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TENSOR PRODUCTS OF STRUCTURES WITH
INTERPOLATION

FRIEDRICH WEHRUNG

While it is known that the tensor product of two dimen-
sion groups is a dimension group, the corresponding problem
for interpolation groups has been open for a while. We solve
this problem here, by proving that the tensor product of two
interpolation groups may not be an interpolation group, even
for directed, torsion-free interpolation groups. We also solve
the corresponding problems for refinement monoids (with ten-
sor product of commutative monoids) and for lattice-ordered
groups (with tensor product of partially ordered abelian
groups).

0. Introduction.

Let A and B be two partially ordered abelian groups. Then the tensor prod-
uct A®B (in the category of Z-modules) can be given a structure of partially
ordered abelian group, with positive cone the set of all sums Σi<n o>i ® &*
where n E N and for all i < n, (α^,^) G A+ x B+ (this tensor product is
related but not isomorphic to either kind of tensor product A ®o B or A ®e B
considered in [9], where the result is always forced into being a £-group even
for arbitrary partially ordered abelian groups A and B). It is proven in
[5] that the tensor product of two dimension groups (i.e. directed, unper-
forated partially ordered abelian groups with the interpolation property) is
a dimension group. Then K.R. Goodearl asks in [6, Question 26] whether
this holds for interpolation groups, i.e. whether the tensor product of two
interpolation groups is an interpolation group.

We answer this question here, by giving several counterexamples where
this does not hold (Examples 1.3 to 1.5), each of them with a specific feature.
Our search for those counterexamples leads us first to study the connection
between the positive cone of the tensor product of two partially ordered
abelian groups and the tensor product of their positive cones as cancellative
commutative monoids. Indeed, Example 1.3 shows that both are not nec-
essarily isomorphic. Our constructions turn out in fact to be related to a
counterexample of Manfred Dugas to [6, Question 2]. The common pattern
between these counterexamples is that they show in particular that tensor
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product of interpolation groups does not preserve Orthogonality' (as defined
at the end of the introduction): α0 may be orthogonal to aλ without α0 ® b
being orthogonal to aλ ® b (b > 0). This quite irregular behavior does not
happen for [conical] commutative monoids (Corollary 2.11) or for two inter-
polation groups one of which is unperforated (Corollary 2.12). Finally, still
on the negative side, we show in Example 1.6 that the tensor product of two
lattice-ordered groups may not be lattice-ordered — thus confirming that
even for lattice-ordered A and B, A®B may not be isomorphic to Martinez'
A®OB.

Nevertheless, it turns out that in many natural contexts, analogues of
GoodearΓs question find positive answers: this fact is mainly supported
by our following Theorem 2.9, which states that the tensor product of two
refinement monoids (in the category of commutative monoids) is a refinement
monoid. Towards this goal, we prove in fact that the tensor product of two
conical refinement monoids is a conical refinement monoid (Theorem 2.7).
The proof of these two results uses a "half-syntax, half-semantic" method,
where elements of the tensor product A®B are viewed as [equivalence classes
of] words on the alphabet A x B, on which we apply a certain rewriting
rule (relevant only when A and B are refinement monoids). We also refer
for example to [7, 8] for work about tensor products of semigroups (but
preservation of the finite refinement property under tensor product is not
stated there). Other positive results of preservation by tensor products may
be found in [3, 9] for vector lattices (with various sorts of tensor products,
all different from those considered in this article!) and of course [5] for
dimension groups.

We will mainly follow the notations and terminology of [5, 6, 11]. In
particular, N = Z+ \ {0} = {1,2,3,... }. If α 0 , . . . , αm_i, 60,... , 6n-i are el-
ements of a given preordered set, then we will write α 0 , . . . , αm-i < &o> ?
6n_! instead of (Vi < m)(Vj < n)(ai < bj). For every commutative monoid
M, Grot(M) will denote the Grothendieck group (also called 'universal
group') of M; it is a partially preordered abelian group, with positive cone
the image of M. If M is a commutative monoid, then we will denote by <aig

the algebraic preordering of M, defined by x < a i g y <& (3z)(x + z = y). We
will say that M is conical when it satisfies (Vrr,y)(x + y = 0=>x = y = 0)
(this concept has been given various names in the literature besides 'coni-
cal', such as 'centerless', 'positive' or 'zerosumfree'). The finite refinement
property is the following axiom:

i) (α0 + ax =bo + bι

Vi < 2)(α< = c i 0 + cn and b{ = coi + c u ) ) ,
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while the interpolation property is the axiom

)(α0,αi < 60,&i => (3c)(αo,αi < c <

It is well-known [6, Proposition 2.1] that if G is a partially ordered abelian
group, then G satisfies the interpolation property if and only if G+ satisfies
the finite refinement property. In general, a refinement monoid is a com-
mutative monoid satisfying the finite refinement property. An interpolation
group is a (non necessarily directed) partially ordered abelian group sat-
isfying the interpolation property. If M is an ordered monoid, two positive
elements a and b of M are said to be orthogonal, in notation a ±M b, when M
satisfies (\/x)(x < α, b =$> x < 0); note that if G is a partially ordered abelian
group, then, for elements of G+, orthogonality in G + (algebraically ordered)
is weaker than orthogonality in G, and if G is an interpolation group, then
both notions coincide. A partially ordered abelian group is unperforated
when for all m (Ξ N, it satisfies the statement (\/x)(mx > 0 =Φ> x > 0).

1. Generalities about tensor products. Case of interpolation
groups.

The structures that we shall consider in this paper will always be sets en-
dowed with a commutative, associative operation + with unit element 0
(commutative monoids, abelian groups), and possibly with a partial order-
ιnS < (partially ordered abelian groups). If A, B, C are structures and
/ : Ax B —> C, say that / is a bimorphism when for all a G A (resp. b E B),
the map /(α, _) (resp. /(_, b)) is a homomorphism of monoids; if in addition
< is in the language, say that / is positive when for all positive a £ A and
b G B, we have /(α, b) > 0. We shall say that the [positive] bimorphism
/ is universal (relatively to a given category of structures) when for every
structure D and every [positive] bimorphism g : A x B —>• D, there exists a
unique [positive] homomorphism g : C —>• D such that g o / — g; in this case
the pair (C, /) is unique up to isomorphism and the custom is to call it the
tensor product of A and B, and to write C ~ A ® J5, /(α, b) — a®b. In fact
this notion is very sensitive to the category of structures under considera-
tion, thus the latter will most of the time be used as a superscript: thus ®cm

will denote the tensor product of commutative monoids, ®ag will denote the
tensor product of abelian groups and ®o a g will denote the tensor product of
partially ordered abelian groups. For all the three categories above, the ten-
sor product always exists and this is in fact, in an abstract model-theoretical
setting, a general feature of the models of first-order theories whose axioms
are universal Horn sentences — but observe that the case of partially or-
dered abelian groups would not completely fit in this general framework: in
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the above definition of a positive bimorphism, /(α, _) may not be a positive
homomorphism if α ^ 0.

Proposition 1.1. Let A and B be partially ordered abelian groups. Then
the tensor product A ® a g B [of the underlying abelian groups of A and B]
can be given a structure of partially ordered abelian group with positive cone
the set of all finite sums of pure tensors of the form a (g)ag b where (α, b) G
A+ x B+, and this partially ordered abelian group is in fact a tensor product
of A and B in both the category of preordered abelian groups and the category
of ordered abelian groups.

Proof. It is obvious that the construction above yields a partially preordered
abelian group. That it yields in fact a partially ordered abelian group is not
trivial, but it is proved in [5, Proposition 2.1]. It is also straightforward to
verify that (α, 6) »-» α ® a g 6 is a universal positive bimorphism for preordered
abelian groups, thus a fortiori for ordered abelian groups. D

There are also connections between ® o a g and (8)cm. For every partially
ordered abelian group A, put A± = A+ + (—A+) ("directed part" of ^1).

Proposition 1.2. Let A and B be partially ordered abelian groups. Then
the following holds:
(a) If both A and B are directed, then A ® o a g B ^ Grot(A+ ® c m J3+).

(b) Suppose that one of the following conditions holds:

(i) Both A and B are directed;
(ii) Both A± and B± are torsion-free, and either A or B is torsion-

free;
(iii) Either A or B is unperforated.

Then (A ® o a g B)+ ** (A± Θ o a g B±)+.

Proof (a) Let C = Grot(^4+ ® c m J3+), let c »-> [c] the natural map from
A+ ® c m B+ to C (its range is C + ) . Note that C is a preordered abelian
group. Let © be the map from A+ x B+ to C+ defined by a © b = [a ® c m 6].
Since ® c m is a bimorphism of monoids and both A and B are directed, Θ
can be extended to a unique positive bimorphism from A x B to C, that we
shall still denote by ©. Then it is routine to verify that this extended © is a
universal positive bimorphism of preordered abelian groups. Therefore, by
Proposition 1.1, C is in fact an ordered abelian group and it is isomorphic
to A <g>oag B.

(b) There is nothing to prove in case (i). In general, for every partially
ordered abelian group C, denote by j c the inclusion map from C f ± into C.
In case (ii), suppose for example that B is torsion-free. Then both positive
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homomorphisms ΊdA± ®&gjB : A± ®a g B± -> A± <g)ag 5 and j A ®a g idβ :
A± ®a g i? —> A ®a g J5 are in fact one-to-one (because A± and B are torsion-
free abelian groups, thus [4, vol. I, Theorem 60.6] flat abelian groups), thus
their composition j A ®a g JB ' A± ®a g B± —> A ®a g B is also one-to-one. Since
(A <g>oag £)+ = j Λ ®ag jB[{A± ®o a g B*)4"], the conclusion follows in case (ii).

In case (iii), suppose for example that A is unperforated. We first prove
that A± is a pure subgroup of A, i.e. for all ra G N, mA Π A^ = mA±.
Thus let a E A such that ma E A±. By definition, there are b and c in A+
such that mo = b — c. It follows that mo < 6 < m&, whence, since A is
unperforated, a < b. Therefore, a = b — (b — a) belongs to A±. It follows
[4, vol. I, theorem 60.4] that JΛ®agidβ : A ± ® a g B -+ A®**B is one-to-one.
Furthermore, A^ is unperforated, thus torsion-free, thus it is a flat abelian
group, thus id^± ®agj# : A± ®a g B± -* ^ ® a g β is one-to-one. Therefore,
3A ®a g Jβ A± ®a g B"11 -> Λ ®ag B is one-to-one, and we conclude as at the
end of case (ii). D

The following counterexample shows that in the hypothesis of Proposition
1.2, (b, iii), one cannot weaken "unperforated" into "torsion-free". It also
solves (negatively) [6, Problem 26].

Example 1.3. Two interpolation groups A and B such that A is torsion-
free, B is directed and A ®o a g B is not an interpolation group, although
A± ®o a g B± = A± ®o a g B is an interpolation group.

Proof. Let A = {(ra,n) G Z x Z : m = n (mod 2)}, endowed with the
positive cone A+ = 2Z+ x 2Z+. Since A+ satisfies interpolation, A satisfies
interpolation; note also that A is torsion-free, but not directed. Let B =
Q Xiex Z/2Z be the lexicographic product of Q (with the natural ordering)
and Z/2Z (with the discrete ordering). By [6, Corollary 2.12], B is an
interpolation group. It is clearly directed. For every r G Q , identify r with
(r, 0) E B, and put ε = (0,1). Thus every element of B can be written r + kε
with r G Q and k G {0,1} (note that 2ε = 0).

Now, let A be the abelian group Q x Q . Then every element of A can be
written (l/q)a where q eN and a e A. Let C = A x (A/2Λ), and let P be
defined by

P = {((l/ςr)α, 6 + 2A) € C : 0 < Λ b <A a}.

It is easy to verify that P is the positive cone of a structure of partially
ordered abelian group on C. Then let © be the map from A x B to C
defined by

aΘ(r + kε) = (ra, ka + 2A) (all oGA, r E Q and k G {0,1}).

Then it is easy to verify that 0 is a positive bimorphism from A x B to
C {note: in fact, © is universal, but we will not need this). Thus there
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exists a positive homomorphism φ from A <g>oag B to C such that for all

(α, 6) G A+ x £ + , one has a Θ 6 = <£(α ® o a g 6).

Now consider the following three elements of A:

Thus a,a' G A+, α J_A O! and α + 2c = α', although α ^ 2A. Then
α' ® o a g ε = a ® o a g ε + 2c ® o a g ε = α ® o a g ε + c ® o a g 2ε = α ® o a g ε (because
2ε = 0), thus we get easily that 0, a ® o a g ε < a ® o a g (1 + ε), a1 ® o a g (1 + ε).
But suppose that there exists z G A ® o a g 5 such that 0, a ® o a g ε < z <
a (2)oag (1 + ε), a' ® o a g (1 -f ε). Taking the image of these inequalities under
φ yields (0,2A),(0,α + 2A) <c Φ{z) <c (a, a + 2A), {a1, a1 + 2A). Since
α -LA α1, we necessarily have φ(z) = (0,̂ 8) for some β G A/2 A. Since
(0,2J4) < C (0,/3), the definition of < c yields easily that there exists b e β
such that 0 <A b <Λ 0, i.e. β = 2A. Thus (0,α + 2A) < (0,2^4), thus, as
before, a G 2A, a contradiction. This proves that A (g>oag J3 does not satisfy
the interpolation property.

However, A± is isomorphic to Z x Z with its natural ordering, thus
A i <g>oag B ~ B x B is an interpolation group. D

This example can easily be modified to find a counterexample to
[6, Problem 26] even for directed interpolation groups:

Example 1.4. Two directed interpolation groups A' and B such that A' is
torsion-free and A1 ®o a g B is not an interpolation group.

Proof. Let A and B be the two partially ordered abelian groups defined in the
previous example, and let A' = Qxi e x A: thus, A' is a directed interpolation
group [6, Corollary 2.12]. Replace the previous values of α, a1 and c by
(0, α), (0, α') and (0, c). Then it is obvious that one has again α + 2c = a' and
a 1.A' a! but a £ 2A'. Then it is easy to modify the proof of previous example
to verify that although 0,α®oagε < α®o a g(l-hε),α/®o a g(H-ε), there exists no
z'm j4'®oasi? such that 0,α®o a gε < z < α® o a g ( l + ε),o'®o a g(l + ε). D

Note that in Example 1.4, B is not torsion-free. However, in order to
overcome this last difficulty, one has to find a more involved counterexample
(experimentally, it is the result of Proposition 1.2, (b, ii) which makes things
more difficult):

Example 1.5. Two torsion-free directed interpolation groups A and B such
that A ®o a g B is not an interpolation group.

Proof. Let G = {(x,y,z) G Z x Z x Z : x + y + z = 0 (mod 2)}, with positive
cone G+ = {0} x 2Z+ x 2Z+ (note that indeed, G+ C G). Then G is a
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torsion-free interpolation group, but it is not directed. Put A = Q xϊexG.
Thus A is a directed torsion-free interpolation group.

Now let H = Z be endowed with the positive cone if4" = 2Z+, and put
B = Q x l e x H. Again, H is a non-directed torsion-free interpolation group,
and B is a directed torsion-free interpolation group. By identifying, for every
r G Q, r with (r, 0) G B and by putting ε = (0,1) G B, one sees again that
every element of B can be written in a unique way r + kε where r G Q and
keZ. Note that 2ε G B+ \ {0} while ε $ J3+.

Now, let A be the abelian group Q x (<Q> x Q x Q), and let C = A x A
(considered as abelian group). Define the following subset of C:

P = {((l/9)α,6) : q G N and a G A+ and 6 G A

and (3z G A+)(-α < 6 - 2x < α)}.

It is clear that P is the positive cone of a structure of partially ordered
abelian group on C. Then let Θ be the map from Ax B to C defined by

a Θ (r + kε) = (ra, ka) (all a G A, r G Q and k G Z).

It is easily checked that Θ is a positive bimorphism. Thus there exists
a unique positive homomorphism φ from A ®o a g B to C such that for all
(α, 6) G A x 5, we have φ{a ®o a g 6) = a © 6.

Now, define elements of G by

άo = (0,2,0); ά! = (0,0,2);

ά = (2,0,0);

Co = (1,1,0); c1 = (1,0,1).

Then define elements of A by

^ = (0,^) and Ci = (l,Ci) (alΠ < 2); α = (2,ά).

For all i < 2, since ά{ G G + , we have Oj E 4 + . By definition of the
lexicographical product, we also have c* G A+ and a e A+. Furthermore,
a + hi = 2έi thus α + a{ = 2^; thus 2cι - a = a{ e A+. It is also immediate
that α0 -LA αi. Finally, since (1,0,0) £ G, we have ά £ 2G, thus a £ 2A.

It follows that for alH < 2, we have

o< ® o a g (1 + ε) + a ® o a g ε = α< ® o a g 1 + (^ + α)

= a{ ® o a g 1 + 2C ί ® o a g ε

= αf ®
o a g 1 + Ci ® o a g 2ε
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Therefore, we obtain the inequalities

0, -a ® o a g ε < a0 ® o a g (1 + ε), a, ® o a g (1 + ε).

Suppose that there exists z G A ® o a g B such that

0, -a ® o a g ε < z < a0 ® o a g (1 + ε), aλ ®
o a g (1 + ε).

Then, taking the image of these inequalities under φ yields

(O^O^MO^-a) <c Φ{z) <c (flojΛoJ f̂lijfli)-

Since α0 J-Λ αi> it follows easily that there exists 6 G 4 such that φ(z) =
(0A,b). Since (0^,0) <c (0^,6), we obtain fe G 2,4+ by definition of P.
Similarly, since (0^, — a) <c (0^,6), we obtain a + b G 2A+. In particular,
we obtain that a G 2A, a contradiction. D

On the other hand, the tensor product of two dimension groups is a dimen-
sion group, as proved in [5, Proposition 2.3]. But even stronger structures
may not be preserved any more under tensor product of partially ordered
abelian groups! Here is an example with lattice-ordered groups:

Example 1.6. R ® o a g R is not a lattice-ordered group.

Proof. We start with two claims.

Claim 1. Let A and B be torsion-free abelian groups and let α,a' G A\ {0}
and b,V G B\ {0} such that a ® a g 6 = a' ® a g V'. Then both (α, a') and (6, b')
are not independent oυerΈ, i.e. there are non zero pairs of integers (m,mf)
and (n, n') such that ma = m'a' and nb = n'b'.

Proof. Put A = Q ® a g A and B = Q ® a g B. Since both A and B are torsion-
free, both natural homomorphisms A —> A and B —> B are one-to-one; by
torsion-freeness, the natural map from A ® a g B to A ® a g B is one-to-one
[4, Theorem 60.6], thus one can identify A ® a g B with its natural image
into A ® a g B. Suppose now that (a, a1) is independent over Z; thus it is
also independent over Q, thus (since α ̂  0^) there exists an element p
of the algebraic dual A* of the Q-vector space A such that p(a) = 1 but
p(a!) = 0. Since 6 ^ 0 ^ , there exists q G B* such that #(&) = 1. But the
equality a ® a g 6 = α; ® a g 6' implies that p(α)ςf(6) = p{μ')q{b% i.e. 1 = 0, a
contradiction. D

Claim 2. For αH a; € Q \ {0}; one has x <8>ag (I/a?) = 1 <8>ag 1 (in R ®ag R).

Proof. Write x = p/g where p G Z \ {0} and q G N. Then we have

x ®ag (I/a:) = (p/g) ®ag (g/p) = p ((1/g) ®ag (q/p)) = (1/g) ®ag (p (g/p))

®ag q = q ((1/9) ® a β 1) = 1 ® a g i
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D

Now, put α = >/2 (any positive irrational number would do). There are

sequences (pn)neN and (gn)πeN of elements of N such that limn->+oo pn/qn = α

and (Vfl G N)(p 2 n/<? 2 n < <* < P2n+l/#2n+l). P u t p n = p2n+l/?2n+l ~ P2n/^2n-

We may assume without loss of generality that for all n G N, we have

0 < p n < 1/n and 1/2 < pn/qn < 2.

Now put o = 1 ® o a g 1 and b = a ® o a g (I/a). Suppose that {α,6} has
a least upper bound in R ® o a g R; put c = 2(α V 6) - (a + 6). Thus c =
(o V 6 - α) + (α V b - b) = |6 - α|.

For all n G N, we have

6 = a ®o a g (1/α) < p 2 n + i / W i ®o a g

= (P2n/q2n + Pn)

= (P2n/<?2n) ® O a

= α + p n ®
o a g (g 2 n/p 2 n) (by Claim 2),

thus n(6 - a) < (npn) ® o a g (q2n/P2n) < 1 ® o a β 2 = 2a. Similarly, one proves
that — 2a < n(b — a): thus we have obtained that

(*) (Vn G N)(-2α < n(6 - o) < 2a).

Therefore, we also have

(**) (VnGN)(0 <nc<2a)

(recall that c = \b — a\). However, there exists a unique positive homomor-
phism φ from R® o a g R to R such that (Vα, y G R) (φ(x®0Άg y) = xy), and (**)
would imply that for all n G N, 0 < nφ{\b - a\) < 2, whence φ(\b - a\) = 0.
But by definition of the positive cone of R ® o a g R, it is easy to see that
ker(φ) Π (R ® o a g R) + = {0}, whence \b - a\ = 0, i.e. a = b. However, if
a = 6, i.e. (see Proposition 1.1) 1 ® a g 1 = α ® a g (1/α), then, by Claim
1, there exist p , g E Z \ {0} such that p = ga, a contradiction since a is
irrational. D

Note that the proof above yields in fact that if a is an irrational number

and A and B are two additive subgroups of R such that {l,α} Q A and

{1,1/α} C £?, then A ® o a g S is not lattice-ordered. A similar proof yields

also the same negative result for the symmetrical power of R of order 2.

However, the same technique as it is used in the proof of [5, Proposition 2.3]

yields the following result:
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Proposition 1.7. Let A be an unperforated interpolation group (not nec-
essarily directed) and let B be an interpolation group. Then A® o a g B is an
interpolation group.

Proof. Since the satisfaction by a partially ordered abelian group of the
interpolation property depends only on its positive cone, it results from
Proposition 1.2, (b, iii) that it suffices to consider the case where both A
and B are directed. But then, A is a dimension group, thus, by the theorem
of Effros, Handelman and Shen ([2, Theorem 2.2], or [6, Theorem 3.19]),
it is a direct limit of simplicial groups (i.e. partially ordered abelian groups
isomorphic to some Zn with its natural ordering); since ®o a g commutes with
the direct limit operation [6, Lemma 2.2], it suffices to prove the theorem
for A = Zn, n e Z + . But in this case, A (8)oag B = Bn and the conclusion
follows. D

Problem 1.8. For every perforated interpolation group A, prove that there
exists a directed torsion-free interpolation group B such that A <8)oag B does
not have interpolation.

2. Case of commutative monoids.

In this paragraph we shall prove that the finite refinement property is pre-
served under tensor products of commutative monoids. The essential part of
the proof aims at finding wieldy enough necessary and sufficient conditions
for an equality J2i<m

 at ®c m &» = Σj< n

 a'j ®c m ty to hold in a tensor product
of refinement monoids. Although such conditions have been announced by
P.A. Grillet in [8, Theorem 4] (in the context of commutative semigroups),
we could not use these for our problem, thus we shall introduce a different,
more symmetric criterion of equality of two tensors.

We start first with conical refinement monoids. For every conical com-
mutative monoid A, put A* = A \ {0}. By definition of conicality, A9 is a
subsemigroup of A.

Now, if A is an arbitrary set and R is a binary relation on A, then A is

— confluent when for all α, 6, b1 in A such that aRb and aRb'', there exists
c e A such that bRc and b'Rc.

If in addition A is a commutative monoid, say that R is

— additive when for all o, α', 6, V in A, (aRa1 and bRbf) implies
a + bRa' + b';

— refining when for all α, 6, c in A such that a + bRc, there are a1 and b'
in A such that aRa' and bRb1 and c = a' + V.
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Now let A and B be two conical refinement monoids, which we shall fix
from 2.1 to 2.6. Let C = Z^xB^ be the abelian group of all functions
/ : A0 x Bm -> Z such that f~x{0} is cofinite, ordered componentwise. Thus
C is a [Dedekind complete] lattice-ordered group. For all (α, b) E A* x B*,
let a b be the element of C + defined by (α 6)((x, y)) = 1 if (#, y) = (α, 6), 0
otherwise. Thus the elements of C+ are exactly the finite sums of elements
of the form a b where (α, b) G A* x £?* (C+ is the free commutative monoid
on Aφ x J5*). Define binary relations -*°, —>• and ->* on C+ the following
way:

— / ~ > 0 ff if a n d only if there are (α, b) G A* x £?*, nonempty finite sets /

and J and (α^ 6j) E A* x B* (all (i,j) £ I x J) such that α = Σ)*G/ α i '

b = Σ j € j 6j and / = α 6 and g = Σ(i,j)eiχj α« * 6j!

— / —> g if and only if there are n E Z + , /;, ̂  (i < n) in C+ such that

/ = Σi<n f» 9 = Σi<n S< a n d /< ->° 9% for a 1 1 * < n,

— / —>* 3 if and only if there are n G N and hi (i < ή) in C+ such
that hQ — /, /ιn = g and for all i < n, hi —ϊ hi+ϊ (that is, —>•* is the
transitive closure of ->).

Note that in the definition of —>, the /<'s are necessarily of the form a{ 6̂ ,
thus the expression of / as Σ i < n /* ^s essentially unique. This implies easily
(iv) of the following lemma (the rest is trivial):

L e m m a 2 . 1 . The following holds:

(i) For all (α,6) G A* x Bm, we have a b -+° a b.

(ii) The relation -» contains —>° and if ώ reflexive,

(in) The relation —> is additive.

(iv) T/ie relation —> is refining.

The following lemma follows easily:

Lemma 2.2. The relation -J>* is reflexive, transitive, additive and refining.

Now we shall prove the main lemma of this section:

Lemma 2.3. Both relations —> and —ϊ* are confluent.

Proof. Since —>* is the transitive closure of ->, it suffices to prove that —>
is confluent (in the language of the theory of rewriting rules, this is usually
expressed as "local confluency implies confluency"). Thus let /, 5, gι in
C+ such that / -> g and / —> g', we prove that there exists h G C+ such
that g —> h and g' —> h. Let us first see the case where / = a b where
(α,6) G A* x B*. Thus / -*° g and / ->° 3', thus there are nonempty finite
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sets /, /', J, J' such that IΠΓ = JΓ\J' = 0 and elements ak (k elUΓ) and
6, (i € J U J') such that α = Σiei ai = Σ i ' € / ' α*> 6 = Σ i G j 6 ; = Σ;<€j ' b?
and g = Σ(ifj)e/χj α * ' ^ a n ( * #' = Σ(i'j')€/'χj' α*' ' fy' Since both A and i?
satisfy the finite refinement property, there are elements au> ((M') G I x /')
of A and 6̂ / ((j, j ' ) E J x J1) such that the following holds:

(Vi eηla^Σ *«' and (Vi1 G I') α, =
\ i'er J \

and

(Vj G J) k = y ; bjr ) and (V/ G J') [by =

Note that some of the aiV 's or the bjj 's may be zero. Thus for all i € I
(resp. i' G / ' , j € J, j ' G J')) define respectively

/ί = it' G /' : o«, ?έ 0Λ} and Iv = { . € / : α«. ^ 0Λ},

j ; = 0" G J ' : &„•- ̂  0B} and Jr = {j G J : 6iJ( ^ 0B}.

Now we prove a

Claim. For all (i,j) e I x J (resp. (i',j') G Γ x J ;),

Proo/. We prove for example the first assertion. Thus let (i, j) G / x J.

Then we have ĉ  = Σ»'€/' aii> = Σ*'e/? α ^' a n < ^ similarly, bj = Σ J Έ J ' ^'if

Therefore, by definition of ->°, o» 6j ί O

Now p u t /* = {(i,ϊ) elxΓ : aw φ 0A} a n d J * = {(j, f) e J x Jf :

bjj> φ Oβ}. Put h = Σ((i,i'),(j,i'))G/*χJ* α " ' ' fyi' % t t l e claim above and by
definition of ->, we have

9 =

Similarly, ^' -> /ι. Thus in this particular case, we have confluency. In
the general case, one can write / = Σi< n / i 5 9 = Σi<n9i a n d 9' = Σi<n9i
where n G Z + , the / 's are of the form αf b{ ((ai, bi) G A* x B*), gu g\ G C+

(all i < ή) and fι ->° g{ and /j ->° ^ for all i < n. By the previous study,
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there are hi (i < n) in C+ such that for all i < n, g{ -> hi and g\ —>- h{. Put

h = Σi< n

 hi- τ h e n 5 -> Λ a n d 9' -* h Π

Now we define a binary relation = on C+ the following way:

f = g<=*(3he c+)(f ->* h and 5 ->• Λ).

Since ->* is reflexive, it is immediate that = is reflexive and symmetric.
Since -»* is transitive and, by previous lemma, confluent, = is transitive.
Since —>* is additive, we obtain the following

Lemma 2.4. The binary relation = is a congruence on C+.

Now, let C be the quotient monoid of C+ under =. For all / G C+, denote
by [/] the equivalence class of / under =. For all (α, b) G A x JB, define an
element a © 6 of C the following way:

if a φQA and 6 ^ 0 β ,

otherwise.

Lemma 2.5. TΛe monoid C is a conical refinement monoid, and for all
(α,6) e A* x JB% we have aQb^Oc

Proof. Note that for all / G C+, 0 ->> / implies / = 0; thus [0] = {0}, so that
if n G N and (ai? b{) (i < n) are elements of A* x β 1 , then Σi<n a{ b{ ψ 0.
The conicality statement as well as the last statement follow. It remains to
prove that C satisfies the finite refinement property.

Thus let /o, /1, g0, 3i in C+ such that [/0] + [/1] = [g0] + [#i]; by definition,
/0 + /i = g0 + gΊ, i.e. there exists h G C+ such that /0 + /1 -** Λ and
5o + 5Ί ->* h. Since ->* is refining (Lemma 2.2), there are //, g[ (i < 2) in C+

such that for all % < 2, /< ->* // and g{ ->* gj and Λ = /ό + /ί = 00 + 0i B u t

since C is a lattice-ordered group, C+ satisfies the finite refinement property,
thus there are hij (i, j < 2) in C+ such that for all i < 2, one has // = hi0+hn
and gj = h^ + hu. It follows that for all i < 2, we also have [fi] = [/ii0] + [Λ»i]
and [gj = [hoi] + [Λϋ], which completes the proof. D

Now, the proof for conical refinement monoids will be completed by the
following

Lemma 2.6. The map 0 is a universal bimorphism.

We first prove that © is a bimorphism. Thus let us prove for example that
for all α0, αx G A and all b G J5, we have (α0 + αx) © b = a0 Θ δ + ax Θ 6. It
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is trivial when α0 = 0^ or αx = 0^ or b = 0 β ; otherwise, since A is conical,
αo+αi φ 0^, and (α o+αi) 6 -> αo 6+αi 6; whence [(αo+αi) 6] = [αo 6]+[αi 6].
The proof is similar for the roles of A and B exchanged.

We now verify that © is universal. Thus let D b e a commutative monoid
and let φ : A x B —»• D be a bimorphism. Define a map ^ from C+ to D by
the rule

Φ [
\i<n

Thus -0 is a monoid homomorphism from C+ to D.

Claim. For all f,g G C+, f -±* g implies that φ(f) =

Proo/. By definition of ->*, it suffices to prove that f -* g implies ψ(f) —

ψ(g). Since φ is a monoid homomorphism, it suffices to prove that / —> ° g

implies φ(f) = φ(g). Thus write f — a-b, a = Σ < € / «i, 6 = Σ J G J ^n where

/, J are nonempty finite sets and (α,fe) and the (α i56j)'s are elements of

A* x β , with g — Σ(ij)ςixjQ>i bj. Therefore, we have

(because φ is a bimorphism)

D

It follows from the claim that φ is constant on all ^-equivalence classes;
therefore, there exists a monoid homomorphism φ : C —> D such that (V/ E
C+) (<£([/]) = ψ{f)). In particular, for all (α,6) G A* x J5Φ, 0(α 0 6 ) =
ψ(a b) = φ(a, 6); for α = 0^ or b = 0 β , we have φ(aQb) = 0(α, 6) = 0, whence
<£(α Θ b) = (/)(α, 6) for all (α, 6) G A x B. Uniqueness of φ follows from the
fact that C is generated (as a monoid) by {α©6 : (α, b) G A* x 5*}. D

Now, Lemmas 2.5 and 2.6 allow us to identify A ® c m B with C, and to
write a ® c m 6 instead of aQb. Thus we state the following theorem:

Theorem 2.7. Lei A and B be two conical refinement monoids. Then

A ® c m B is a conical refinement monoid, and for all (α, b) G Am x B*, we

have a ® c m 6 ^ 0 .

It remains to extend Theorem 2.7 to refinement monoids that are non

necessarily conical. We first need a



TENSOR PRODUCTS INTERPOLATION 281

L e m m a 2.8. Let M be a commutative monoid and let N be a submonoid
of M. Define a binary relation &N on M by putting

x ttN y <£4> (3u,v E N)(x + u = y + v).

Then £zN is a congruence on M. Denote by M/N the quotient monoid of M

under &N. If M is a refinement monoid, then M/N is a refinement monoid.

Proof. The fact that ^N is a congruence on M is trivial. For all x G M,
denote by x/N the equivalence class of x modulo &N. Let xOi xu yOl yλ in
M such that xo/N + xλ/N = yo/N + yι/N. By definition, there are u,v e N
such that xQ + Xχ +u — yo + yι+v. Since M is a refinement monoid, there are
Zij {i,j < 2) such that x0 = zQQ + ZQU xλ + u = zw + zlu y0 = ôo + 210 a n d

Vi + v = ZQI + Zn Since X\/N — {xλ + u)/N and yι/N — yx + v/N, we also
have xo/N = zoo/N + zol/N, xλ/N = zlo/N + zn/N, yo/N = zoo/N + zlo/N
and 2/1/JV = zOι/N + zn/N. Thus M/Λ7' is a refinement monoid. D

T h e o r e m 2.9. Lei A and J3 ί>e refinement monoids. Then A ® c m .B is a
refinement monoid.

Proof. For every semigroup 5, let S° be the monoid obtained by adjoining
a new unit element 0 to S (thus, in the case where 5 has already a unit
Os, we have O5 Φ 0). Observe that a commutative monoid is conical if and
only if it is of the form S° for a certain commutative semigroup S. Now,
if A and B are refinement monoids, it is obvious that both AΌ and B° are
conical refinement monoids. By Theorem 2.7, M = A0 ® c m B° is a conical
refinement monoid. Denote by (α, b) »-> a®°b the natural map from A0 x J5°
to M. Define a submonoid ΛΓ of M by putting

jV = {0} U {a ®° OB + 0A <g>° 6 : (α, 6 ) G A X 5 } .

Now define a map Θ from A x B to M/N by putting α 0 ί ) = o β ° b/N.
Using the definition of iV, it is easily seen that © is a bimorphism. Let us
now prove that Θ is universal.

Thus let D be a commutative monoid and let / : A x B -> D be a
bimorphism. Then the natural extension /° of / from A0 x B° to D defined
by the rule

/°(α6) = (/ ( α ' ί ) ) tf(°'6)eΛxβ'
[0D otherwise

is easily seen to be a bimorphism from A0 x B° to D. Thus there ex-

ists a unique monoid homomorphism g° from M to D such that (V(α, 6) E

Λ° x B°)(g°(a ®° 6) = /°(α,6)). But by definition of /° and of N, we
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have g°\N = 0, whence g° is constant on the equivalence classes of &N.
Thus there exists a unique monoid homomorphism g : M/N -> D such that
(Vx G M)(g(x/N) = g°(x)). It follows that for all (α,6) E A x J5, we have
#(α © 6) = g°(α ®° 6) = /°(α,6) = /(α,6). Since M/ΛΓ is generated by the
α © 6's, uniqueness of g follows. Thus we have proved the universality of Θ.

Hence, A ®c m B is isomorphic to Λf/JV, so that, by Lemma 2.8, it is a
refinement monoid. •

We shall now present a small application of the definition of = through
the confluent relation ->. For every commutative monoid A, define a binary
relation x on A by putting

x x y <==> (3n G N)(x <ajg ny and y <aig nx).

It is easy to verify that x is a congruence on A satisfying (Vα;)(α; x 2x).
Therefore, the quotient monoid A = Aj x is a semilattice (i.e. a commuta-
tive monoid satisfying (\/x)(x = 2x)); one can in fact easily verify that A is
the universal semilattice of A. Denote by a H-» άA the natural homomorphism
from A onto A.

Proposition 2.10. Let A and B be conical refinement monoids. Then there
are unique monoid homomorphisms p : A ®c m B -» A and q : A ®c m B —>• B
(the projections) such that for all (α, b) in Am x Bm, we have p(a®cm b) = άΛ

andq(a®cmb) =bB.

Proof. If A = {0A} or B = {0^} then it is vacuously true, thus suppose
that both A and B are non zero. Let us use the notations as in the proof
of Theorem 2.7. Let us prove for example the assertion for p. For all / =
Σi<n

 ai 'bi(ne Z+, (α<, bi) G Am x B% put L(/) = Σi< n

 ai τ h e n it clearly
suffices to prove that for all /, g G C+, / = g implies L(f) x L(g). By
definition of =, it suffices to prove this for / -> #, thus for / ->° p. Thus
put f = a-b, g = Σ(t,i)€/xjαi ' fy w ^ ^ ^ a n c^ *̂  finite nonempty, (α,6) and
the (ai^bjYs in A* x B* with α = ΣiG/αί a n <^ & — Σj€J î Thus we have
L{g) = Σ €J l Jlαi = IJI ΣiG/αi = l J l α = I J I L ( / ) x L ( / ) a n d t h e conclusion
follows. D

Corollary 2.11. Let A and B be conical refinement monoids and let
α0, αx G A and b G B. / / α 0 i ^ θ i , £Λeπ α0 ®

c m b

Proof If α0 = 0^ or ax = 0A oτ b = 0B then there is nothing to prove, so
suppose that α0? «i and b are non zero. Let p : 4̂ ®c m J3 -¥ A be the first
projection as defined in previous proposition. Let c £ A ®c m B such that
c < a0 ®cm 6, aλ ®c m 6. Then, in A, we have p(c) <aig p(a{ ®c m 6) = αf
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for all i < 2, thus there exist n E N and d G p(c) such that A satisfies
d <aig ^Go? na\. Since α0 J-A ̂ I and A is a refinement monoid, it follows that
d = 0A, thus p(c) = 0^; but this is possible only when c = 0A®*™B- Π

As the proof of Example 1.5 shows, it is not possible to generalize this
to the tensor product of interpolation groups (for 6 > 0), even in the case
where both groups are directed and torsion-free: indeed, A ® o a g B satisfies
0, -a ® o a g ε < α0 ®

o a g (1 + ε), αx ®
o a g (1 + ε) and α0 ±A au but -a®oag ε £ 0

(otherwise there would be a trivial interpolant — namely 0...). On the other
hand, in the unperforated case, we still can conclude by using the result on
monoids:

Corollary 2.12. Let A and B be two interpolation groups one of which
is unperforated, let αo,αi € A+ and let b G J5+ such that α0 -L^ a>ι. Then
a0 <8>oag b -LA®»»SB oi ® o a g b.

Proof. By Proposition 1.2, (b, iii), it suffices to consider the case where both
A and B are directed; in that case, by Proposition 1.2 (a), it suffices to prove
that A+®cmB+ is cancellative (because then, (A(g>oag J3)+ = A+(g>cmJ3+ and
we can apply the result on monoids). But by a straightforward application of
the Effros, Handelman and Shen theorem, every positive cone of a dimension
group is a direct limit (as a monoid) of positive cones of simplicial groups
(say simplicial cones); thus if for example A is a dimension group, then
Λ+ is a direct limit of simplicial cones, and since ® o a g commutes with the
operation of direct limit, it suffices to conclude when A+ is a simplicial cone.
But if A = (Z+)n, then A+<g>cmB+ ^ (B+)n, and this monoid is cancellative;
and similarly with the roles of A and B exchanged. D

Remark 2.13. In particular, in Examples 1.4 and 1.5 are obtained directed
interpolation groups A and B such that A®oa>gB does not have interpolation.
But by Theorem 2.7, A + ® c m S + satisfies the finite refinement property; thus,
by Proposition 1.1 (a), it is a refinement monoid whose Grothendieck group
is not an interpolation group. Such a situation has already been encountered
in [10]: if R is a regular ring, then K0(R) is the Grothendieck group of the
monoid V(R) of all isomorphism types of finitely generated projective right
i?-modules; although V(R) is always a refinement monoid, [10] shows an
example where its Grothendieck group is not an interpolation group.

On the other hand, there are directed partially ordered abelian groups
which cannot be [isomorphic to] the Grothendieck group of any refinement
monoid: in particular, when there is an order-unit, then the latter is always
an asymptotic interpolation group as defined in [11]. In particular, the tensor
product (in the category of partially ordered abelian groups) of finitely many
interpolation groups with order-unit is an asymptotic interpolation group.
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Problem 2.14. Say that a directed partially ordered abelian group G is ratio-
nal when it is torsion-free and satisfies (Vx,y G G + \ {0})(3m,n E N)(mx =
ny). Thus rational partially ordered abelian groups are exactly those di-
rected partially ordered abelian groups whose positive cone is a submonoid
of Q^. Note that the tensor product (®oag) of two rational partially ordered
abelian groups is a rational partially ordered abelian group. One can eas-
ily show that the partially ordered abelian groups constructed by E. Pardo
in [12] are rational (yielding there an example of rational partially ordered
abelian group which is in addition a strictly perforated, torsion-free, simple
Riesz group). This is also mentioned without proof in [13, Example 1].
Now our problem is: find a rational partially ordered abelian group G with
interpolation such that G ® o a g G does not satisfy interpolation. Is there a
general way to decide this kind of statement? Is there a "calculus" of rational
partially ordered abelian groups?

Problem 2.15. Are rational interpolation groups in some sense "building
blocks" (through some kind of "limit"?) of all simple torsion-free interpola-
tion groups?

Further note. Ken Goodearl communicated us a simplification of Example
1.5, bringing Examples 1.3 to 1.5 into a natural sequence.
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