformation ωx: \S(X)\ -» X is a weak homo-
topy equivalence in !£,,, hence we are allowed to define

by

(1)
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The following assertions are all more or less immediate.

(1) a is natural with respect to X.

Proof. This is obvious because ω: \S( )| -> 1^ as well as a are natural.

(2) a is a homomorphism.

This is trivial.

(3) a I Pιh = a.

Proof. Let X e Px be a CW space, then we have a commutative

diagram

(2) a χ i

and therefore

(4) ά is compatible with the bonding maps σ, σ'.

Proof. This follows immediately because a is supposed to have this

property on the category Pv

(5) Let β: «ξ>* -> φ * be any natural transformation extending a, then

we have β = a.

Proof. This is trivial in view of (2) (now for any l e i and after

replacing ax by βx).

This completes the proof of Theorem 3.1.

We have the following corollaries:

3.2. COROLLARY. Let a: φ* |P 1 Λ ~ ίp/*|i)i/7: ZIA ~* A ^ Z 6e an isomor-

phism of homology theories, then there exists a unique isomorphism a:

Φ* ~ Φ * °n Kh> extending a.
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2

3.3. COROLLARY. Let $*: Kh -> Ab be any homology theory and a:

$ * ~ E* an isomorphism of homology theories on the category Plh. Then

there exists a unique extension a: § * ~ E* of a to an isomorphism on the

category Kh. Furthermore § * is of compact support {Definition 1.7).

Proof. The first part follows simply by applying Theorem 3.1 to

Φ * = £*• The second part follows from the first because 2.5 makes sure

that E* « § * is of compact support.

4. E* and the dusteraxiom. In [12] J. Milnor introduced the

clusteraxiom (or strong wedge axiom) for a homology theory H* defined

on the category of compact metric spaces (with base-points).

(Cl) Let (Xi9 xOι) = Xi9 i = 1,2,... be a sequence of compact metric

spaces and

C\X,= lim(XlV - V I J
z = l *—

m

the cluster (or strong wedge), then the natural homomorphism

w=i , i

becomes an isomorphism.

He was able to show that the Steenrod-Sitnikov homology

H£(X,Y; G) groups with arbitrary coefficient group G can be charac-

terized (now in the category of compact metric pairs) by the ordinary

Eilenberg-Steenrod axioms (with a strong excision axiom H£(X, Y\ G) ~

H£(X/Y, * G)) together with the clusteraxiom.

In this section we are going to find out under what circumstances

E*h: Com -> Ab for a given CW spectrum E fulfills the cluster axiom.

We formulate the following property of a CW-spectrum:

(S) There exists a p e Z having the following property:

The mapping σ: ΣEi -^ Ei+ι induces an isomorphism of the

(21 + /^-skeleton for all /.

We are able to prove:

4.1. PROPOSITION. Let E e Spec be such that (S) is satisfied, then the

cluster axiom (Cl) holds for E*.

Proof. Set X = Clf=1 Xt and let
n + l n

Pn

n

+l: V * , - V * .
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resp.

qH: ax,-*xn

be the projections. We have the natural homomorphism

/ = 1

defined by

In order to construct an inverse to φ, let {£} e YlfL1En(Xi) be any

element in the direct product and £. B / : Sn+l(i) -> 2?1(z) Λ X be repre-

sentatives. We fix a continuous gy: J^ -* Pt E: P for each i and define

We have to distinguish two cases:
1. /(/) > n — p + 2: We put q = p — 2 and observe that /, factors

over ( £ / ( 0 Λ p.)Λ + /ω c (£ / ( / ) Λ p j 2 / ( / ) + ^. However for cellular reasons
we have:

A J>

and, by our assumption (S), an isomoφhism

/ \2l{i) + q p / y / 7 \2/(/) + ^

Hence /z turns out to be stably homotopic to a

because we have

for all k e N, this procedure can be iterated until we reach a

/•». 5-»+/«) _̂  2 / ( 0 - ( » - Ϊ ) ( £ Λ p.)

Putting k = l(i) — n + 1 we have n + l(i) = 2n — q + k and therefore
we find

The stability theorem ensures the existence of an index m such that the
suspension homomorphism

* ( ^ - , Λ P,)) -H. ̂ _ 1 + A + 1 ( 2 * + 1 ( ^ - 9 Λ P,))
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becomes an isomorphism for k > m. Therefore the number

/ = n — q + m

has the property that to each ft there always exists a representative ft:
Sn+ι -> Et A P.. Observe that / is independent of /, /(*') and g . As a
result we can henceforth assume without loss of generality that / e ξ. is
of the form:

with a universal / (not depending upon i).
The second case:

2. l(i) < n - p + 2: can be settled by eventually suspending until we
reach the same universal level / for all i.

Now it turns out to be rather simple to compose all these /., yielding a

To this end we must apply the explicit construction of a shape
mapping, laid down, for example, in [4] appendix: Let g: X -> P e P be
any object inP x , then we factorize over a suitable

where
00 m

P»: axt-+ Mx,
i = ι , -i

denotes the projection and gy. Xj -> Pj is a given object in Px. Hence we
merely have to evaluate ψ{/} on mappings of the form gw. This can
obviously be accomplished by

(1) ψ{/}(g w ) = (ΛV ••• V / J K

where JC: Sn+ι -> Sn+ι V V5Π + / denotes the m-fold comultiplication
and where we put: f. = /(g,) as before. The verification of the fact that
(1) establishes a

y. s*+ι-* E,T x

is in view of the techniques developed in [4] appendix merely routine. This
gives rise to a mapping ψ: ΠJlx £„( -X)) -> £"„( X) having the property

(2) φψ = l .
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We still have to verify that φ is also a monomorphism. To this end let

be given and consider

Assume the existence of indexes /(*) > r (eventually depending upon ϊ)
such that the corresponding representatives f{\ Sn+l{i) -> El{i) A Xi are
null-homotopic.

The same kind of reasoning as above provides us with a universal
index / and representatives

//': S"+l->EιΊ\Xi

such that /." » 0. Now these homotopies can be composed to a unified
homotopy of the original / to the constant map (in the same way in which
we constructed ψ{/} before). This assures us that φ is a monomorphism
and completes the proof of the proposition. D

There are two basic applications of this result, which we are going to
develop:

Recall that a spectrum E is called connective, whenever
(1) E is an Ω-spectrum (i.e. one has Et — &Ei+1) and
(2) Et is (/ — 1) connected (a condition which is of course meaning-

less for i < 0).
We have the following general assertion:

4.2. LEMMA. Let E be connective, then there exists a spectrum Ef =
{E{} e Spec such that (S) holds as well as a function of spectra /: E-*Ef

with fn being a homotopy equivalence for all n. In particular f induces a
natural isomorphism E* « E '*.

Proof. This is a quite elementary fact which can be proved induc-
tively: Setting El = Ei for i < 0, we assume that Er

m and fm have already
been constructed for m < n. According to the stability theorem we obtain
a suspension isomorphism

for/< 2(n - 1).
This isomorphism is easily recognized to be induced by τn: ΣE% ->

En+1 (with Ίn being defined by on = (Σfn)τn): Let of

n resp. p be the
adjoints to on resp. the identity 1: ΣEf

n -> ΣE^ then we have
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As a result we have a commutative diagram

Since all induced homomorphisms on the right-hand side are isomoφhism

(for i < 2(n — 1)), we conclude that σn # is also an isomorphism.

In defining E'n+1, we set (E^+ι)
2n~3 = (ΣE^2n~3 and recall that τrt:

ΣEή -> ^ w + i induces an isomorphism of the homotopy groups πι for

i <2n - 3. We attach 2π - 1-cells to ΣE'n killing the kernel of π2tι_2(τn)

and 2π — 2-cells representing the cokernel of 772«-2(τ«) As a result we

find a new space Xx D ΣE'n and a continuous / x: X -* En+l9 extending τn

such that TTiifi) = isomoφhism for i < 2n - 2. Proceeding inductively,

we find / 2 ? X 2 ? . . . and finally a CW-complex I D ΣE'n as well as a

continuous /: X -> ^ extending σπ such that τrz(/) becomes an isomor-

phism for all /. We define X = Ef

n+ι and conclude that (E^+1)
2n~3 =

(ΣE^)2n~3, and that there exists a homotopy equivalence fn+1: E'n+ι-

En + 1 which is compatible with the resp. bonding maps. ΣE'n •-> E'n+ι

c

(being the inclusion ΣE'n -> X = E'n+ι).

As a corollary we obtain our first application:

4.3. PROPOSITION. Let G be any abelian group, then for K(G)* the

clusteraxiom holds.

Proof. Because K(G), the Eilenberg-Mac Lane spectrum is connec-

tive, Lemma 4.2 and finally Proposition 4.1 applies.

Our second application deals with complex ^-theory BU* which is

determined by the spectrum BU = {En} with

E2n = Z^BU, E2n+1=U.

We obtain a connective spectrum bu = L = {Ln} by killing the first

(/ — 1) buttom homotopy groups of Et in a well-known way (e.g. by

taking the fibers of certain Postnikov-decompositions of is,.).

Consider the category Com of all finite dimensional compact metric

spaces, then we have:

(1) An isomoφhism

for all CW-spaces X and n < 0.
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(2) Let I G Con/ be embedded in some Sn+ι

9 then we have an
isomorphism ([4] Theorem 7.1)

En'k(Sn+1\X) *>E

(3) BU* is periodic of period 2, i.e.

The first statement follows immediately by definition. The second one
is simply Alexander duality. The third assertion can be achieved in the
same way as in the classical case as an immediate consequence of
Bott-periodicity.

4.4. PROPOSITION. On the category Com the homology theory BU*
fulfills a cluster axiom.

Proof. Let X = Cl°°=1 Xi9 X e Com7 be embedded in some SN. In
establishing the isomorphism

(3) Π , ,

we can in view of (3) without loss of generality assume that N — n < 0.
Under these circumstances we obtain

(4) BUπ(Z) * Wr'n{SN\X) * LN~n{SN\X) « LΛ(X).

Application of Lemma 4.1, 4.2 yields the clusteraxiom for Ln{X). How-
ever the isomorphism (4) is compatible with the inclusions Xt -» Cl°i1 Xt.
On the other hand the desired isomorphism (3) can also be regarded
as being induced by these inclusions (rather than by the projections
Cl°l1 Xt -> Xt). This completes the proof of the assertion.

EXAMPLES. (1) Every suspension spectrum E= {ΣnE\E ^ Pλ} has
property (S).

(2) The same kind of argument which leads to Proposition 4.4 can of
course be applied to BO*, the homology theory of real X-theory.

(3) Let E = {En} be a spectrum having the following property:
(a) σ: ΣEn -» En+1 is cellular embedding
(b) En+1 = Sn+1 V ΣEn.
It is a rather trivial task, to construct a spectrum of this kind. Put

Xt = S° = {xi9 *}, then we have
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Let ξi G E0(Xι) be defined by the inclusion fi of S0+ι = S' into the copy
of S* c E^ΣE^. There is certainly no ζ e £ 0 W available such that
φf = {ίz} Assume to the contrary the existence of such a ζ, then there
must necessarily exist a universal / such that /, is stably equivalent to //:
S1 -> £7.

However this is just not true by construction.
This assures us that the clusteraxiom does not hold for every spectrum

E e Spec.
More generally we have proved:

4.5. LEMMA. Let E be a CW-spectrum such that the clusteraxiom holds
forE*. Let X = Cl°°=1 Xt and a family

be given. Then there exists a universal /, independent of i such that ft is
stably homotopic to a

f/: Sn+ί -> EgTΪXj.

Proof. Use the same argument that led to the last conclusion in the
preceding third example.

REMARK. Proposition 4.4 allows an extension to arbitrary Ω-spectra
E e Spec (cf. Theorem 3.1 in [3]). The proof of this assertion follows by
Proposition 4.1 and a considerable refinement of the arguments that led to
Proposition 4.2. In [3] this is needed as the main tool for comparing E+
and SE+ (cf. [8]) on the category Con/. Proposition 4.3 however is, as far
as Eilenberg-Mac Lane spectra are concerned, better than Theorem 3.1 in
[3] because it works for all (rather, than for finite dimensional) compacta.

5. The Milnor axioms. As we already mentioned J. Milnor char-
acterized an ordinary homology theory on the category 2ίCM of compact
pairs (this is J. Milnor's original terminology) by means of the following
axioms:

(Al) The clusteraxiom for the subcategory Com c 2ίCM (the category
of based compact metric spaces).

The preceding section was entirely devoted to this axiom.
(A2) The strong excision axiom which requires that for a homology

theory [Hn{ ),3} the projection p: (X9A) -» (X/A9 *) induces an iso-
morphism

(1) H*(X,A)->Ht(X/A,*).
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(A3) The exactness axiom.
(A4) The homotopy axiom.

Contrary to J. Milnor's treatment, we do not have a dimension axiom.

5.1. DEFINITION. A functor H+: 21CM -> Abz together with the corre-
sponding boundary operators is called a homology theory on 21CM H* =
{Hn, 9} whenever (A1)-(A4) are satisfied.

It is well-known how to transform such a homology theory into a
reduced homology theory on Com and vice-versa. We will freely make use
of this correspondence and call a functor H*: Com -> Abz (together with
natural transformations σ: Hn -> Hn+1Σ) a homology theory on Com,
whenever the related functor on 21CM fulfills 5.1.

To this corresponds the concept of a natural transformation φ:
H+ -> H\ between homology theories (cf. Definition 1.3).

This terminology should not be mixed up with that of 1.3 where we
dealt with singular homology theories on a shape category.

Let E G Spec be any spectrum, then the functor h: Com -> Com
gives rise to a homology theory E*h: Com -> Ab . According to our
custom not to write down the functor h explicitly, we will henceforth write
E* instead of E*h.

In [4] §3 we have proved for is*, E e Spec, all the axioms (A2)-
(A4). Concerning strong excision, recall that En(X, A) is defined as
En(XU CA, *), where * denotes the vertex of the cone CA. However
since every inclusion in Com is a cofibration ([4] Proposition (A9) in Com,
we have a homotopy equivalence

XUCA* X/A in Com.

This proves (1) for E*.

The preceding section was devoted to a treatment of the cluster
axiom, so that we are able to summarize:

5.2. THEOREM. On the category Com there exists to each CWspectrum
E a functor E*\ Com -> Ab {together with a natural transformation σ:
En(X) -*En+ι(ΣX)) sucTΓthat the axioms (A2)-(A4) of a homology
theory on Com are satisfied.

The main objective of this section is to establish the following

5.3. THEOREM. Let H*, H'*: Com -> Ab be two homology theories on
Com and a: H* » H'^be an isomorphism on the subcategory Po c Com of
compact (based) CW-spaces. Then there exists a unique extension of a to
an isomorphism ά: H* « H * over Com.
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The proof is preceded by some remarks and two lemmas:
(1) We write H* also for the corresponding homology theory on 3ί C M .

The isomorphism a can be extended to an isomorphism (also denoted by
the same letter) between H* and //* defined on the category of poly-
hedral pairs.

(2) Instead of working with actual CW-spaces (resp. CW-pairs or
polyhedral pairs), we will use ANR subspaces of a Hubert cube Q in
which any space X £ Com is supposed to be embedded. This does clearly
not cause any difficulties.

(3) Let I G Hn(X) be any element. A simple exactness argument
9

guarantees that Hn+ι(Q, X) ~ Hn(X, xo)9 hence there exists a uniquely

determined ζ e Hn+1(Q9 X) such that dξ = ξ. It is actually this ξ with

which we are going to operate.
(4) Let (X9A)9 (Xl9Aλ)9 (X2,A2) e 2lCM be three pairs such that

x = xλ u x 2 , x x n x 2 = A x n A 2 .

Denote by

i:(X9A)c(X9A1UA2UA)9 / y : ( l y , i ; )c (X9A1UA2UA)

the inclusions. Let ζt e Hm(Xi9 At) be two fixed elements, then we denote
= ζ\ θ ?2

 G Hm{X9 A) any element, having the property

This ξ may not exist nor is it necessarily uniquely determined. We can of
course extend this terminology to finitely many summands.

(5) The cluster axiom enables us to extend this construction to
countably many summands:

Let to this end Q be the Hubert cube, I c g a given compact space
and let ξ e Hn(X\ ζ e Hn+1(Q9 X) with 3f = ξ be fixed elements. We
take a decreasing sequence Pλ = β, P2 ̂ > Pk ̂  * of compact
ANRs with Γ)Pi = X. Moreover we establish an increasing sequence of
compact ANRs 0 = Uλ c U2 c in Q having the following proper-
ties:

(1) Ui Π Pi+k = 0 for k > 1, (2) P.\P. c Intt/f, i >j. All this can
be obviously achieved.

We set:

Λ / ^ / n ί / , , Jζ = P, Π t/J + 1, Λ,. = Λ,. U Λ i + 1 (Fig.l).

^ z = i?. U X, X. = X. U X, At = Ai U X.
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FIGURE 1

Let f, G Hm(Xi9 At) for all i be given elements and ζt the images of ζt

under the inclusion (Xt, At) c (Xi9 At). We assume:
(*) The existence of elements ηr e Hm(Xλ U UXr, Rr+1) which

are inductively determined

and denote by ηr e Hm(Xλ U U l r , i? r +i) the image of τjr under the
corresponding inclusion.

Since we have

the definition of (X^Ai) implies that there exists ρ\ι\pP e H^^R^
such that

where we omitted the inclusions Rt<z At from our notation. Because
ifi = β Π ί / 1 = 0 , w e have pf} = p(

x

2) = 0.
The existence of ηr implies that we have

(2) p?> = p?>.
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The following lemma asserts that we are able to find a f e Hm(Q, X)

= Hm(}J^slXί9 X) which can be considered as some kind of η^:

5.4. LEMMA. Assume that (*) is satisfied, then (1) there exists a

ζ e Hm(Q,X) such that

(3) kr+ζ = / r*η r

with inclusions

kr:(Q,X)olQ, U x\

(2) any other elements ζ' satisfying (2) (with possibly different family

{ζr} and same {ζt}) is equal to ζ.

Proof. Let Z, = XJA;, form the cluster of different copies of the

spaces X and define

Observe that XJX = X. U X/X = Xz

+ and AJX = At U

Due to (A2) we have an isomorphism

(4) HjC\Z,,*)~Hm{Z,C\Ai/x),

while (Al) provides us with a η' e i / m ( Q Z , *), satisfying η/\Xi/Ai =

f/ e HjJtjA^) « HjJX^Ai) where f/ corresponds to f, under this

isomorphism.

Here we denote by v[\Xi/Ai the ith factor in the element correspond-

ing to η' by the isomoφhism (Al):

/ = 1

To η' there exists under the isomorphism (4) a η G Hm(Z, O f A*). We

have an infinite folding map:

(identifying back the different copies of the Xt as subsets of Q resp. for

the quotient spaces Q/X) and obtain η" = f*η G Hm(Q/X, UfLiA^).

(**) There exists an element f G // m (β, X) « Hm(Q/X9 *) such that

, *) ̂
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Proof. Because of the exact (reduced) homology sequence of the pair
(Q/X, \Jf=1A+) it suffices to prove that dη" = 0. To this end we have the
commutative diagram

« i φ « I φ
/ oo oo \ 9 / oo

4 /. if*

HJ\Q/X, UU,+) - Hm_

where the vertical isomorphisms stem from (Al) (or from (Al) in combi-
nation with (A2)) and the vertical arrows /* are induced by the folding
map/.

According to (5) we have proved dη" = 0 whenever we are able to
confirm that /*<p{Δf/} = 0 e ^m-iCJjli^Γ), where Δ: HjJίJA^ ->
Hm-i(Λΐ) i s t h e composite of 9: Hm(X?,Af) -> H^^Af) with the
natural isomorphism

On the other hand we have At = RtU Ri+ι. Hence the space i?z appears
in the cluster C l ^ ! Af twice, namely as a subset Rγ) c 4̂J. and secondly
as a subset ϋf } of At_v The folding map / identifies both copies. We
have already detected the elements ρ\k) e Hm_ι(Rψ)), k = 1,2 such that
in β (2) (now for A* instead of At) is satisfied.

We can rearrange the cluster

ι=l ι=l

getting a new cluster C = Clf^R^ U R(Py with folding map g: C
I 100 J +

Moreover there exist isomoφhisms in a commutative diagram

ί = l ( = 1
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As a result we have

o = g*Ψ { P?> - P?} = f*φ { PP - PPΛ } - a,,".
This completes the construction of ξ e Hm(Qy X).
Condition (3) asserts that ηr = l~\kr*ζ (since /r is easily recognized

to be an excision) and therefore simply states that by replacing infinite
clusters by finite (r-fold) wedges we get back ηr. The verification of this
fact is straightforward.

This completes the proof of the assertion (1) in 5.4.
We accomplish a proof of 5.4 (2) by collecting the following remarks:
(1) the inclusion

c ( U J/,*)j rap- jk: ί\jAltx0\ c

induce an epimorphism in homology.

Proof. We have X Π At. = 0 and therefore a commutative diagram

H

with inclusion p where the vertical arrow is an excision.
(2) The sequence {£} determines Ί\" uniquely. Let ξ,ξ' e Hm(Q/X,*)

= Hm(Q, X) be two elements which map into TJ" in

then by exactness, ξ - ξ' = q*a, with a e Hm(U™ Af)9 q: (U™ Af, x0) c

(Q/X, •)-
Consider the diagram

3" 4 a' I a I
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whose coπrmutativity ensures that da = dζ — 9f' = 0. This proves that
two ζ, ζ' which are achieved by our construction satisfy dζ = dζ'.

(3) Let I e Hm(Q, X) be given such that for fixed {£,} and some
selection of {ηr} (3) holds. Observe that lr is an excision, hence lrif an
isomorphism. We have a commutative diagram for a ζ e Hm(X, Q) such
that (3) (for all r) holds:

ξeHm(Q,X)

I .

ξ e Hm(Q/X) - #m(β/Jr, U ̂ ή 3 r,"

t ί

which guarantees that f is in fact obtained by the construction process
which we established during the proof of (1). These remarks ensure that
we have dξ = dξ' for any other ξ' which satisfies (3) (using an eventually
different {ηr} related to the same family {ξ.}). Now £ = ζ' follows by the
fact that 3: Hn+1(Q, X) » Hn{X, x0) is an isomorphism (cf. Remark (3)
at the beginning of this proof).

We can of course get back the ηr and even the ξt from ξ (which in
analogy to the finite case will be denoted by ξ = Θ^ 1 f ί ) .

5.5. L E M M A . Let (Q, X\ (Xi9 A , ) be as before and fix aζ^ Hm(Q9 X).
Then there exists a ξt e Hm{Xt, A t ) for all i, such that

Proof. We have ξj e Hm(Q, \J^jXt) for any j and obtain a ζj e
Hm{Xj,Aj) be excision. Also the elements ηr are obtained by excision
from η'r e i/ w (β, U ^ r -X) U Jf). The verification of (2) is now immediate.

Proof of Theorem 5.3. The basic idea of the proof of Theorem 5.3 is
this: Starting with a f e Hm_x{X, JC0) we find a ξ e # m ( g , X) which can
be cwί into pieces {fy} by means of Lemma 5.5. On the other hand Lemma
5.4 allows us to paste together these pieces {£.} (which are required to
satisfy certain compatibility conditions) to the effect that we get a
f e J3rm(β, x) and finally a 3f = f G / / ^ ( X , JC0). While f G HJX, X0)
is eventually defined outside Po? the pieces f,. are all defined for pairs in
PQ and therefore accessible to the transformation α.
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Let ξ e Hn(X\ ξ e Hn+1(Q, X) be given, such that dζ = I We write
for simplicity H*(X) (H'*(X)) instead of H*(X,x0) (H'*(X9x0)); all
homology groups in this proof are understood to be reduced.

Lemma 5.5 yields a sequence {ζi f e Hn+ι(Xi9 At)} such that ζ =
θ * 1f, - This enables us to extend a: H* « if* in the following way: Let
£ e i/n(X) be given, then we go over to Hn+ι(Q, X) and the family [ξ.}.
Because all f z are defined for spaces in a subcategory where α has been
already established, we have the family {£.} (see Remarks (1), (2) at the
beginning of this proof) which in turn establishes (due to Lemma 5.4)
again an element άξ e H'n(X). By Remark (3) and the last conclusion of
Lemma 5.4, this element aζ is uniquely determined by ξ (because every
intermediate step has this property, with fixed Pi9 Uέ).

Observe that we can instead of a family { ξέ} equally well deal with a
related family {ηr e Hn+ι(Q, Pr)} which determines (1) the family {ηr e
Hn+ι(U^=ι^Rr+ι)} by excision and finally (2) a family {£• e
Hn+1(Xi,Ai)}. Since {̂ .} determines ζ = dξ uniquely, we are naturally
led to the question under what conditions two different families {ηr e
Hn+1(Q,Pr)}, {η'r GHn+ι(Q,P;)} (with a different approximating
{ P?9 Uf}) determine the same ξ: This problem is settled by means of the
following observation:

(Fl) Let {l(r)} be an infinite subsequence of the integers, then {ηr}
and {ή/(r)} determine obviously the same ξ.

(F2) Assume that {ϊ)r}, {rι'r} have the property that to each r there
exists an index l(r) such that P/(r) c Pr and 7*η/(r) = η r (j: (Q, P/(r)) c
(β, PΓ)), then {ηr} and {η'r} determine the same ξ.

(F3) Let on the other hand ξ be determined by {τ)r}, (fr by {ήr

r})
and ζ = ξ\ then we can find to each Pr an index l(r) as in (F2) such that

» w i t h inclusions A:: (β, X) c (β, PΓ), /:r:

As a result we have that ξ = ξ' if and only if (F2) holds.
The assignment a can be defined by using the families {ηr} instead

of {£•}: We have the family {aηr} which in turn determines a family
{£/ e H^+1(Xi9 Ad) and finally the element αf.

These remarks enable us to prove

(a) a is natural and compatible with suspensions.

Proof. Let /: (X, x0) -> (7, j 0 ) be continuous. We can extend / to a
F: (Q9X) -* (Q9 Y). Denoting the corresponding sequence of approximat-
ing ANRs by P{ = Q D P2 D , Π ^ P / = Y, there corresponds to
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each index / a minimal /(/) such that F^) c P/(/). We have P
(Q, Pi)-* (Q, Pι\i)). So we can assign to each ηr a ή'/(r) = F'+ηr

Hn+1(Q, P/(, )), in such a way that {ήj(r)} is a family which determines /*
The naturality of a requires the commutativity of the diagram

fΛ if*

Hn(Y) Λ h

Since a itself is supposed to be natural, this can be deduced by looking
upon the two chains of correspondences for a fixed ξ e Hn{X):

where the vertical" = " indicates a relation of type (Fl).
The second assertion in (a) follows immediately by construction.

(b) ά is a homomorphism.

Proof. This follows because the whole construction process of a is
compatible with the group structure:

Let ξl9ξ2 e Hn(X) be given, then we have d(ξλ + ζ2) = ξλ + ξ2,
moreover { η^1} 4- η .̂2)} is a family for ξx + ζ2 (in the sense of the preced-
ing construction) etc.

(c) a is by a uniquely determined.

Proof. Let β: Hn(X) -> H^(X) be another extension of α, then for
given ξ G Hn(X), the family {iβηr} is easily seen to determine βξ G
Hή(X). Since α = β for all ηr, we have {aηr} = {iδϊjr}, where, by
definition, the first family determines άξ and the second one βξ. Hence (c)
follows. D

(d) a is an isomorphism.
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Proof. Follows directly from (c) or can be seen by putting a~ι instead

of a into the construction process of a. D

This completes the proof of 5.3. D

We could of course easily adjust the preceding proof to establish the

following slightly more general result:

5.6. COROLLARY. Let H*9 H\ be homology theories on Com {in the

sense of Definition 5.1) a: H* -> H\ a natural transformation on P o, then

there exists a unique extension a: H* -> HQ of a over Com.

Concerning the relations to Com we have:

5.7. COROLLARY. Let (1) H*: Com -» AbZ be any homology theory on

Com (2) E a CW spectrum such that E* is a homology theory on Com (in

the sense of Definition 5.1, which implies in particular that the cluster axiom

holds) (3) a: H* ~ E* a natural isomorphism on the category Po. Then

there exists an extension if*: Com —> Ab ofH* over the shape category Com

and an isomorphism a\ H* « E*.

This is an immediate consequence of 5.2 arid 5.3.

In the next section we need the category Com of finite dimensional

compact metric spaces. The proof of 5.3 immediately carries over to this

case, so that we can restate 5.3, 5.6, 5.7 for Com7.

5.8. THEOREM. The conclusions of 5.3, 5.6, 5.7 are still valid after

replacing Com by Com.

REMARK. AS pointed out in [3] p. 209 (proof of Theorem 3.2), the

arguments which lead to the construction of a (in the course of the proof

of Theorem 5.3) are still valid whenever only the homology theory H\

(but not necessarily H^) satisfies a clusteraxiom: We need the clus-

teraxiom solely to paste together a sequence {αf J (or alternatively {aηr})

in order to obtain a άξ. The clusteraxiom is not needed to break a given

element f into appropriate pieces {£}.

6. Applications. We collect together some consequences of the pre-

ceding existence and uniqueness theorems. Some of these results are

already known, but with different proofs.
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We summarize some of the results of §§1-3 in:

6.1. THEOREM. Let E be an CW spectrum, then the homology theory

M*' Eih ~* Ab allows, up to an isomorphism, a unique extension E*:

| Γ Λ - + A b Z , ~jί* ( ) = £J|C(|SΓ( )D, such that the Whitehead axiom W)

{Definition 1.2) holds. Moreover E* is of compact support (Definition 1.7).

For E e CSpec and X being an s-continuum, one has a natural isomorphism

Proof. This follows immediately from 1.8, 2.2, 3.3.

6.2. THEOREM. For any abelian group G, Steenrod-Sitnikov homology

theory H£( G) turns out to be naturally isomorphic to K(G)*( ) on the

category Com. Hence H£( G) can be uniquely extended over Com.

Proof. As well H£( G) as K(G)*() are fulfilling the Milnor axioms

§5 (A1)-(A4): As far as H$( G) is concerned this can be found in [10],

while 4.3 and 5.2 together confirm that for K(G)*( ) . Since Hξ( G) =

H*( G) and K(G)*( ) are isomorphic on P o, Theorem 6.2 can be

immediately deduced from 5.3 and 5.7. D

6.3. COROLLARY. Let G be a finitely generated abelian group, X

an s-continuum, then there exists a natural isomorphism between

H*(\S(X)\; G) andHξ(X; G).

Proof. This is an immediate consequence of 6.1 and 6.2.

REMARK. The last corollary is a generalization of Theorem 7.7 in [2]

(where this was proved by different methods for G = Z). Observe that the

^-connectedness of X is not necessary for 6.2 but enters into our consider-

ations through 6.1.

6.4. THEOREM. Let H* be an ordinary homology theory on Com (i.e.

one for which §5 (A1)-(A4) and in addition a dimension axiom is valid)

with coefficient group HQ(point) « G. Then H*() is naturally isomorphic to

Steenrod-Sitnikov homology H$( G).

Proof. By the Eilenberg-Steenrod uniqueness theorem, we have

H*( ) « H*( G) on Po (resp. on polyhedral pairs). Now the assertion

follows by application of 6.2.
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REMARK. This is nothing else than J. Milnor's uniqueness theorem in
[12].

For the sake of completeness we restate Corollary 4.2 in [4] which
follows now from 6.1, the fact that K(G) e CSpec for finitely generated
G and homological algebra:

6.5. COROLLARY. Let G be finitely generated, abelian; X e. Com

s-connected {i.e. a s-continuurn), then we have a natural universal coeffi-

cient sequence:

0 -* K(Z)rι(X) <8> G -+ K(G)n{X)

REMARK. This result cannot be extended to an arbitrary coefficient
groups G (which is not finitely generated) because of a result in [10]
asserting that a non-trivial homology theory satisfying a clusteraxiom does
not admit a universal coefficient sequence for all abelian G. As a
consequence we are able to provide for any non-finitely generated G an
5-continuum X such that

As can be easily realized, the s-continuum X = Clf=1S? (S? = S2 for
any i = 1,2,...) has the desired property.

In [6], [8], [9] the authors deal with a functor

Ext: Com^ -* Ab

which is defined by functional analytic methods. This functor gives rise to
a homology theory

ίEx(X) if ii s i (2)
£Λ ] \Ext(ΣJkΓ) if* ss 0(2)

on the category Com which has very far reaching applications in func-
tional analysis.

Concerning the definition of Ext and the verification of its basic
properties the reader is referred to [6]. In [5] as well as in [7] the problem
of the uniqueness of Steenrod extensions has been raised for the first time.

In [8] Remark 7.7 the authors deduce a non-canonical version of
Theorem 5.7 for homology theories with coefficient groups of finite type.

Furthermore it is proved in [6] (Theorem 7.3) that for Ext and
consequently for ε* the clusteraxiom holds.

This makes sense either for the based version of ε* or by talking
about "spaces Xi9 i = 1,2,..., any two of them having only a fixed point
b in common."
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Details of all this can be found in [6], [8].

We have the following isomorphism theorem:

6.6. THEOREM. On the category Po there exists an isomorphism a: ε*

« BU* which allows a unique extension to an isomorphism

a: ε* ~ BU* on Con/.

Proof. The existence of an isomorphism a on P o is the content of

Theorem 7.7 in [6]. Both functors ε* and BU* are homology theories on

Con/in the sense of Definition 5.1: In the case of ε* this has been readily

proved in [6]. As far as BU* is concerned, this follows from 4.4 and 5.2.

Hence we can apply Theorem 5.7, establishing the desired conclusion.

As a corollary we obtain as a consequence of 5.8:

6.7. COROLLARY. The homology theory ε*: Com{ -> Ab z allows an

extension over Com,. In other words: There exists a homology theory

such that

ε*h = ε*.

REMARK. (1) Corollary 6.7 allows of course a direct proof, which uses

only the explicit definition of Ext.

(2) Theorems 6.6 and 6.7 give a precise meaning to the statement that

"ε* is complex A'-homology in the strong shape category". Moreover it

gives an explanation to the fact stated in [9], Corollary 5.10, that e*(X) «

for two spaces X, Y in Con/ having the same (Borsuk-)shaρe:

Because ε* is an invariant of strong shape theory, we conclude that

ε*(X) « ε*(Y) for spaces X, Y being equivalent in ComΛ. However two

compact metric spaces X, Y are equivalent in ComA if and only if they are

equivalent in the Borsuk shape category.

(3) The restriction to finite dimensional compact metric spaces in 6.6

stems from 4.4 which we were not able to establish without that additional

assumption. The same restriction is imposed on the corresponding state-

menty in [8]. Whether Theorem 6.6 is valid for Com (instead of merely

Com ) is an open question.

7. Survey of the shape construction. This section is not devoted to

a rigorous treatment of the strong shape category K resp. the related

homotopy category Kh. This can be found in [4]. We only intend to record
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some facts without proofs in order to make this paper as independent as
possible. A different approach to strong shape theory can be found in [7].

(1) A 2'category K is an ordinary category (i.e. a 1-category) such that
K(X, Y), I J G obK, carries again the structure of a category (whose
morphism are called 2-morphisms).

A 2-functor Φ: K -> L between two 2-categories is a functor up to
2-morphisms between the underlying 1-categories (this means e.g. that one
has only a 2-morphism ω: Φ(gf) -> Φ(g)Φ(/), whenever the composi-
tions are defined, which is not necesesarily the identity). These definitions
are completed by requiring various compatibility conditions.

By the way, the concept of a w-functor (resp. a w-category) can be
established inductively.

In practice we work with categories of topological spaces, where the
3-category structure can be introduced by taking homotopies as 2-mor-
phisms and homotopies between homotopies as 3-morphisms. Let Ho, Hλ\
X X / -> Y be two homotopies between mappings /0, fl9 then a homo-
topy between homotopies Ho, Hx is a mapping

£: Xxlxl ^ Y

having the properties:

In order to equip K( X, Y) with the structure of a 2-category, one has to
adjust a little the concept of a homotopy; a point, which among other
things, we are not going to explain, referring to [4] for the details.

(2) Let K be a category of topological spaces (e.g. K = Top, K
= Com, K = based or unbased metric spaces and continuous maps) and
P a subcategory of "good" spaces (e.g. all ANE spaces, all CW-spaces, all
compact CW-spaces etc.) The strong shape category K depends upon the
particular choice of this P; it has the same objects as K.

Let X e K be any space, then we have a 2-category Px having (1)
mappings g: I ^ P e P as objects, (2) pairs (r, ω): gx -> g2 as mor-
phisms, where r e P i s continuous and ω: rgλ « g2 a given homotopy.

A 2-morphism (J>, £): (r1? ωγ) « (r2,ω2): gλ -» g2 consists of a pair
where v\ rλ — r2 is an ordinary homotopy and ξ: ω2 ° vgλ =* ωλ a 2-homo-
topy. The latter is not simply a homotopy between homotopies, but a
homotopy class of such a homotopy. This in turn requires the definition of
a 3-homotopy which is established analogously to that of a 2-homotopy.
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A 2-functor /: Pγ -» Px, X, Y e K is defined to be a shape mapping
/ e K(X, Y) whenever the following conditions are fulfilled:

/2) (r, ω): gλ -» g2 => /(r, ω) = (r, ωx) for suitable homotopy ωlβ

/3) A corresponding condition involving the 2-morphisms in Pγ.
Moreover we require that for a 2-morphism (v, ξ): (rl9 ωx) « (>2>ω2)>

( ^ ω , )= ft "» §2 w i t h ft = 6/Λ, ί / e P y , £ = ΓΛ, /(^,1) = (^γ,-) one
has f(v,ξ) = (v,ξ) with

and with 2 homotopies

δ : ώx «

(/(r , ω,.) = (r/? ώ ), ωf. = ω α) being explained before.
Finally we require
/4) For any (r l5 ωx) e Pγ(gl9g2), (r29 ω2) e P y (g 2 , g3). The connect-

ing 2-morphism (whose existence is required in the definition of a 2-func-
tor) is of the form

(l,η): f((rl9ω1)(r29ω2)) -* /(/*i,ω1)/(r2,ω2).

Suppose now that (r, ω): gx -» g2 is a given 1-morphism such that
ω = ω'α, gέ = bfi, then we have a 2-morphism

and a connecting moφhism

(MΓ1: /(r, «)/(&!, 1)

The composition of these 2-morphisms yields a 2-morphism

whose second component δ is recognized as a 2-homotopy between ώ and
1 (using the previous notation /(Z> , 1) = (bi9 γf)).

REMARK. This is a 2-stαge strong shape category because it involves
only 2-morphisms (and therefore 2-homotopies but no 3-, 4- etc. homo-
tpies. For compact metric spaces this turns out to be sufficient, while for
more general spaces one has to go over to oo-categories Pγ and oo-func-
tors. These objects are much more involved: In case of a oo-functor one
does not only have connecting morphisms Φ(gf) -> Φ(g)Φ(/) but also
morphisms regulating non existing associativities on all levels.
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A model for a oo-stage strong shape category (in fact: The homotopy
category of such a category) has recently been proposed by Ju. Lisica and
S. Mardesic respectively (generalizing the considerations in [4]) indepen-
dently by the present author at the Leningrad topological conference.

Like in K the homotopy category Kh is established by means of
mappings F <Ξ K(X X /, Y).

We have a functor h: K -> K being defined by

h(X) = X, X^K

on the objects and by

h(f)(g) = gf

for a morphism / e K{Xy Y). Moreover for F e P we have an assign-
ment

h'\ K(X,Y) -> K{X,Y)

defined by

h'{f)=f(ly)

such that the following properties are satisfied:

(1)

(2)

together with corresponding relations for the higher moφhisms. We need

the following conclusion:

7.1. PROPOSITION. Letf e K(X, Y) be any shape morphism for Y e P,
then there exists a continuous f e K(X, Y) such that h(f) — /.

Proof. Set/=Λ / (/) .

(3) In order to define homology in K we need a new smash-product
X A Y for X, Y G K, which actually leads us out of the category K: The
new smash-product X Λ Y of two based spaces (X, x0), (Y, y0) is a
2-category Px A Pγ whose objects are factorizations

AY -* P1AP2-*P)
giΛg2 r *

of objects (g: I Λ 7 - ^ P ) G P X Λ y , with Pi e P. The 1- and 2-mor-
phisms are defined similarly.

One can extend the concept of a shape mapping /: X -» Y to that of
a shape mapping

~ ~ ^ Y ι ~ A ' " ~AYm
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as being a 2-functor (more precisely: an equivalence class of such 2-func-
tors)

/: pγ~A Ί\Pγ -> px Ί\ Ί\PX

which fulfills the conditions /(l)-/(3), adapted to the new situation.
Details can be found in [4].

Let E be any CW-spectrum, then we can define homology groups
with coefficients in E by

En(X) = Urn Eh(Sn+I, Et~Kx), n e Z.

In [4] §3 we explain, among other things, that for compact metric X this
En( ) is in fact a homology functor which fulfills the Eilenberg-Steenrod
axioms for a generalized, reduced homology theory ([4] Theorem 3.1). The
crucial problem is embodied in the construction of induced morphisms
E*(f)> f ^ K(X, Y), which, in turn, requires the existence of a /Λ l z :
X A Z -> Y A Z. According to [4] Propositions 2.1 this can be accom-
plished for a CW-space Z and a metric space 7 (or, alternatively, for all
X, y, Z and continuous f e K).

We have to refer to the techniques for the explicit construction of a
shape mapping, laid down in [4]. In our case it suffices to consider a /:
Sn+ι -* E{ Λ X, where E = {£7} is a CW-spectrum (which implies, that
all Ei are "good" spaces in P) and where X is supposed to be a compact
metric space. We embed X into a Hubert cube β and consider a
decreasing sequence of compact ANEs: Q = Pλ D P2

 D " ' > w i th ΠP, =

X It turns out to be sufficient to evaluate / only on mappings 1E A gz:
Eι A X -* E/ A P , where gt: X -> P, is the inclusion. This is a conse-
quence of [4] Proposition A7. We need this for example in the course of
the proof of Proposition 4.1.

At several occasions we use the shape singular complex S(X) (resp.
S(X A Y)) of a topological space X e K (resp. of a product X A Y).
This is defined in complete analogy to the classical case as a simplicial set
whose simplexes are shape mappings σw e K((Δn)+, (X, x0)) where ΔΛ

denotes the standard simplex. The boundary and degeneracy operators are
defined like those for the ordinary singular complex S( X). We have that

S: K -> @£ (category of Kan-complexes)

is a functor,which appears (as in ordinary topology) together with a
natural transformation

ωx: \S(X)\ -> X, X^K
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where | | denotes, as usual, the geometric realization. We need the fact
that:

7.2. PROPOSITION ([2] Theorem 5.1(c)). The shape mapping ωx is a
weak homotopy equivalence {hence it induces an isomorphism ^ ( ω x ) , π*
being the shape homotopy group functor , ϊfn{X, x0) = Kh{Sn, X)).

All spaces are supposed to be equipped with a basepoint, all map-
pings and homotopies are assumed to be base point preserving, although
for the mere definition of K this is not explicitly needed.

When talking about K, K etc. in §l-§3, we assume K to be the
category Top0. Later on we have to restrict ourselves to the full subcate-
gories Com (= category of compact metric (which always means of
course: metrizable) spaces) or even to Con/ (= category of finite dimen-
sional spaces in Com). In the latter case, every X e Con/ can already be
embedded in some sphere SN and we can assume that all P, e P occur-
ring in the preceding remark are already lying in this SN.

As we mentioned already there are many approaches to strong shape
theory for compacta (cf. [7]), all of them turn out to be equivalent as
homotopy categories (cf. [11], also for further references). The preceding
construction leads to individual mappings (rather than to homotopy
classes right-away). However it turns out to be a matter of convenience
and taste what particular construction somebody is using in order to
accomplish a given aim.

Concerning the different kinds of homology theories which appeared
in literature, Theorem 5.7 assures us that the homology theory in [7] and
the homology theory sh* of [8] are isomorphic: They are both satisfying
the Milnor axioms and they agree on finite CW spaces. The existence of a
non-canonical isomorphisms between these homology theories has already
been mentioned in [7] §8.

Finally we must point out that for a CW-spectrum E = {Et} we
understand the cohomology En(X) as ]χmk[ΣkX, En+k] and not in the
sense of the Boardman category [1]. This definition is for our purposes
more adequate because it corresponds to Cech cohomology (for E
= K(G)) (see [3], [13]).
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