A SHORT PROOF OF ISBELL'S ZIGZAG THEOREM

Peter M. Higgins

Abstract

Isbell's Zigzag Theorem, which characterizes semigroup dominions (defined below) by means of equations, has several proofs. We give a short proof of the theorem from first principles.

The original proof Isbell [4] and that of Philip [6] are topological in flavour. The algebraic proofs of Howie [2] and Storrer [8] are based on work by Stenstrom [7] on tensor products of monoids. Yet another proof, using the geometric approach of regular diagrams, is due to David Jackson [5]. This latter approach also employs HNN extensions of semigroups to solve the problem. In this note we follow Jackson's lead in using what is essentially a HNN extension for our embedding (instead of the more intractable free product with amalgamation) to derive a short and direct proof of the Zigzag Theorem.

Following Howie and Isbell [3] we say that a subsemigroup U of a semigroup S dominates an element $d \in S$ if for every semigroup T and all morphisms $\phi_{1}: S \rightarrow T, \phi_{2}: S \rightarrow T, \phi_{1}\left|U=\phi_{2}\right| U$ implies that $d \phi_{1}=d \phi_{2}$. The set of all elements in S dominated by U is called the dominion of U in S; it is obviously a subsemigroup of S containing U, and we denote it by $\operatorname{Dom}(U, S)$. Dominions are connected with epimorphisms (pre-cancellable morphisms) by the fact that a morphism $\alpha: S \rightarrow T$ is epi iff $\operatorname{Dom}(S \alpha, T)=T$.

Isbell's Zigzag Theorem. Let U be a subsemigroup of S. Then $d \in \operatorname{Dom}(U, S)$ if and only if $d \in U$ or there exists a sequence of factorizations of d as follows:
$d=u_{0} y_{1}=x_{1} u_{1} y_{1}=x_{1} u_{2} y_{2}=x_{2} u_{3} y_{2}=\cdots=x_{m} u_{2 m-1} y_{m}=x_{m} u_{2 m}$,
where

$$
\begin{gathered}
u_{i} \in U, \quad x_{i}, y_{i} \in S, \quad u_{0}=x_{1} u_{1}, \quad u_{2 i-1} y_{i}=u_{2 i} y_{i+1} \\
x_{i} u_{2 i}=x_{i+1} u_{2 i+1} \quad(1 \leq i \leq m-1) \quad \text { and } \quad u_{2 m-1} y_{m}=u_{2 m} .
\end{gathered}
$$

Such equations are known as a zigzag in S over U with value d, length m, and spine the list $u_{0}, u_{1}, \ldots, u_{2 m}$. For a survey on
epimorphisms and semigroup amalgams featuring applications of the Zigzag Theorem see Higgins [1].

We give a new proof of the forward implication in the theorem; the reverse implication follows by a straightforward manipulation of the zigzag.

Suppose that $d \in \operatorname{Dom}(U, S) \backslash U$. Form a semigroup H by adjoining a new element t to S subject to the relations $t^{2}=1, t u=u t$, $t u t=u$ for all $u \in U$. Define the morphisms $\phi_{1}, \phi_{2}: S \rightarrow H$ by $s \phi_{1}=s$ and $s \phi_{2}=t s t$ (indeed ϕ_{1} and ϕ_{2} are embeddings). Clearly $\phi_{1}\left|U=\phi_{2}\right| U$ so that $t d t=d$, or what is the same, $t d=d t$ in H. We prove that this latter equation implies that d is the value of some zigzag in S over U.

Since $t d=d t$ there is a sequence of transitions of minimal length $I: t d \rightarrow \cdots \rightarrow d t$ where each transition $p w q \rightarrow p w^{\prime} q\left(p, w, w^{\prime}, q \in\right.$ $H)$ is either a t-transition, i.e., involves a relation in which t occurs, or is a refactorization, i.e., $w=w^{\prime}$ in S. We claim that no transition in I involves any of the relations $t^{2}=1$ or $t u t=u \quad(u \in U)$. Suppose to the contrary that I has a transition $\alpha: p q \rightarrow p t^{2} q \quad(p, q \in$ $H)$. Clearly α is not the final transition of I, so consider the next transition $\beta: p t^{2} q \rightarrow$. Suppose that the right-hand side of β has one of the forms
(i) $p q$;
(ii) $p^{\prime} t^{2} q$;
(iii) $p t^{2} q^{\prime}$.

In the first case the two transitions cancel, while in cases (ii) and (iii) α and β can be performed in the opposite order without changing the net effect. If β does not have one of these forms then either (iv) the product p has the form $p=p^{\prime} u$ or $p^{\prime} t u(u \in U)$ and the right side has the form $p^{\prime} t u t q$ or $p^{\prime} u t q$ or (v) a similar remark applies to q. In this case the pair of transitions α, β could be replaced by the single transition $p^{\prime} u q \rightarrow p^{\prime} t u t q$ or $p^{\prime} t u q \rightarrow p^{\prime} u t q$ (with a similar remark applying to case (v)). Therefore cases (i), (iv) and (v) contradict our minimum length assumption, whence it follows that all transitions of I of the form $p q \rightarrow p t^{2} q$ can be taken to appear at the end of I, and thus there are none.

Next suppose that α has the form $p u q \rightarrow p t u t q$, and once again consider the following transition β. If p has the form $p^{\prime} v$ or $p^{\prime} t v$ $(v \in U)$ then β could have the form $p^{\prime} v t u t q \rightarrow p^{\prime} t v u t q$ or $p^{\prime} t v t u t q \rightarrow$ $p^{\prime} v u t q$; but in that case the pair α, β could be replaced by the single transition $p^{\prime} v u q \rightarrow p^{\prime} t v u t q$ or $p^{\prime} t v u q \rightarrow p^{\prime} v u t q$. A similar remark applies if q has the form $v q^{\prime}$ or $v t q^{\prime}$. If p has the form $p^{\prime} t$ then β could have the form $p^{\prime} t t u t q \rightarrow p^{\prime} u t q$; but again it would then
be possible to shorten I by replacing our pair α, β with the single transition $p^{\prime} t u q \rightarrow p^{\prime} u t q$; and again a similar remark applies to q. Another possibility for β is $p t u t q \rightarrow p u t^{2} q$ or $p t u t q \rightarrow p t^{2} u q$, but here again α and β could be replaced by just one transition. The remaining possibilities for β (β cancels α, or β involves only the product p or only the product q) are disposed of as in the previous paragraph, thus establishing the claim.

Call a t-transition of the form putq $\rightarrow p t u q[p t u q \rightarrow p u t q]$ a left [right] transition, so that our sequence I consists entirely of refactorizations and left and right transitions with exactly one occurrence of the symbol t in each word of I. Suppose that $p t q$ is a product occurring in I, and that the next t-transition in the sequence is a left transition. We claim that we may assume that this left transition occurs immediately, or is preceded by just one refactorization of the form $p t q \rightarrow p^{\prime} u t q$, for it is clear that any refactorization of p can be performed in one step, while any refactorization of q can be delayed until after the left transition. Next suppose that I contains two left transitions with no intervening right transition, which we may assume have the form putq $\rightarrow p t u q \rightarrow p^{\prime} v t u q \rightarrow p^{\prime} t v u q$ $(u, v \in U)$, or simply the form $p^{\prime} v u t q \rightarrow p^{\prime} v t u q \rightarrow p^{\prime} t v u q$. In the latter case the pair of transitions can be replaced by a single left transition, while the three transitions of the first case can be replaced by two: $p u t q \rightarrow p^{\prime} v u t q \rightarrow p^{\prime} t v u q$. Coupling all this with similar arguments for right transitions allows us to conclude that I consists of alternate left and right transitions, separated by single refactorizations; furthermore the first t-transition is right and the final t-transition is right. The sequence I therefore implies equalities in H of the form:

$$
\begin{aligned}
t d & =t u_{0} y_{1}=u_{0} t y_{1}=x_{1} u_{1} t y_{1}=x_{1} t u_{1} y_{1}=x_{1} t u_{2} y_{2}=x_{1} u_{2} t y_{2} \\
& =x_{2} u_{3} t u_{2}=\cdots=x_{m-1} u_{2 m-2} t y_{m}=x_{m} u_{2 m-1} t y_{m} \\
& =x_{m} t u_{2 m-1} y_{m}=x_{m} t u_{2 m}=x_{m} u_{2 m} t=d t
\end{aligned}
$$

for some $m \geq 1, u_{i} \in U(1 \leq i \leq 2 m) \quad x_{i}, y_{i} \in S^{1}$, and $u_{0}=x_{1} u_{1}$,

$$
\begin{gathered}
u_{2 i-1} y_{i}=u_{2 i} y_{i+1} \quad x_{i} u_{2 i}=x_{i+1} u_{2 i+1}, \quad(1 \leq i \leq m-1) \quad \text { and } \\
u_{2 m-1} y_{m}=u_{2 m} .
\end{gathered}
$$

In fact $x_{i}, y_{i} \in S$ for if $x_{i}=1$ then in S we have

$$
d=u_{0} y_{1}=x_{1} u_{1} y_{1}=x_{1} u_{2} y_{2}=\cdots=u_{2 i} y_{i+1}=\cdots=x_{m} u_{2 m} ;
$$

and so I could be shortened by beginning with $t d \rightarrow t u_{2 i} y_{i+1}$, with a similar remark applying if some $y_{i}=1$. Hence d is the value of a zigzag in S over U, thus completing the proof.

References

[1] P. M. Higgins, Epimorphisms and amalgams, Colloquium Mathematicum, LVI (1988), 1-17.
[2] J. M. Howie, An Introduction to Semigroup Theory, London Math. Soc. Monographs 7, Academic Press, 1976.
[3] J. M. Howie and J. R. Isbell, Epimorphisms and dominions II, J. Algebra, 6 (1967), 7-21.
[4] J. R. Isbell, Epimorphisms and dominions, Proc. of the Conference on Categorical Algebra, La Jolla, (1965), Lange and Springer, Berlin 1966, 232-246.
[5] D. Jackson, Regular diagrams for the study of algebraic semigroups, manuscript.
[6] J. M. Philip, A proof of Isbell's Zigzag Theorem, J. Algebra, 32 (1974), 328-331.
[7] B. Stenstrom, Flatness and localization over monoids, Math. Nachr., 48 (1971), 315-334.
[8] H. H. Storrer, An algebraic proof of Isbell's Zigzag Theorem, Semigroup Forum, 12 (1976), 83-88.

Received July 17, 1989.
Royal Melbourne Institute of Technology
GPOB 2476V
Melbourne, Vic. 3001, Australia

