FACTORIZATIONS OF NATURAL EMBEDDINGS OF l_{p}^{n} INTO L_{r}, II

T. Figiel, W. B. Johnson, and G. Schechtman

Abstract

This is a continuation of the paper by Figiel, Johnson and Schechtman with a similar title. Several results from there are strengthened, in particular: 1. If T is a "natural" embedding of l_{2}^{n} into L_{1} then, for any well-bounded factorization of T through an L_{1} space in the form $T=u v$ with v of norm one, u well-preserves a copy of l_{1}^{k} with k exponential in n. 2. Any norm one operator from a $C(K)$ space which well-preserves a copy of l_{2}^{n} also well-preserves a copy of l_{∞}^{k} with k exponential in n. As an application of these and other results we show the existence, for any n, of an n-dimensional space which well-embeds into a space with an unconditional basis only if the latter contains a copy of l_{∞}^{k} with k exponential in n.

Introduction. In this continuation of [FJS], we show that in some situations considered in [FJS], conclusions of certain theorems can be strengthened. More explicitly, suppose that T is an operator from some Banach space into L_{1} which factors through some L_{1}-space Z as $u w$ and normalized so that $\|w\|=1$. In Corollary 12.A we show that if T is the inclusion mapping from a "natural" n-dimensional Hilbert-
ian subspace of L_{1} into L_{1}, then u well-preserves a copy of l_{1}^{k} with k exponential in n (where "well" and the base of the exponent depend on $\|u\|$ and on a quantitative measure of "naturalness"). This improves the result of [FJS] that the same hypotheses yield that l_{1}^{k} well-embeds into $u Z$. (Actually Corollary 12.A requires only that T be a "good" isomorphism from a "natural" n-dimensional Hilbertian subspace of L_{1}). Corollary 12.B gives a similar improvement of Corollary 1.5 in [FJS]; in Corollary 12.B the operator T is assumed to be a mapping from a space whose dual has controlled cotype into L_{1} which acts like a quotient mapping relative to a "natural" Hilbertian subspace of L_{1}.

Corollary 20 strengthens the conclusion of proposition 4.3 in [FJS] in a similar manner; it states that an operator from a $C(K)$ space which well-preserves a copy of l_{2}^{n} also well-preserves a copy of l_{∞}^{k} with k exponential in n (rather than just have rank which is exponential in n). This can be viewed as a finite dimensional analogue of
a particular case of a result of Pełczyński [Pe1] stating that every non weakly compact operator from a $C(K)$ space preserves a copy of c_{0}. Although the statements of Corollary 20 and Corollary 12.A are very similar, the results themselves do not seem to follow from each other via standard duality arguments.

In Theorem 21 we apply the earlier results in order to prove that for each m there is an m-dimensional normed space G such that any superspace of G with a good unconditional basis must contain a copy of l_{∞}^{k} with k exponential in m.

We thank J. Bourgain for pointing us in the right direction on the material presented here. After proving the results in [FJS], we suggested to him that there might be a translation invariant operator T of bounded norm on L_{1} of the circle which is the identity on the span of the first n Rademacher functions and which does not preserve l_{1}^{k} with k exponential in n. By disproving this conjecture, Bourgain started us thinking that Corollary 12.A was true.

We use standard Banach space theory notation, as can be found in [LT] and [T-J]. In particular, $d(X, Y)$ is used for the Banach-Mazur distance between the normed spaces X and Y, while $\pi_{p}(T)$ is the p-absolutely summing norm of the linear operator T. As usual, t^{*} denotes $\frac{t}{t-1}$, the conjugate index to t.

Most nonstandard notation is used only "locally" and is introduced when needed. However, the following two definitions are used throughout the paper and are important for understanding the formulations of the main L_{1}-results, Corollaries 12A and 12B: Given $1 \leq p<q \leq \infty$ and an operator $u: Z \rightarrow L_{p}(\mu)$, we define

$$
C_{p, q}(u)=\inf \left\{\|h\|_{s}\left\|h^{-1} u: Z \rightarrow L_{q}\right\|\right\}
$$

where the inf is over all changes of measure h; i.e., over all $0<h \in L_{s}(\mu)$ where $\frac{1}{q}+\frac{1}{s}=\frac{1}{p}$. Also recall that for a pair of linear operators $T: X \rightarrow Y$ and $U: X_{1} \rightarrow Y_{1}$, the factorization constant of U through T is defined to be

$$
\gamma_{T}(U)=\inf \left\{\|A\|\|B\|: A: X_{1} \rightarrow X, \quad B: Y \rightarrow Y_{1}, \quad U=B T A\right\}
$$

We let $\gamma_{T}(U)=\infty$ if no such factorization exists. We also put

$$
\gamma_{T}(Z)=\gamma_{T}\left(\mathrm{id}_{Z}: Z \rightarrow Z\right) .
$$

This should be compared with the classical concept of $\gamma_{p}(U)$, which in our notation can be defined (say, for an operator U from a separable
space) by

$$
\gamma_{p}(U)=\gamma_{i d_{L_{p}}}(U)
$$

A quantitative version of Rosenthal's lemma. In this section we prove, in Proposition 1 below, a quantitative version of Maurey's formulation [M] of Rosenthal's lemma [R] stating that an operator into $L_{1}(\mu)$ either factors through an $L_{p}(\nu)$ space for some $p>1$ via a change of density or is of type no better than 1. Our approach is in fact close in spirit to Rosenthal's original argument which (unlike some later arguments) was basically quantitative in nature.

Proposition 1 combines with the essentially known Proposition 4 to yield the central result, Theorem 8, a specialized version of which (Theorem 11) gives our main L_{1}-results, Corollaries 12 A and 12B.

Proposition 1. Let $1<p<q \leq \infty$ and $\sigma=1-q^{*} / p^{*}$. Let $T: Z \rightarrow L_{1}(\mu)$, where μ is a probability measure. If $C_{1, p}(T)=K$ and $\left\|T: Z \rightarrow L_{p}(\mu)\right\|=\mathscr{C} K$, then for some

$$
m>\left(K / 2^{2+1 / p} \mathscr{C}\|T\|\right)^{p^{*}}
$$

there exist z_{1}, \ldots, z_{m} in the unit ball of Z and mutually disjoint measurable sets F_{1}, \ldots, F_{m} such that for $i=1, \ldots, m$ one has

$$
\begin{equation*}
\left\|1_{F_{i}} T z_{i}\right\|_{1}^{\sigma}\left\|1_{F_{i}} T z_{i}\right\|_{q}^{1-\sigma} \geq 2^{-(1 / p+1)} K \tag{1}
\end{equation*}
$$

For the proof we need two lemmas.
Lemma 2. Let $g \in L_{1}$ with $\|g\| \leq 1$. Suppose E is a μ-measurable set, $1<p<q \leq \infty$ and

$$
\left\|1_{\sim E} g\right\|_{p}>\kappa>0
$$

Then there exists a measurable set $F, F \cap E=\varnothing$, such that

$$
\begin{gathered}
\mu(F)<\left(\frac{2^{1 / p}}{\kappa}\right)^{p^{*}} \\
\left\|1_{F} g\right\|_{1}^{\sigma}\left\|1_{F} g\right\|_{q}^{1-\sigma}>2^{-1 / p} \kappa
\end{gathered}
$$

Proof. Without loss of generality we can assume that $g \geq 0$. Set $F=[g>\gamma] \sim E$, where $\gamma>0$ is defined below. Observe that

$$
\int_{\sim F} g^{p} \leq \gamma^{p-1} \int_{\sim F} g \leq \gamma^{p-1}
$$

and hence, by Hölder's inequality,

$$
\kappa^{p}-\gamma^{p-1}<\int_{F} g^{p} \leq\left(\int_{F} g\right)^{1-t}\left(\int_{F} g^{q}\right)^{t},
$$

where $t=(p-1) /(q-1)$. Since $\mu(F)<1 / \gamma$, we can fulfill both conditions of the lemma by choosing γ so that $\gamma^{p-1}=\frac{1}{2} \kappa^{p}$.

Lemma 3. Let $T: Z \rightarrow L_{1}(\mu), \mu$ being a probability measure. Suppose $1<p<\infty$ and

$$
C_{1, p}(T)=K, \quad\left\|T: Z \rightarrow L_{p}(\mu)\right\|=\mathscr{C} K .
$$

If $0<\kappa<K, \eta \geq 0$ and $\mathscr{C} \eta^{1 / p^{*}} \leq 1-\kappa / K$, then $\mu(E) \leq \eta$ implies that there exists $z \in \operatorname{Ball}(Z)$ such that $\left\|1_{\sim E} T z\right\|_{p}>\kappa$.

Proof. Without loss of generality we may assume that $\mu(E)>0$. Observe that for any measurable set A one has

$$
C_{1, p}\left(1_{A} T: Z \rightarrow L_{1}(\mu)\right) \leq \mu(A)^{1 / p^{*}}\left\|1_{A} T: Z \rightarrow L_{p}(\mu)\right\| .
$$

The lemma follows by using this observation for $A=\sim E$ and $A=E$, because

$$
\begin{aligned}
& \left\|1_{\sim E} T: Z \rightarrow L_{p}(\mu)\right\|>C_{1, p}\left(1_{\sim E} T\right) \geq C_{1, p}(T)-C_{1, p}\left(1_{E} T\right) \\
& \quad \geq K-\mu(E)^{1 / p^{*}}\left\|1_{E} T: Z \rightarrow L_{p}(\mu)\right\| \geq K\left(1-\mathscr{C} \eta^{1 / p^{*}}\right) \geq \kappa .
\end{aligned}
$$

Proof of Proposition 1. Clearly, we may assume that $\|T\|=1$. Put $\kappa=\frac{1}{2} K, \eta=(2 \mathscr{C})^{-p^{*}}, \delta=\left(2^{1 / p} / \kappa\right)^{p^{*}}$ and let us start with $E=\varnothing$. Since

$$
\left\|1_{\sim E} T: Z \rightarrow L_{p}(\mu)\right\|>\kappa,
$$

using Lemma 2 we can define z_{1} and F_{1} so that $\mu\left(F_{1}\right)<\delta$ and $\left\|1_{F_{1}} T z_{1}\right\|-1$ satisfies (1). Suppose now that, for some $i \geq 1$, we have already defined z_{1}, \ldots, z_{i} and F_{1}, \ldots, F_{i}. Let $E=\bigcup_{j \leq i} F_{j}$. As long as $\mu(E) \leq \eta$, Lemma 3 guarantees that we can use Lemma 2 again in order to choose z_{i+1} and F_{i+1} so that $F_{i+1} \cap E=\varnothing$, $\mu\left(F_{i+1}\right)<\delta$ and $\left\|1_{F_{\text {t+1 }}} T z_{i+1}\right\|_{1}$ satisfies the estimate (1). Therefore this procedure can be applied more than η / δ times. Since we have been assuming $\|T\|=1$, this yields the promised lower estimate for m and completes the proof of the proposition.

The next proposition shows that we can actually get a somewhat stronger conclusion to Proposition 1; namely, for some k proportional to m, the identity on l_{1}^{k} can be factored through T.

Proposition 4. Let $T: Z \rightarrow L_{1}(\mu)$ be a bounded linear operator. Suppose that z_{1}, \ldots, z_{m} are in the unit ball of Z and F_{1}, \ldots, F_{m} are mutually disjoint μ-measurable sets such that, for $i=1, \ldots, m$,

$$
\left\|1_{F_{1}} T z_{i}\right\| \geq \delta\|T\|>0
$$

Then for some $k \geq \frac{1}{8} \delta m$ there exist linear operators $A: l_{1}^{k} \rightarrow Z$ and $B: L_{1}(\mu) \rightarrow l_{1}^{k}$ such that $B T A=\operatorname{id}_{l_{1}^{k}}$ and $\|A\|\|B\|\|T\| \leq 2 \delta^{-1}$; i.e., $\gamma_{T}\left(l_{1}^{k}\right) \leq 2 \delta^{-1}\|T\|^{-1}$ for some $k \geq \frac{1}{8} \delta m$.

For the proof we need two basically known lemmas (see [JS]).
Lemma 5. Let x_{1}, \ldots, x_{m} be elements of $L_{1}(\mu)$ and let A_{1}, \ldots, A_{m} be mutually disjoint μ-measurable sets. If $1<k \leq \frac{1}{2} m$, then there exists a subset $D \subset\{1, \ldots, m\}$ with $|D|=k$ such that for each $i \in D$

$$
\sum_{j \in D \sim\{i\}} \int_{A_{j}}\left|x_{i}\right| d \mu \leq(2 k-1)\binom{m}{2}^{-1} \sum_{i=1}^{m}\left\|x_{i}\right\| .
$$

Proof. Setting $a_{i j}=\int_{A_{j}}\left|x_{i}\right| d \mu$, for $i, j=1, \ldots, m$, and $\alpha=$ $\sum_{1 \leq i \neq j \leq m} a_{i j}$, we have

$$
\alpha \leq \sum_{i=1}^{m}\left\|x_{i}\right\| .
$$

Put $s=2 k, \mathscr{E}=\{E \subset\{1, \ldots, m\}:|E|=s\}$. Write, for $E \in \mathscr{E}$,

$$
\alpha(E)=\sum_{i \in E} \sum_{j \in E \sim\{i\}} a_{i j} .
$$

It is easy to see that $\sum_{S \in \mathscr{E}} \alpha(E)=\binom{m-2}{s-2} \alpha=|\mathscr{E}|\binom{s}{2}\binom{m}{2}^{-1} \alpha$; hence we can pick $E_{0} \in \mathscr{E}$ so that $\alpha\left(E_{0}\right) \leq\binom{ s}{2}\binom{m}{2}^{-1} \alpha$. Let $F=\left\{i \in E_{0}: \sum_{j \in E_{0} \sim\{i\}} a_{i j} \geq \frac{1}{k} \alpha\left(E_{0}\right)\right\}$. Then F has at most k elements and, clearly, each k-element subset $D \subseteq E_{0} \sim F$ has the required property.

Lemma 6. Let $U: l_{1}^{k} \rightarrow L_{1}(\mu)$ be a linear operator, $\|U\| \leq 1$. Suppose there exist μ-measurable sets F_{1}, \ldots, F_{k} such that for $i=1, \ldots, k$

$$
\left\|1_{F_{l}} U e_{i}\right\| \geq \delta, \quad \sum_{1 \leq i \neq j \leq k}\left\|1_{F_{j}} U e_{i}\right\| \leq \gamma,
$$

where $0<\gamma<\delta$. Then there exists a linear operator $Q: L_{1}(\mu) \rightarrow l_{1}^{k}$ such that $Q U=\mathrm{id}_{l_{1}^{k}}$ and $\|Q\| \leq(\delta-\gamma)^{-1}$.

Proof. Define $W: L_{1}(\mu) \rightarrow l_{1}^{k}$ by the formula $W f=\left(\int f g_{i} d \mu\right)_{i=1}^{k}$, where

$$
g_{i}=1_{F_{t}} \operatorname{sgn}\left(U e_{i}\right) \quad \text { for } i=1, \ldots, k
$$

It is easy to check that $\|W\| \leq 1$ and for $x \in l_{1}^{k}$ one has $\|W U x\| \geq$ $(\delta-\gamma)\|x\|$. Therefore the operator $Q=(W U)^{-1} W$ has the required properties.

Proof of Proposition 4. We may assume that $\|T\|=1$. Apply Lemma 5 with $\eta=\frac{1}{2} \delta$ and $x_{i}=T z_{i}$ for $i=1, \ldots, m$. This yields a set $D \subset\{1, \ldots, m\}$, with $|D|=k \geq \frac{1}{8} \delta m$, which satisfies the assertion of Lemma 5. Writing $\left\{z_{i}: i \in D\right\}=\left\{f_{1}, \ldots, f_{m}\right\}$ we can define the operator A by the formula $A e_{i}=f_{i}$, for $i=1, \ldots, k$. The existence of the operator B follows then immediately from Lemma 6.

We shall combine Propositions 1 and 4 in Theorem 8 below. Before doing that we would like to state a dual version of Proposition 4. Note that, if $\operatorname{dim} X_{1}, \operatorname{dim} Y_{1}<\infty$, then $\gamma_{T}(U)=\gamma_{T^{*}}\left(U^{*}\right)$. This follows from the principle of local reflexivity ([LT], p. 33).

Corollary 7. Let $V: l_{\infty}^{m} \rightarrow X$ be an operator of norm 1 such that $\left\|V e_{i}\right\| \geq \delta>0$ for $i=1, \ldots, m$. Then $\gamma_{V}\left(l_{\infty}^{k}\right) \leq 2 \delta^{-1}$ for some $k \geq \frac{1}{8} \delta m$.

Proof. Let $Z=X^{*}$. Pick norm one elements z_{1}, \ldots, z_{m} in Z such that $z_{i}\left(V e_{i}\right) \geq \delta$ for $i=1, \ldots, m$. Using Proposition 4 we obtain $\gamma_{V^{*}}\left(l_{1}^{k}\right) \leq 2 \delta^{-1}$ for some $k \geq \frac{1}{8} \delta m$. Since $\gamma_{V}\left(l_{\infty}^{k}\right)=\gamma_{V^{*}}\left(l_{1}^{k}\right)$ this completes the proof.

The L_{1} result. The main results of this section are Theorem 11 and Corollary 12 below. Corollary 12.A states roughly that in any good factorization of a natural embedding of l_{2}^{n} into $L_{1}(0,1)$ (for example, the embedding sending the unit vector basis of l_{2}^{n} to the first n Rademacher functions) through an L_{1} space, the operator between the two L_{1} spaces preserves an l_{1}^{k} space with k exponential in n. We begin however with a theorem of a more general nature which is a corollary to Propositions 1 and 4. The assumptions in both this theorem and Theorem 11 are stated in terms of factorization constants
of an operator into an L_{1} space through L_{p} spaces via changes of densities. The relation between these constants and factorizations of natural embeddings was one of the main tools in [FJS]. We shall return to this relation in the proof of Corollary 12. For the moment we just note that for Theorem 8 to be useful, we need the parameters Δ and σ in Theorem 8 to be such that Δ is bounded and σ is bounded away from 0 in order to make $\gamma_{T}\left(l_{1}^{k}\right)$ bounded. Subject to that restriction, we want k to be large. In practice, this is done by setting $q=\infty$ and choosing p so that $C_{1, p}(T) \sim 16\|T\|$; under certain conditions this choice makes p^{*} large enough to guarantee that k is large.

Theorem 8. Let $T: Z \rightarrow L_{1}(\mu)$ be a linear operator such that $T \neq 0$ and $C_{1, q}(T)<\infty$, where $1<p<q \leq \infty$. Set $\sigma=1-\frac{q^{*}}{p^{*}}$, $\Delta=\|T\|^{\sigma} C_{1, q}(T)^{1-\sigma} / C_{1, p}(T)$. Then

$$
\gamma_{T}\left(l_{1}^{k}\right) \leq 2(4 \Delta)^{1 / \sigma}\|T\|^{-1} \quad \text { for some } k \geq \frac{1}{8}(4 \Delta)^{-1 / \sigma}\left(\frac{C_{1, p}(T)}{8\|T\|}\right)^{p^{*}} .
$$

Proof. By Maurey's result [Ma] quoted in [F:S], for each $r \in(1, \infty]$ there is a nonnegative function $\phi_{r} \in L_{1}(\mu)$ such that $\int \phi_{r} d \mu=1$ and

$$
\left\|\phi_{r}^{-1} T: Z \rightarrow L_{r}\left(\phi_{r} d \mu\right)\right\|=C_{1, r}(T)
$$

(this uses the convention $\frac{0}{0}=0$). Set $\phi=\frac{i}{2}\left(\phi_{p}+\phi_{q}\right)$. Then for $r=q$ and $r=p$

$$
\left\|\phi^{-1} T: Z \rightarrow L_{r}(\phi d \mu)\right\| \leq 2^{1 / r^{*}} C_{1, r}(T) .
$$

Consider the operator $T_{1}=\phi^{-1} T: Z \rightarrow L_{1}(\phi d \mu)$. Since $C_{1, r}\left(T_{1}\right)=$ $C_{1, r}(T)$ for $r \in(1, \infty]$, applying Proposition 1 to the operator T_{1}, we have $\mathscr{E} \leq 2^{1 / p^{*}}$. We can estimate for each i

$$
\left\|1_{F_{t}} T_{1} z_{i}\right\|_{L_{q}(\phi d \mu)} \leq\left\|T_{1}: Z \rightarrow L_{q}(\phi d \mu)\right\| \leq 2^{1 / q^{*}} C_{1, q}(T)
$$

Hence we obtain elements z_{1}, \ldots, z_{m} in $\operatorname{Ball}(Z)$ and sets F_{1}, \ldots, F_{m} so that

$$
\left\|1_{F_{l}} T_{1} z_{i}\right\|_{L_{1}(\phi d \mu)}^{\sigma} \geq 2^{-\frac{1}{p}=1}\left(2^{1 / q^{*}} C_{1, q}(T)\right)^{\sigma-1} C_{1, p}(T)=2^{-2} \Delta^{-1}\|T\|^{\sigma}
$$

and $m>\left(C_{1, p}(T) / 8\|T\|\right)^{p^{*}}$. Therefore, we have

$$
\left\|1_{F_{i}} T z_{i}\right\|_{1}=\left\|1_{F_{l}} T_{1} z_{i}\right\|_{L_{1}(\phi d \mu)} \geq(4 \Delta)^{-\frac{1}{\sigma}}\|T\| .
$$

Now we simply apply Proposition 4 to T, z_{1}, \ldots, z_{m} and F_{1}, \ldots, F_{m}.

We next state two corollaries to Theorem 8 concerning the dual situation.

Corollary 9. Let $U: C(K) \rightarrow X$ be a linear operator such that $0<\pi_{r}(U)<\infty$, where $1 \leq r<t<\infty$. Set $\sigma=1-\frac{r}{t}, \Delta=$ $\|U\|^{\sigma} \pi_{r}(U)^{1-\sigma} / \pi_{t}(U)$. Then

$$
\gamma_{U}\left(l_{\infty}^{k}\right) \leq 2(4 \Delta)^{1 / \sigma}\|U\|^{-1} \quad \text { for some } k \geq \frac{1}{8}(4 \Delta)^{-1 / \sigma}\left(\frac{\pi_{t}(U)}{8\|U\|}\right)^{t} .
$$

Proof. This follows easily from Theorem 8, because $C(K)^{*}$ is an L_{1} space, $\gamma_{U^{*}}\left(l_{1}^{k}\right)=\gamma_{U}\left(l_{\infty}^{k}\right)$ and $C_{1, p}\left(U^{*}\right)=\pi_{p^{*}}(U)$ for $1<p \leq \infty$ (see [R]).

Corollary 10. If $U: l_{\infty}^{N} \rightarrow X, t>1$ and $\pi_{t}(U)=c\|U\|>0$, then $\gamma_{U}\left(l_{\infty}^{k}\right) \leq 2\left(\frac{4}{c}\right) t^{*} N^{t^{*}-1}\|U\|^{-1}$ for some $k \geq 2^{t^{*}-3}\left(\frac{c}{8}\right) t^{*}+t N^{1-t^{*}}$.

Proof. This follows by using Corollary 9 with $r=1$, because $\pi_{1}(U) \leq N\|U\|$.

The next theorem and Corollary 12 below are the main results of this section.

Theorem 11. Let $T: Z \rightarrow L_{1}(\mu)$ be a bounded linear operator and let $1<p<\infty$. Let $Z_{0} \subseteq Z$. Suppose that $n=\operatorname{dim} T Z_{0}<\infty$ and that

$$
C_{1, p}(u) \geq c\|T\|>0,
$$

for each finite rank operator $u: Z \rightarrow L_{1}(\mu)$ such that $\left.u\right|_{Z_{0}}=\left.T\right|_{z_{0}}$. If $c \geq 2^{5}$ and $\delta=(p-1) n$, then $\gamma_{T}\left(l_{1}^{k}\right)<5^{\delta}$ for some $k>5^{-\delta}\left(2^{1 / \delta}\right)^{n}$.

Before proving Theorem 11, we use it to derive Corollary 12. The first part of this corollary, Corollary 12.A, generalizes Corollary 1.5 in [FJS].

Corollary 12.A. Let X be an n-dimensional subspace of L_{1} for which $C_{1, p^{*}}(X) \leq C \sqrt{p^{*}}$ for all $2 \leq p^{*}<\infty$. If $T: L_{1} \rightarrow L_{1}$ is a linear operator of norm one and $\|T x\| \geq \tau\|x\|$ for $x \in X$ (with $\tau>0$), then $\gamma_{T}\left(l_{1}^{k}\right) \leq 5^{2 D}$ for some $k \geq 5^{-2 D} 2^{n /(2 D)}$, where $D=2^{16} C^{2} \tau^{-4}$.

Proof. If $n<2 D$ the conclusion is obvious, so we may assume that $n \geq 2 D$. Define p by $p^{*}=\frac{n}{D}$.

Set $S=\left(\left.T\right|_{X}\right)^{-1}: T X \rightarrow X$, so that $\|S\| \leq \frac{1}{\tau}$.
In order to apply Theorem 11, we need to obtain a lower estimate of $\inf C_{1, p}(u)$, where the inf ranges over all finite rank extensions
$u: L_{1} \rightarrow L_{1}$ of $\left.T\right|_{X}$. Given an extension $u: L_{1} \rightarrow T X$ of $\left.T\right|_{X}$ into $T X$ (or even into L_{1}), we have

$$
\sqrt{n} \leq \pi_{2}\left(\left.\mathrm{id}\right|_{X}\right)=\pi_{2}\left(\left.S T\right|_{X}\right) \leq \frac{1}{\tau} \pi_{2}\left(\left.T\right|_{X}\right) \leq \frac{1}{\tau} \pi_{2}(u) \leq \frac{2}{\tau} \gamma_{2}(u)
$$

(the last inequality follows from a weak form of Grothendieck's inequality). Theorem 1.3 in [FJS] then gives that

$$
\inf C_{1, p}(u) \geq \frac{\tau}{8} \sqrt{n}\left[C_{1, p^{*}}(T X)\right]^{-1}
$$

But $C_{1, p^{*}}(T X)$ is estimated from above by $\|S\| C_{1, p^{*}}(X)$. Indeed, letting $I: X \rightarrow L_{1}$ and $J: T X \rightarrow L_{1}$ denote the inclusion maps, we have by $[\mathbf{R}]$ that $C_{1, p^{*}}(X)=\pi_{p}\left(I^{*}\right)$ and $C_{1, p^{*}}(T X)=\pi_{p}\left(J^{*}\right)$. Thus

$$
\begin{aligned}
C_{1, p^{*}}(T X) & =\pi_{p}\left(J^{*}\right)=\pi_{p}\left(S^{*} I^{*} T^{*}\right) \\
& \leq\|S\| \pi_{p}\left(I^{*}\right)\|T\| \leq\|S\| C_{1, p^{*}}(X) \leq \frac{C}{\tau} \sqrt{p^{*}} .
\end{aligned}
$$

Therefore our choice $p^{*}=\frac{n}{D}$ yields $\inf C_{1, p}(u) \geq 2^{5}$, and the conclusion of Corollary 12.A follows from Theorem 11.

Corollary 12.B strengthens a specialization of Corollary 12.A in the same way that Theorem 5.1 in [FJS] strengthens Corollary 1.5 in [FJS].

Corollary 12.B. Suppose that $X \subset L_{1}, \operatorname{dim} X=n$, and $C_{1, p^{*}}(X)$ $\leq C \sqrt{p^{*}}$ for all $2 \leq p^{*}<\infty$. Let Y be a Banach space whose dual has finite cotype q constant $C_{q}\left(Y^{*}\right)$ and let $Q: Y \rightarrow L_{1}$ be an operator for which

$$
Q(\operatorname{Ball}(Y)) \supseteq \operatorname{Ball}(X) .
$$

Let $Q=U W$ be any factorization of Q through an L_{1} space with $\|W\| \leq 1$. Then for some absolute constant $\eta, \gamma_{U}\left(l_{1}^{k}\right) \leq 5^{D}$ for some $k \geq 5^{-D} 2^{n / D}$, where

$$
D=\eta C^{2} q C_{q}^{2}\left(Y^{*}\right)\|U\|^{2} .
$$

Sketch of proof. Follow the proof of Theorem 5.1 in [FJS] (with r replaced by p) up to the place on p .98 where it is proved that $C_{1, p}(U) \geq 2$. Of course, now we need and can assure that $C_{1, p}(\widetilde{U}) \geq$ $2^{5}\|U\|$ for any extension $\tilde{U}: Z \rightarrow L_{1}$ of the restriction of U to $U^{-1}(X)$. Then apply Theorem 11.

To prove Theorem 11 we need to introduce some notation and some preliminary results. Given two Banach spaces Z and W the space of
all bounded linear operators between them is denoted by $B(Z, W)$, while $F(Z, W)$ is the set of those $u \in B(Z, W)$ such that rank u $<\infty$. By α we denote a norm on $F(Z, W)$ such that $\alpha(u)$ $\leq\|u\|$ if rank $u=1$.

Given a Banach space W and numbers $n, \beta \geq 1$, let us denote by $q_{W}(n, \beta)$ the least number k such that, whenever $v: W \rightarrow E$ is a continuous linear operator with rank $v \leq n$, there exists $P \in$ $F(W, W)$ such that $v P=v,\|P\| \leq \beta$ and rank $P \leq k$. (Of course, we let $q_{W}(n, \beta)=\infty$, if no such k exists.) The reader who is familar with the uniform approximation property should note that this parameter is connected with the uniformity function for X^{*}; specifically, in the extension of terminology introduced in [FJS] for $L_{p}, q_{W}(n, \beta)$ is essentially the same as (even exactly the same as, for reflexive W) $k_{W^{*}}(n, \beta)$.

Proposition 13. Let $T \in B(Z, W)$ and let $Z_{0} \subseteq Z, \operatorname{dim} T\left(Z_{0}\right)=$ $n<\infty$. If $1 \leq \beta<\infty$ and $q_{W}(n, \beta)<\infty$, then there exists $P \in$ $F(W, W)$ such that $\|P\| \leq \beta, \operatorname{rank} P \leq q_{W}(n, \beta)$ and

$$
\alpha(P T) \geq \inf \left\{\alpha(u): u \in F(Z, W),\left.u\right|_{Z_{0}}=\left.T\right|_{Z_{0}}\right\} .
$$

Proof. Write

$$
Y=\left\{u \in F(Z, W):\left.u\right|_{z_{0}}=\left.T\right|_{z_{0}}\right\} \quad \text { and } \quad A=\inf \{\alpha(u): u \in Y\} .
$$

By the Hahn-Banach theorem there is a norm one functional Φ on $(F(Z, W), \alpha)$ such that $\Phi(u)=A$ for each $u \in Y$. Observe that if $S: W \rightarrow Z^{* *}$ is the linear operator defined by

$$
(S w)\left(z^{*}\right)=\boldsymbol{\Phi}\left(z^{*} \otimes w\right),
$$

then for all $u \in F(Z, W)$ one has

$$
\Phi(u)=\operatorname{Tr}(S u)=\operatorname{Tr}\left(u^{* *} S\right) .
$$

Clearly, our assumption on α yields $\|S\| \leq 1$. Moreover, for all $u \in Y$ one has

$$
\begin{equation*}
(T-u)^{* *} S=0 . \tag{2}
\end{equation*}
$$

Indeed, since $\operatorname{Ker}\left((T-u)^{* *}\right) \supseteq(\operatorname{Ker}(T-u))^{\perp \perp} \supseteq Z_{0}^{\perp \perp}$, it sufficès to verify that $S W \subseteq Z_{0}^{\perp \perp}$. The latter inclusion is obvious, because if $w \in W, z_{0}^{*} \in Z_{0}^{\perp}$ then we have $(S w)\left(z_{0}^{*}\right)=\Phi\left(z_{0}^{*} \otimes w\right)=0$, since z_{0}^{*} annihilates Z_{0}. Since $\operatorname{rank} u_{0}=\operatorname{dim} T Z_{0}=n$, for some $u_{0} \in Y$, and since (2) implies that $T^{* *} S=u^{* *} S$ for each $u \in Y$, we
obtain that $\operatorname{rank} T^{* *} S \leq n$. Hence, by the definition of $q_{W}(n, \beta)$, there is a $P \in F(W, W)$ such that $T^{* *} S P=T^{* *} S,\|P\| \leq \beta$ and $\operatorname{rank} P \leq q_{W}(n, \beta)$. Observe that, if u is any element of Y, then

$$
\begin{aligned}
\alpha(P T) & \geq \Phi(P T)=\operatorname{Tr}(S P T)=\operatorname{Tr}\left(T^{* *} S P\right)=\operatorname{Tr}\left(T^{* *} S\right) \\
& =\operatorname{Tr}\left(u^{* *} S\right)=\Phi(u)=A .
\end{aligned}
$$

The following known lemma is equivalent (via a standard duality argument) to Lemma 17 below.

Lemma 14. If $W=L_{1}(\mu)$ and $0<\varepsilon<1$, then $q_{W}\left(n,(1-\varepsilon)^{-1}\right)<$ $\frac{1}{2}\left(\frac{2}{\varepsilon}+1\right)^{n}$.

Proof. Let $u: W \rightarrow E$ have rank n. Write $u=U Q_{0}$, where $Q_{0}: W \rightarrow W /(\operatorname{Ker} u)$ is the quotient map and let $F=W /(\operatorname{Ker} u)$. Set $\beta=(1-\varepsilon)^{-1}$. Suppose first that for some k there exists an operator $Q: l_{1}^{k} \rightarrow F$ such that $\|Q\| \leq \beta$ and $Q\left(\operatorname{Ball}\left(l_{1}^{k}\right)\right) \supseteq \operatorname{Ball}(F)$. By the lifting property of l_{1}^{k} there is $Q_{1}: l_{1}^{k} \rightarrow W$ such that $\left\|Q_{1}\right\| \leq\|Q\| \leq \beta$ and $Q=Q_{0} Q_{1}$. By the lifting property of $W=L_{1}(\mu)$ there is $Q_{2}: W \rightarrow l_{1}^{k}$ such that $\left\|Q_{2}\right\| \leq\left\|Q_{0}\right\| \leq 1$ and $Q_{0}=Q Q_{2}$. Let $P=Q_{1} Q_{2}$. Then $\|P\| \leq \beta$, rank $P \leq k$ and

$$
u=U Q_{0}=U Q Q_{2}=U Q_{0} Q_{1} Q_{2}=u P .
$$

Now the well-known volume argument shows that the unit sphere of F contains an ε-net (where $(1-\varepsilon)^{-1}=\beta$) of cardinality $k<\frac{1}{2}\left(\frac{2}{\varepsilon}+1\right)^{n}$. Using this fact one easily constructs the operator $Q: l_{1}^{k} \rightarrow F$ with the two properties which we have used above.

Theorem 11 can now be obtained by letting $\varepsilon=\frac{1}{2}$ and replacing c by 2^{5} in the following proposition.

Proposition 15. Let $T: Z \rightarrow L_{1}(\mu)$ satisfy the assumptions of Theorem 11, and let $0<\varepsilon<1$. Then

$$
\gamma_{T}\left(l_{1}^{k}\right)<4\left(\frac{2}{(1-\varepsilon) c}\right)^{p}\left(\frac{2}{\varepsilon}+1\right)^{n(p-1)}\|T\|^{-1}
$$

for some $k>4^{p-2}\left(\frac{(1-\varepsilon) c}{8}\right)^{p p^{*}}\left(\frac{2}{\varepsilon}+1\right)^{-n(p-1)}$.
Proof. Let $\beta=(1-\varepsilon)^{-1}, W=L_{1}(\mu), \alpha=C_{1, p}$. Thanks to Lemma 14, we can apply Proposition 13 which yields an operator P on $L_{1}(\mu)$ such that $\|P\| \leq \beta$, $\operatorname{rank} P \leq N=\frac{1}{2}\left(\frac{2}{\varepsilon}+1\right)^{n}$ and $C_{1, p}(P T) \geq c\|T\|$. Clearly,

$$
C_{1, \infty}(P T) \leq(\operatorname{rank} P T)\|P T\| \leq N\|P T\| .
$$

Let $q=\infty$. We can now estimate $\gamma_{P T}\left(l_{1}^{k}\right)$, using Theorem 8. The resulting inequality, combined with the obvious relation $\gamma_{T}\left(l_{1}^{k}\right) \leq$ $\|P\| \gamma_{P T}\left(l_{1}^{k}\right)$, yields the desired estimates for $\gamma_{T}\left(l_{1}^{k}\right)$ and k.

The $C(K)$ result. The main result of this section is Theorem 16 and in particular its Corollary 20 which gives a local version of a result of Petczyński [Pe1] by showing that an operator from a $C(K)$ space which preserves a copy of l_{2}^{n} also preserves a copy of l_{∞}^{k} with k an exponent of n.

Theorem 16. Let $U: C(K) \rightarrow X$ be a bounded linear operator and let $1<t<\infty$. Suppose that $E \subseteq C(K), \operatorname{dim} E=n<\infty$ and let

$$
\pi_{t}\left(\left.U\right|_{E}\right)=c\|U\|>0
$$

If $c \geq 2^{5}$ and $\alpha=\frac{n}{t-1}$, then $\gamma_{U}\left(l_{\infty}^{k}\right)<5^{\alpha}\|U\|^{-1}$ for some $k>$ $5^{-\alpha}\left(2^{1 / \alpha}\right)^{n}$.

For the proof we need a lemma and a proposition. Lemma 17, the dual statement of Lemma 14, is a weak version of Theorem 4.1 in [FJS].

Lemma 17. Let F be a subspace of $C(K), \operatorname{dim} F=n$. Let $0<$ $\varepsilon<1$ and $N=\frac{1}{2}\left(\frac{2}{\varepsilon}+1\right)^{n}$. Then there is $Q: C(K) \rightarrow C(K)$ such that $Q f=f$ for $f \in F,\|Q\|<(1-\varepsilon)^{-1}$ and $\operatorname{rank} Q \leq N$.

Proof. There exists $k \leq N$ and an operator $J: F \rightarrow l_{\infty}^{k}$ such that $\|J\|<(1-\varepsilon)^{-1}$ and $\|J f\| \geq\|f\|$ for $f \in F$. By the extension property of $C(K)$, there is $J_{1}: l_{\infty}^{k} \rightarrow C(K)$ such that $\left\|J_{1}\right\|<(\|J\|(1-\varepsilon))^{-1}$ and $J_{1}(J f)=f$ for $f \in F$. We let $Q=J_{1} J_{2}$, where $J_{2}: C(K) \rightarrow l_{\infty}^{k}$ is a linear extension of J with $\left\|J_{2}\right\|=\|J\|$.

Theorem 16 follows easily from the next proposition by letting $\varepsilon=$ $\frac{1}{2}$ and replacing c by 2^{5}.

Proposition 18. Let $U: C(K) \rightarrow X$ satisfy the assumptions of Theorem 16, and let $0<\varepsilon<1$. Then

$$
\gamma_{U}\left(l_{\infty}^{k}\right)<4\left(\frac{2}{(1-\varepsilon) c}\right)^{t^{*}}\left(\frac{2}{\varepsilon}+1\right)^{n /(t-1)}\|U\|^{-1}
$$

for some $k>4^{t^{*}-2}\left(\frac{(1-\varepsilon) c}{8}\right) t t^{*}\left(\frac{2}{\varepsilon}+1\right)^{-n /(t-1)}$.
Proof. By Lemma 17, there exists $P: C(K) \rightarrow C(K)$ such that $\|P\|<(1-\varepsilon)^{-1}, \operatorname{rank} P<N=\frac{1}{2}\left(\frac{2}{\varepsilon}+1\right)^{n}$ and $P e=e$ for $e \in E$. It
follows that

$$
C_{1, t^{*}}\left(P^{*} U^{*}\right) \geq \pi_{t}(U P) \geq \pi_{t}\left(\left.U P\right|_{E}\right)=c\|U\| .
$$

Since also $C_{1, \infty}\left(P^{*} U^{*}\right) \leq(\operatorname{rank} U P)\left\|(U P)^{*}\right\| \leq N\|U P\|$, we can finish the proof by applying an argument similar to that in the proof of Proposition 15 and dualizing.

Corollary 19. Let X be a Banach space. Suppose that $t, n>1$ and there is an operator $U: C(K) \rightarrow X$ and a subspace $E \subseteq$ $C(K), \operatorname{dim} E=n<\infty$ such that $\pi_{t}\left(\left.U\right|_{E}\right)=c\|U\|>0$, where $c \geq 2^{5}$. Write $\alpha=\frac{n}{t-1}, c_{1}=(\log 2)\left(\log \frac{4}{3}\right) / \log 5$. Then, for all $j \leq \min \left\{5^{-\alpha}\left(2^{1 / \alpha}\right)^{n}, \frac{3}{4} \exp \left(c_{1} n / \alpha^{2}\right)\right\}, X$ contains a subspace X_{j} such that $d\left(X_{j}, l_{\infty}^{j}\right)<2$.

Proof. Since $c \geq 32$ using Theorem 16 we obtain that, if $\alpha=\frac{n}{t-1}$, then $\gamma_{U}\left(l_{\infty}^{k}\right)<5^{\alpha}\|U\|^{-1}$ for some $k>5^{-\alpha}\left(2^{1 / \alpha}\right)^{n}$. Consequently, we obtain the inequality

$$
\gamma_{\mathrm{id}_{x}}\left(l_{\infty}^{k}\right) \leq\|U\| \gamma_{U}\left(l_{\infty}^{k}\right)<5^{\alpha},
$$

from which we shall deduce a lower estimate for the number

$$
j_{0}=\min \left\{m: \gamma_{\mathrm{id}_{x}}\left(l_{\infty}^{m}\right) \geq 2\right\} .
$$

Put for brevity $g_{i}(X)=\gamma_{\mathrm{id}_{X}}\left(l_{\infty}^{i}\right)$. We shall employ the estimate

$$
\begin{equation*}
g_{i j}(X) \geq g_{i}(X) \frac{2}{1+g_{j}(X)^{-1}}, \tag{3}
\end{equation*}
$$

for $i, j=1,2, \ldots$, which is the quantitative statement of results of James [J] and Giesy [G] (see, e.g., [F]).

Suppose that $j_{0} \leq k$ and let m be an integer such that $j_{0}^{m+1}>k \geq$ j_{0}^{m}. Write $A=g_{j_{0}}(X) \geq 2, B=2 /\left(1+A^{-1}\right)$. Using repeatedly (3), one obtains

$$
g_{k}(X) \geq g_{j_{0}}^{m}(X) \geq A B^{m-1} \geq \frac{A}{B^{2}} B^{\log k / \log j_{0}} .
$$

Since $A \geq 2$, we have $A / B^{2} \geq \frac{9}{8}, B \geq \frac{4}{3}$. Taking logarithms of both sides we obtain the estimate

$$
\alpha \log 5 \geq \log \left(g_{k}(X)\right)>\left(\log \frac{4}{3}\right) \frac{\log k}{\log j_{0}} .
$$

Using now the estimate $k>5^{-\alpha}\left(2^{1 / \alpha}\right) n$, we get easily

$$
\begin{aligned}
\log j_{0} & >(\alpha \log 5)^{-1}\left(\log \frac{4}{3}\right)\left(\frac{n}{\alpha} \log 2-\alpha \log 5\right) \\
& =\left(\log \frac{4}{3}\right)\left(\frac{n}{\alpha^{2}} \frac{\log 2}{\log 5}-1\right)=: \log M
\end{aligned}
$$

The latter estimate implies that if $1<j \leq \min \{k, M\}$ then $g_{j}(X)<$ 2. This implies that X contains a subspace X_{j} with $d\left(X_{j}, l_{\infty}^{j}\right)<2$ and completes the proof.

Corollary 20. Let $U: C(K) \rightarrow X$ be a linear operator of norm 1. Suppose that for some subspace $E \subseteq C(K)$ such that $d\left(E, l_{2}^{n}\right)=a$, $n \geq 2$, one has $\|U x\| \geq b\|x\|$ for $x \in E$, where $b>0$. Then U is bounded from below by $A_{1}^{-(a / b)^{2}}$ on a subspace $G \subseteq C(K)$ such that $d\left(G, l_{\infty}^{j}\right)<2$ and $j \geq A_{2}^{(b / a)^{4} n}$, where A_{1}, A_{2} are absolute constants >1.

Proof. Since $\pi_{t}\left(l_{2}^{n}\right) \geq \sqrt{\frac{n}{t}}$ for $t \geq 1[\mathbf{P e 2}]$, we can estimate

$$
\pi_{t}\left(\left.U\right|_{E}\right) \geq \frac{b}{a} \pi_{t}\left(\mathrm{id}_{l_{2}^{n}}\right) \geq \frac{b}{a} \sqrt{\frac{n}{t}}\|U\| .
$$

Assume first that $n \geq\left(2^{5} a / b\right)^{4}$. Letting $t=\left(2^{-5} b / a\right)^{2} n$ we obtain the estimate $\pi_{t}\left(\left.U\right|_{E}\right) \geq 2^{5}\|U\|$. Let $\alpha=\frac{n}{t-1}$. Using Theorem 16 we obtain, for some $k>5^{-\alpha} 2^{n / \alpha}$, a pair of operators A : $l_{\infty}^{k} \rightarrow C(K)$ and $B: X \rightarrow l_{\infty}^{k}$ such that $\|A\|\|B\|<5^{\alpha}$ and $B U A=\operatorname{id}_{l_{\infty}^{k}}$. Let $F=$ $A\left(l_{\infty}^{k}\right)$. Clearly, one has $\|U x\| \geq 5^{-\alpha}\|x\|$ for $x \in F$, and $d\left(F, l_{\infty}^{k}\right)<$ 5^{α}. Now, if $d\left(F, l_{\infty}^{k}\right) \geq 2$, then the argument used in the proof of Corollary 19 can be applied to F. Since $g_{k}(F)<5^{\alpha}$ this will produce a subspace $G \subseteq F$ such that $j=\operatorname{dim} G>\frac{3}{4} \exp \left(c_{1} n / \alpha^{2}\right)-1$ and $d\left(G, l_{\infty}^{j}\right)<2$. This yields the following conditions on numbers A_{1}, A_{2}

$$
5^{n /(t-1)} \leq A_{1}^{(a / b)^{2}}, \quad j \geq A_{2}^{(b / a)^{4} n} .
$$

If $n<\left(2^{5} a / b\right)^{4}$, then we let G be any 2 -dimensional subspace of E, so that $d\left(G, l_{\infty}^{2}\right)<2$. This gives the following conditions on numbers A_{1}, A_{2}

$$
b \geq A_{1}^{-(a / b)^{2}}, \quad 2 \geq A_{2}^{\left(2^{5}\right)^{4}} .
$$

It is not difficult to check that one can find $A_{1}, A_{2}>1$ which satisfy all the above conditions.

A space with very non-unconditional structure. The main result here is Theorem 21 which, roughly speaking, shows the existence of an m dimensional space G which is contained in an n-dimensional space Z with an unconditional basis only if n is an exponent of m. Moreover any such Z must contain l_{∞}^{k} with k an exponent of m. This solves part of problem 11.4(b) in [Pe3].

Recall that the gl norm of a linear operator $T: X \rightarrow Y$ is defined by the formula

$$
\operatorname{gl}(T)=\sup \left\{\gamma_{1}(U T): U: Y \rightarrow l_{1}, \pi_{1}(U) \leq 1\right\},
$$

and that one writes $\left.\operatorname{gl}(X)=\operatorname{gl}_{\left(\mathrm{id}_{X}\right)}\right)$. Recall [GL] also that the unconditional constant of X is greater than or equal to $\mathrm{gl}(X)$.

Theorem 21. There is $\delta>0$ such that for each $m \geq 2$ there is a Banach space $G_{m}, \operatorname{dim} G_{m}=m$, with the following property. If Z is a Banach space which contains an isometric copy of G_{m}, then there is a subspace Z_{1} of Z such that $d\left(Z_{1}, l_{\infty}^{k}\right)<2$, where $k \geq$ $\exp \left(\delta m \operatorname{gl}(Z)^{-4}\right)$.

In fact, a somewhat stronger version of this theorem follows by applying Lemma 23 to the space obtained in Lemma 22. A stronger version of Lemma 22 appears as Theorem 7.1 in [P].

Lemma 22. There is a constant $B<\infty$ such that for $n=1,2, \ldots$ there is a Banach space $F_{n}, \operatorname{dim} F_{n}=2 n$, and a linear operator $v: l_{2}^{n} \rightarrow F_{n}$ such that $\|v e\| \geq\|e\|$ for $e \in l_{2}^{n}$ and $\pi_{1}\left(v^{*}\right) \leq B$.

Proof. Consider a linear isometry $U: L_{2}^{3 n} \rightarrow L_{2}^{3 n}$. Write

$$
E_{1}=U\left(\left[e_{1}, \ldots, e_{2 n}\right]\right), \quad E_{2}=U\left(\left[e_{n+1}, \ldots, e_{3 n}\right]\right)
$$

It is well known (see e.g. [$\mathbf{K}]$, $[\mathbf{S}]$, or $[\mathbf{P}]$ Cor. 7.4) that for "most choices" of U one has

$$
\|f\|_{L_{2}^{3 n}} \leq b\|f\|_{L_{1}^{3 n}}
$$

for $f \in E_{1} \cup E_{2}$, where b can be taken independent of n. Let us fix a pair E_{1}, E_{2} with the latter property. Put $F_{n}=L_{1}^{3 n} / E_{2}^{\perp}$ and let

$$
u: E_{1} / E_{2}^{\perp} \rightarrow L_{1}^{3 n} / E_{2}^{\perp}=F_{n}
$$

be the natural map. If E_{1} / E_{2}^{\perp} is given the norm induced from $L_{2}^{3 n} / E_{2}^{\perp}$, then E_{1} / E_{2}^{\perp} is isometric to l_{2}^{n} and our choice of E_{1} yields the estimate $\|e\| \leq b\|u e\|$ for $e \in E_{1} / E_{2}^{\perp}$. Now u^{*} can be regarded as the composition of the embedding map $i_{\infty, 2}^{E_{2}}:\left(E_{2}\right)_{\infty} \rightarrow\left(E_{2}\right)_{2}$ with the orthogonal projection P from $L_{2}^{3 n}$ onto $E_{1} \cap E_{2}$. Hence our choice of E_{2} yields

$$
\pi_{1}\left(u^{*}\right) \leq\|P\| \pi_{1}\left(i_{\infty, 2}^{E_{2}}\right) \leq \pi_{1}\left(i_{\infty, 1}^{E_{2}}\right)\left\|i_{1,2}^{E_{2}}\right\| \leq b .
$$

This shows that the operator $v=b u$ has the required properties, if $B=b^{2}$.

Lemma 23. Let F be a Banach space and let $v: l_{2}^{n} \rightarrow F, 1<t<$ ∞. Suppose that

$$
\pi_{t}(v) \geq c\|v\|>0, \quad \pi_{1}\left(v^{*}\right) \leq B\|v\| .
$$

Let $j: F \rightarrow Z$ be a linear operator such that $\|j f\| \geq\|f\|$ for $f \in$ $v\left(l_{2}^{n}\right)$. If $c \geq 2^{5} B \operatorname{gl}(j)$, then $Z \supset Z_{1}$ such that $d\left(Z_{1}, l_{\infty}^{k}\right)<2$ and $k=\operatorname{dim} Z_{1} \geq \min \left\{5^{-\alpha}\left(2^{1 / \alpha}\right)^{n}, \frac{3}{4} \exp \left(c_{1} n / \alpha^{2}\right)\right\}$, where α and c_{1} are as in Corollary 19.

Proof. Observe that, since $\operatorname{gl}\left(j^{*}\right)=\operatorname{gl}(j)$, one has

$$
\gamma_{\infty}(j v)=\gamma_{1}\left((j v)^{*}\right) \leq \pi_{1}\left(v^{*}\right) \operatorname{gl}\left(j^{*}\right) \leq B \operatorname{gl}(j)\|v\| .
$$

Consider a $C(K)$-factorization of $j v: l_{2}^{n} \rightarrow Z^{* *}$, say $j v=U i$, where

$$
\left\|i: l_{2}^{n} \rightarrow C(K)\right\|=1, \quad\left\|U: C(K) \rightarrow Z^{* *}\right\| \leq B \operatorname{gl}(j)\|v\| .
$$

Put $E=i\left(l_{2}^{n}\right)$; then

$$
\pi_{t}\left(\left.U\right|_{E}\right) \geq \pi_{t}(U i) \geq \pi_{t}(v) \geq c\|v\| \geq 2^{5}\|U\| .
$$

Since $\gamma_{\mathrm{id}_{z} . .}\left(l_{\infty}^{k}\right)=\gamma_{\mathrm{id}_{z}}\left(l_{\infty}^{k}\right)$, the conclusion follows from Corollary 19.

Proof of Theorem 21. We may assume that $m>2\left(2^{5} B \mathrm{gl}(Z)\right)^{4}$, where B is the constant from Lemma 22. (If not, we just let $\delta=$ $\frac{1}{4}\left(2^{5} B\right)^{-4}$ and G_{m} can be an arbitrary space of dimension m.) Let $G_{2 n}=F_{n}$ and $G_{2 n+1}=F_{n} \oplus l_{1}^{1}$ for $n \geq\left(2^{5} B\right)^{4}$. Fix an m and let Z be a Banach space and $j: G_{m} \rightarrow Z$ an isometric embedding, so that $\operatorname{gl}(j) \leq \operatorname{gl}(Z)$. Let $v: l_{2}^{n} \rightarrow G_{m}$ be the operator obtained from that in Lemma 22 (where $m=2 n$ or $m=2 n+1$). Observe that, for $t \geq 1$,

$$
\pi_{t}(v) \geq \pi_{t}\left(\mathrm{id}_{l_{2}^{n}}\right) \geq \sqrt{\frac{n}{t}}
$$

Letting $t=\left(2^{5} B \operatorname{gl}(j)\right)^{-2} n$ and applying Lemma 23, one can easily find the absolute constant δ needed in Theorem 21.

Remark. It follows from ($[\mathbf{P}], \mathrm{Th} .7 .1$) that the spaces G_{n} in Theorem 21 can be chosen to have uniform cotype 2 constants.

References

[F] T. Figiel, Factorization of compact operators and applications to the approximation problem, Studia Math., 45 (1973), 191-210.
[FJ] T. Figiel and W. B. Johnson, Large subspaces of l_{∞}^{n} and estimates of the Gordon-Lewis constant, Israel J. Math., 37 (1980), 92-112.
[FJS] T. Figiel, W. B. Johnson, and G. Schechtman, Factorizations of natural embeddings of l_{p}^{n} into L_{r}, I, Studia Math., 89 (1988), 79-103.
[G] D. P. Giesy, On a convexity condition in normed linear spaces, Trans. Amer. Math. Soc., 125 (1966), 114-146.
[GL] Y. Gordon and D. R. Lewis, Absolutely summing operators and local unconditional structures, Acta Math., 133 (1974), 27-48.
[J] R. C. James, Uniformly non-square Banach spaces, Ann. of Math., 80 (1964), 542-550.
[JS] W. B. Johnson and G. Schechtman, On subspaces of L_{1} with maximal distances to Euclidean space, Proc. Research Workshop on Banach Space Theory, Univ. of Iowa, Bor-Luh Lin, ed. (1981), 83-96.
[K] B. S. Kashin, Sections of some finite-dimensional sets and classes of smooth functions, Izv. Akad. Nauk SSSR, 41 (1977), 334-351 (Russian).
[LT] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Sequence Spaces, Springer-Verlag, (1977).
[M] B. Maurey, Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans les espaces L_{p}, Asterique No. 11, Soc. Math. France, (1974).
[Pe1] A. Pełczyński, Projections in certain Banach spaces, Studia Math., 19 (1960), 209-228.
[Pe2] __, A characterization of Hilbert-Schmidt operators, Studia Math., 58 (1967), 355-360.
[Pe3] _, Finite dimensional Banach spaces and operator ideals, in Notes in Banach Spaces, H. E. Lacey Ed., Univ. of Texas (1980), 81-181.
[P] G. Pisier, Factorization of linear operators and geometry of Banach spaces, CBMS Regional Conference Series in Mathematics, 60 (1986), Amer. Math. Soc., Providence.
[R] H. P. Rosenthal, On subspaces of L^{p}, Ann. of Math., 97 (1973), 344-373.
[Sz] S. J. Szarek, On Kashin's almost Euclidean orthogonal decomposition of l_{1}^{n}, Bull. Acad. Polon. Sci., 26 (1978), 691-694.
[T-J] N. Tomczak-Jaegermann, Banach-Mazur Distances and Finite-Dimensional Operator Ideals, Pitman Monographs and Surveys in Pure and Applied Mathematics 38, Longman (1989).

Received August 15, 1989 and in revised form September 4, 1990. The second author was supported in part by NSF DMS-87-03815 and the U.S.-Israel BSF, and the third author was supported in part by the U.S.-Israel BSF.

Polish Academy of Sciences
Abrahama 18, 81-825 Sopot, Poland
Texas A\&M University
College Station, TX 77843
E-mail address: wbj7835@tamvenus

AND

The Weizmann Institute of Science
Rehovot, Israel

