
Chapter XIII
£-Recursively Enumerable Degrees

Degree theory for subsets of is-closed structures differs markedly from the Σ x

admissible case. On the surface the results are similar, but the modes of argument
differ considerably. Post's problem once again has a positive solution, but this time
without injuries and without repeated attempts to satisfy a given requirement. The
presence of Moschovakis witnesses makes all the difference. Injuries do occur in the
proof of Slaman's splitting theorem.

7. Regular Sets

Let $ be transitive and A, B ^ S. The relativization of ^-recursiveness to B was
introduced in Section 5.XI. In essence a new scheme,

{c}B (*!, ...9xu) = Bnxt (c = <7, n, i »

is added to the original six./is partial ^-recursive relative to B if/~ {e}B for some
e < ω. D is ^-recursively enumerable in p relative to B if

D = {x\{e}B(x,p)l}

for some e. $ is £-closed relative to B if

for all e < ω and xeS.
Assume $ is £-closed.r4 is E-reducible to B on & (in symbols A <SB) if there

exist e < ω and p e $ such that

(i) {e}B(x,p)l for all

(ii) Γ< e x p.ByE£ for all xeS, and

(iii) A = x[_xeS & {e}B{x, p) = 0].
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Note that {e}B(y) is not required to converge outside S. (ii) says that the com-
putation trees associated with the convergent computations of (i) belong to S. The
joint effect of (i) and (ii) is weaker than that of ^-closure of £ relative to B. (ii) is
included for the sake of parity (cf. Part B): computations, arguments and values all
have the same complexity as elements of S. (ii) is costly; because of it, <s need not
be transitive.

If S is HF and A, B c ω , then A <s B iff A is Turing reducible to B.
If $ is £-closed and A ^ <f, then A is said to be subgeneric if for all e < ω and

xeS

In short $ is £-closed relative to A, or shorter still, < S, A > is ^-closed.
If $ is £-closed and A ^ £*, then A is said to be E-recursiυely enumerable on $ if

there exist e < ω & p e £ such that

& {e}(x9p)H

If both A and $ — A are ^-recursively enumerable on S, then A is E-recursive on

Lemma 1.1. Assume L(κ) is E-closed. Suppose A, B, C ^ L(κ) are E-recursίvely
enumerable on L(κ). If A <L(K)B and B < L < K ) C, then A < L ( K ) C.

Proof. If C is subgeneric, then A < L ( K ) C by composition.
Assume C is not subgeneric. Suppose L(κ) = £(x) for some set x of ordinals.

If E(x) is Σ t admissible, then Proposition 1.2 (ii) implies A <L(K)C, since < κ

(as defined in 3.2.VII) is transitive. If E(x) is not Σ1 admissible, then E(x)
admits Moschovakis witnesses by Theorem 5.8.X. If L{κ) φ E(x) for any set x of
ordinals, then L(κ) Φ E(x) for any x e L(κ). (Each x e L(κ) is coded by a relation (on
ordinals) eL(κ).) Thus it is safe to assume L{κ) admits Moschovakis witnesses.

Assume C is regular. Then any computation relative to C of height less than K
belongs to L(κ). Since C is not subgeneric, there is a computation relative to C of
height K. Thus for some e < ω and yeL(κ) n2K:

(x)txey -+ T<e x.c>eL(κ)l and

κ = sup{\{e}c(x)\\xey}.

Let d < ω and peL(κ) be such that

A = z{zeL(κ) & {d}(z9p)i}.

Then zφA iff

(1) (Ex)(Ew)[xey & weL(|{e}c(x)|) & w witnesses {d}(z,p)t]

It follows from (1) and the regularity of C that A < L(κ) C. The least x satisfying (1) is
computable from C by effective transfinite recursion on y £ K.
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Assume C is not regular. Suppose

C = {x\{f}(x,q)l & xeL(κ)

for some qeL(κ). Choose yeL(κ) so that yn CφL(κ). Then

sup {I {/}(*, 4)1 \xeynC} = K, and

(2) zφA^(Ex)(Ew)\xe(ynC) & weL(\{f}(x,q)\)

& w witnesses {d}(z, p)T]

(2) implies 4 < L ( K ) C as (1) did. D

1.2 Proposition. Suppose x is a set of ordinals, E(x) is Σx admissible, and
A,B^ E(x).

(0 A is E-recursively enumerable on E(x) iff A is Σf(x).
(iί) A <E(X)B iff A is E(x)-recursive in B (in the sense of admίssibility theory).

Proof Same as that in Section 5.10.X. D

Suppose L(κ) is ̂ -closed and A,B^ L(κ) are ̂ -recursively enumerable on L(κ).
A and B have the same degree (in symbols A =L(K)B) if each is ̂ -reducible to the
other on L(κ). By Lemma 1.1, = L ( K ) is an equivalence relation, and so the degrees
are well defined. The degree of A (in symbols A) is

{C\C = L(K) A & C is £-recursively enumerable on L(κ)}.

Proposition 1.2 solves Post's problem for L(κ) when L(κ) is Σ x admissible and of
the form E(x) for some x a set of ordinals. Otherwise L(κ) admits Moschovakis
witnesses, and they carry the burden of proof in the solution of Post's problem.

A set A ̂  $, $ E-closed, is said to be regular if (A n x)e$ for all xeS. Clearly
subgenericity implies regularity. The converse is far from true (Exercise 1.4). If A is
^-recursively enumerable on SΛ then A is regular iff the "enumeration" of A n x
finishes inside S. More precisely,

{\{e}(y,p)\\yeAnx}e£,

where A = {y\{e}(y,p)[} r\8 for some peS. Consequently the next theorem is
essential for dynamic arguments about $ recursively enumerable degrees.

1.3 Theorem (Sacks 1985). Assume L(κ) is E-closed. Suppose C £ L(κ) is E-
recursively enumerable on L(κ). Then there exists a regular B ̂  L(κ\ E-recursively
enumerable on L(κ), such that B =L(K)C.
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Proof. Suppose L(κ) is not of the form E(x). Then every ^-recursively enumerable-
on-L(κ) subset of L(κ) is regular. Suppose A is ^-recursively enumerable in p on
L(κ) and xeL(κ). Then A n x is first order definable over E({x, p})eL(κ).

Now suppose L(κ) is of the form E(x). It is safe to assume x is a set of ordinals. If
E(x) is Σ x admissible, then apply Proposition 1.2 and Theorem 4.2.VII. Suppose
E(x) is not Σx admissible and C is not regular. Then A <L(K)C for every A E-
recursively enumerable on L{κ\ as in the last part of the proof of Lemma 1.1. In
other words, C is complete. It suffices to find a regular, complete B E-recursively
enumerable on L(κ). Recall that the completeness of C in the proof of 1.1 follows
from the existence of a computation relative to C of height K. B will be defined so
that K <Ep0, x', B9 where

(1) p0 = μρ(Eg)\_g\p^κ & geΣf(κ) & sup range g = * ] .

0O of Exercise 1.5 is a strictly increasing Δ£ (κ) map on p0 and

sup range g0 = K.

It follows that range g0 is ^-recursive on L(κ). Intuitively K is computable from p 0

and range g0. That will in fact be the case after a slight modification of g0 via/
Since L(κ) = E(x) there is, for each δ < /c, an (e, w> e ω x supx such that

(2) \{e}(u,x)\ = δ.

Let/((5) be the "least" member of ω x supx that satisfies (2). Thus/(<5) <Eδ, x, and
δ <Ef{δ\ x. A pairing device allows the range o f / t o be construed as a subset
of x.

Assume g0 has been altered so that it is continuous and go(ί) + p0 < go(i + 1) for
all i < p0. Define

B is ̂ -recursively enumerable on L(κ). Enumerate γ in B as follows. Compute i, the
greatest; such that go(j) < y. Let v = y — go(ί). Compute f~ι{v) from v, x as above.
Iϊf~1(v) = g0(i + 1), then enumerate γ. (1) implies B is regular.

Observe that {go(ϊ)\i < Po} c a n be defined by an effective transfinite recursion
relative to B.

go(λ) = snp{go(ί)\i<λ}.

*+1))} =ΰn(flfo(0, ^ 0(ί +1)).

But then K is ^-recursive in p 0 , x; β via a computation of height /c. Hence B is
complete.

The main trick above is the use of/to provide enough power to pass from go(i) to
# 0 ( ΐ + l ) . This trick is due to Slaman, who greatly simplified the original proof
of 1.3. D
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1.4-1.5 Exercises

1.4. Find an A ^ E(ωr) such that A is regular but not subgeneric.

1.5. Suppose L(κ) = E(x) for some set x of ordinals. Define ρ0 as in (1) of the proof

of Theorem 1.3. Show there exists a continuous Δ£(κ) map g0 such that

0O (0 + supx < 0o (Ϊ + 1) f o r a 1 1 i a n d S U P r a n S e 0o = κ-

2. Projecta and Cofinalities

Some structural properties of L(κ) are needed to establish suitable indexings of
Friedberg-Muchnik requirements in the next two sections.

p, the greater, and η, the lesser, ^-recursively enumerable projectum, are defined
as follows.

pκ = μy y < κ (Ef)[/is a partial E-recursive-on-L(κ ) map of y onto L(κ )].

ηκ — μyy<κ(ΈA)\_Ae2y — L(κ) and A is ^-recursively enumerable on L(κ)].

As any student of Jensen's fine structure theory might expect, the next result says
ηκ = pκ. For simplicity it is assumed that L{κ) is E-closed. Only small changes in
the proof of Lemma 2.1 are needed when L(κ) is rudimentarily closed rather than
£-closed.

2.1. Lemma (Sacks 1985). ηκ = pκ.

Proof. Let / b e a partial £-recursive-on-L(κ;) map of p onto L(κ).
If p < η, then f~1[κ\eL(κ), and consequently KGL(K).
To see η > p, fix γ < p and let A £ y be ^-recursively enumerable in p e L(κ) via

Gόdel number e with the intention of showing A e L(κ). It is safe to assume p is an
ordinal, since each member of L(κ) is ^-recursive in some ordinal less than K. Let g
be a universal partial ^-recursive function. The essential property of g is: for all x,

= {{e}(z0, . . . , z^JK^lzo, . . . ,zn_iH, e, n <ω,zfex}.

Thus E(x) = 0[TC({x})]. Let

(1) # = 0 [ y u {/>}].

fl is said to be the partial E-recursive hull of γ u {/?}. Observe that 2.8.X implies

(la) zGiί->O(z)eff.

O(z) is the least δ such that zeL(δ + l ) -



314 XIII. £-Recursively Enumerable Degrees

(1) implies H ~<0L(κ), that is, an Δ§F sentence with parameters true in H, is also
true in L(κ). The argument proceeds by induction on length of sentences. Suppose
3F(x) is a Δ§F formula with parameters in H such that

(2) L(κ)h(Ex) x e biF(x),

where beH. The problem is to find some xebnH. that satisfies ^(x). Each z put
in H by g is accompanied by a wellordering of z. z is the value of some
{e}(z0,. . . , z n_ x), where every zt is an ordinal. Hence the convergent computation
of [e] (z 0 , . . . , zn_^) virtually includes a computation of a wellordering of z, as in
Proposition 5.2.X. Let w e H be a wellordering of b, and x 0 the w-least element of b
that satisfies 3F (x). Then x 0 is ^-recursive in b, w and the parameters of !F (x), and
so belongs to H.

Since H <0 L(κ\ H is extensional, hence isomorphic to a transitive set Ho via the
collapsing map t (cf. 2.6. VII). It follows from (la) that Ho = L(β) for some β <κ
(cf. 2.5.VII). By (1)

(3) L(β) = g[_yu{t(p)}l

Since p is an L(κ:)-cardinal, it follows from (3) that g, slightly altered, partially maps
a bounded initial segment of p onto L(β). Consequently β < p. Next

A = {x\x<γ & {e}(x9p)l},

hence AeL(β+ l)eL(κ), if ί preserves convergence and divergence facts about
elements of H. This last follows from Ho <0L(κ). Suppose x < γ. Then

iff LtoMίeKx,?)!^-1^). Π

Let y be an ordinal. A slight revision of the proof of Lemma Iλ shows: if H is the
partial ^-recursive hull of a subset of γ, then the transitive collapse of H is
isomorphic to some L(β). The latter is an effective variation on the Jensen-Karp
condensation lemma: if H < x L(κ), then the transitive collapse of H is isomorphic
to some L(β). It is possible to develop a fine structure theory for L based on E-
recursion. The idea is to replace Σx by ^-recursively enumerable systematically. It
is not clear if any worthwhile applications result.

A relativization of Lemma 2.1 is needed for Slaman's density and splitting
theorems in the next chapter. Lemma 2.2 relativizes 2.1 to B when L(κ) is ^-closed
and B is regular and ^-recursively enumerable on L(κ). The following definitions
assume nothing about K or B.

pB is the least y <κ such that for some peL(κ; B% there exists a partial map

λx\{e}B(x,p)

of y onto L(κ; B) via computations in L(κ; B).
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ηB is the least y <κ such that there exists an Re2y — L(κ; B) such that R is E-
lίecursively enumerable on L(κ; B) relative to B. This last means there are e < ω
and qeL(κ; B) such that

R n y = {x I {e}B(q, x)l via a computation in L(κ; B)}.

The proof of Lemma 2.2 makes strong use of the assumption that L(κ) is un-
closed. By contrast the proof of Lemma 2.1 succeeds when L(κ) is rudimentarily
closed.

2.2 Lemma (Slaman 1985). Assume L(κ) is E-closed. If B ̂ K is regular and E-
recursively enumerable on L(κ\ then ηB = pB.

Proof. Modeled on the proof of 2.1. The only difference is the presence of B, which
causes no great conceptual difference save for the last part of the argument.

As in 2.1 ηB < pB.
Fix y < pB and let A ^ y be ̂ -recursively enumerable in peL(κ; B) relative to B

via computations in L{κ; B). Since B is regular, L(κ; B) = L(κ). ηB > pB is proved by
showing A eL(κ). Let gB be a universal, partial £-recursive-in-£ function such that
for all x:

GBW = {{e}B(z0,. . . 9zH.1)\{e}B(zO9. . . , z B _ 1 ) | , β , n < ω , z ί e x } .

Thus E(x; B) = gB[TC{{x})~]. Suppose B is ̂ -recursively enumerable in q on L(κ).
Let

(1) H = {z\zegB[y u {/?, #}] via a computation in L(κ)}.

Define OB{z) = μα[zeL(α + 1 ; B)-L{oc; B)]. As in the proof of 2.1,

(2)

It is safe to assume p and q are ordinals, since each element of L{κ) is £-recursive in
some ordinal below K. B is a set of ordinals. Hence each z put in H by gB is
accompanied by a wellordering of z, as in Proposition 5.2.X. It follows, as in 2.1,
that

(3) (H;HnB}<0(L(κ;B)}.

According to (3) each ΔQF sentence with parameters in H, and with yeB as an
additional atomic formula, is true in H iff it is true in L(κ). (3) implies H is
extensional, hence isomorphic to a transitive set via a collapsing map t. By (2)

t:H-^+L(β), and

where β <κ and B = t[H n B],



316 XIII. ^-Recursively Enumerable Degrees

Suppose β < K. A is definable over <L(β); B). B is E-recursively enumerable in
t(q) on L(β) thanks to (3) and the E-closedness of L(κ). Consequently A is definable
over L(β) and so belongs to L(κ).

Suppose AφL(κ). By the previous paragraph β = K. (1) implies gB maps some
y0 < pB onto H via computations in H. Hence gB maps y0 onto L(κ) via compu-
tations in L(κ). The existence of gB almost contradicts the definition of nB\ it fails to
do so because it is computed relative to B rather than B. The defect is remedied by
using A to approximate gB. Suppose

A = {υ\Ό<γ & {c}B(v,p)l}

with the understanding that only computations in L(κ) are acceptable. Define
\v\ = \{c}B(v,p)\.

Consider the definition of gB: B is E-recursively enumerable in t(q) on L(κ% gB is
computed relative to B via computations in L(κ). The definition of gB is obtained by
substituting L(\v|) for L(κ) in the definition of gB. If t(p) or t(q)φL(\v\), then gB(u) is
undefined. Set/(u, v) equal to gB(u)./is partial E-recursive in p, t(p\ t(q) relative to
A via computations in L(κ).

It remains only to show/is a partial map of y0 x y onto L(κ). Fix u < y0 and
suppose gB(u) is defined by some computation d in L(κ). d uses Bnσ for some
σ < K. (B is regular because B is.) Since L(κ) is E-closed, Bnσ is enumerated via.
computations of height less than τ for some τ <κ. Thus gB(u) = gB (u) for all
sufficiently large |ι?|. Note that

sup{11;I It eA} = K,

since AφL(κ). D

2.3 Proposition. Let p be an ordinal and A a set of ordinals. Ifλx | K?' X does not attain
a maximum on A, then

' x | x e Λ } <sup{κp

0>
y>z\y,zeA}.

Proof. Suppose not. Then there are c, deA such that

(1) κ?>c>κ?>d>sup{κp

0>
y>z\y,zeA}.

By Lemma 5.5.X, κ**c*d > κ*td. The intended contradiction is: κj!'c'd is a <p, d}-
reflecting ordinal. Suppose some Σ x sentence $F about <p, d} is true below κ?'c'd.
Then J^ is true below /c§'c'd. But then (1) implies & is true below κp/d. D

2.4 Proposition. Assume L(κ) is E-closed, and admits Moschovakis witnesses. If
A £ K is E-recursively enumerable on L(κ) and incomplete, then A is subgeneric.
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Proof. The incompleteness of A implies A is regular as in the first half of the proof of
Theorem 1.3. Hence L(κ; A) = L(κ). If xeL(κ) and {e}A(x)l then TiexAyeL{κ)
by recursion on |{^}^(x)|. Suppose e is 2m 3". Then by recursion Γ<m x.Ay and
T<n,y.Λ} (for all ye{m}A(x)) belong to L(κ). lf\{m}A(x)\ < β and

(1) sup+ {|{n}^(y)| \ye{m}A(x)} <β<κ,

then T^x.Ay is first order definable over L(jS, x\A\ and so belongs to L(κ) by the
regularity of A.

Suppose there is no β that satisfies (1). Then for all d < ω and all zeL(κ\

(2) {d} (z)Ί <-* (Έy)[y e {m}A(x) & some w first order definable over

L{\{n}A{y)\) witnesses {</}(z)ΐ]

The right side of (2) can be verified by a computation from A in L(κ), because A is
regular. But then A is complete, (cf. proof of Lemma 1.1.) D

The next theorem is needed for priority constructions in which requirements are
indexed by ordinals less than pκ. It will imply a block of requirements bounded
below pκ can be satisfied by some stage prior to the end of the construction.

2.5 Theorem (Sacks 1985). Assume L(κ) is E-closed and admits Moschovakis
witnesses. Ifpeκ and y < pκ, then

sup {κ*-δ I δ <y} < K.

Proof. Since p is either K or an L(/c)-cardinal, it can be assumed that y is closed
under pairing in the sense that

(1) x, y <y-»(Ew)[w < γ & x, y<Ew].

To verify (1) let z be the standard 1-1 onto map from pairs of ordinals to ordinals, z
is defined by recursion; at stage σ, z(σ, y) is defined for all y < σ. Both z and z~ * are
partial ^-recursive. The w of (1) is z(x, y).

(1) permits

(2) {<e,δ)\{e}(p,δ)l & e<ω & δ<y}

to be treated as a subset of y. It follows from Lemma 2.1 that (2)eL(/c). Conse-
quently

(3)

It follows from Theorem 5.8.X that κ?'δ <κ for all δ <κ. Suppose λw\ κp

r>
w does
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not attain a maximum on {δ\δ < y}. Then Proposition 2.3 yields

(4) sup {*?• * I δ < y} < sup {icfr *•y | x, y < y}.

The theorem follows from (1), (3) and (4). D

2.6 RE Cofinality. As in α-recursion theory, cofinality considerations figure
prominently in ^-recursively enumerable degree constructions. Lemma 2.7 is
needed for the adaptation of Shore's blocking method (3.2. VIII) to ^-recursion. For
B a set of ordinals, let

\B\ = ordertyρe of B.

Assume L(κ) is £-closed. Define r.e. cf(/l), the E-recursiυely enumerable-on-L(κ)
cofinality of λ, to be

(1) μy(EB)lsupB = λ & \B\ = y &

B is ^-recursively enumerable on L(/c)]

The last clause of (1) means that B is enumerated via a parameter and compu-
tations in L(κ). Note that r.e. cf(/c) is the same as σlcf(κ ).

Suppose B satisfies (1). B can be transformed into a B* that is enumerated in
increasing fashion. By "increasing" is meant:

B* = {x\{e*}(p*,x)l};

\x\ = \{e*}(p*9x)\ if {e*}(p*9x)l;

x9yeB* & x < y^»\x\ < \y\.

Define:
xeB$<r+xGB & (y)[yeB & \y\ < \x\ -+y < x ] ;

xeB*~xeB% & (y)ίyeBξ & \y\ = \x\^y > x ] .

If no unbounded in λ subset of B belongs to L(κ), then the computations necessary
for the enumeration of B are unbounded in height below K, and so the above
definition of B* succeeds. Otherwise, B can be trivially altered to the desired B*.

2.7 Lemma. Assume L(κ) is E-closed and admits Moschovakίs witnesses. Then

r.e. cf(pκ) = r.e. cf(τc).

Proof. To show r.e. cf(pκ) > r.e. cf(/c), let B satisfy the matrix of 2.6(1) with pκ in
place of λ. Suppose pεL(κ) and {e}(x, p) is a partial map of ρκ onto L(κ).
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Define:
xr = sup {κ?>y\y < x} (x < pκ);

Br = {xr\xeB}.

By Theorem 2.5, Br ^ K. Let f(y) be the value of {e} (y, p) when the latter converges.
In that event

(1) κf/y)<κp/y

follows from Lemma 5.3.X. p can be effectively encoded by a set of ordinals, so it is
safe to assume p is such a set. According to 5.3JΓ, divergence witnesses for
computations from p, y can defined over L(κjϊ'y). If (1) is false, these witnesses can
be found below κ{iy\ and so can be computed from p, y. But then the standard
complete ^-recursively enumerable in p, y subset of K would be ^-recursive in p, y.

It follows from (1) that sup2?r = K and that the ordertype of Br is at most that
oiB.

Lemma 5.5.X implies that κ?'y is the least y such that every computation from
p, y is seen to converge or to have a divergence witness by level y of L(κ). It follows
that Br is ^-recursive on L(κ).

To show r.e. cf (pκ) < r.e. cf (K), let B be an unbounded subset of K, ^-recursively
enumerable on L(κ) and of ordertype r.e. cf (K). AS shown in subsection 2.6, B can be
assumed to be enumerated in increasing fashion. Replace B by

B' = {δ\(Ex)(xeB & \x\ = δ)}.

(\δ\ is the length of the computation that puts x in B.) B' and B have the same
ordertype, and Bf is ^-recursive on L(κ).

Let/be a partial map, ^-recursive on L(κ), from pκ onto K. Let

t: r.e. cf (K) -> K

enumerate B' in increasing fashion. Assume ί(0) = 0. For xGdom/, let |x | be the
length of the computation that puts x in dom/ Define:

(dom/)y = {x |xedom/ & t(γ) < |x | < φ ) + 1};

Since (domf)φL(κ), s(y) is defined on unboundedly many y's below pκ. Let C be
the range of s. The ordertype of C is at most that of B'. Note that s" 1 is ^-recursive
on L(κ\ because t is. Consequently C is £-recursively enumerable on L(κ).

The idea behind the above argument is to map B into ρκ by a computable
function whose inverse is computable. In general the inverse of a one-one partial
^-recursive function is not ^-recursive, so some care had to be exercised
above. D
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Theorem 2.5 and Lemma 2.7 are the only structural facts needed for the solution
of Post's problem in the next section. Some further facts are needed for Slaman's
splitting and density theorems. For Post's problem ordinals less than ρκ, the greater
^-recursively enumerable projectum (of κ\ suffice to index requirements. For
splitting, pκ tends to be too large and has to be replaced by tσ\p{κ\ the tame Σ x

projectum of K. The notion of tame Σ 2 projectum figured prominently in α-
recursion theory (cf. Section 2.VIII).

2.8. The Tame Σ1 Projectum. Assume K is a limit ordinal. tσ\p{κ\ the tame Σx

projectum of /c, is

μ y y < κ ( E f ) [ / : y - ^ U / c & feΣ, & /is tame].

To say/is tame means:

(z) =

In short, for a proper initial segment x of/ there is a bound below K fort the range of
f[x and the associated existential witnesses.

If L(κ) is jB-closed and admits Moschovakis witnesses, then according to
Exercise 2.16

tσlp(κ)<pκ.

Let C be an £-recursively-enumerable-on-L(κ;), non-£-recursive, regular subset
of K. C ambiguously denotes the characteristic function of C. Define:

(1) {v}{y,p)^{e}(y,p,q) if υ = (e,q};

(2) 'cP(v) = sup{z\(y)y<t(C(y) = {v}(y

(3) δc = μyy<κ(Vp)p<Λκ = sup{•£

ίc

p{v) measures the length of agreement between λy\C(y) and λy\{υ}(y,p). It is
commonplace in splitting and density arguments for recursively enumerable sets
(cf. Section l.IX). δc is called the C-recovery parameter. It plays a central role in the
proof of Slaman's splitting theorem. The larger δc is, the better, since difficulties
occur as /£(x) approaches K. More precisely, δc should be larger than the length of
any proper initial segment of preservation-type requirements.

The remainder of this section is devoted to showing δc > tσ\p(κ).
Suppose A c K. A ίs said to be tame Σ[ ( ι c ) if A is Σx definable (boldface) over L(κ),

and if for each γ < sup A, the existential witnesses need to establish A n γ all lie
below some δ <κ.

2.9 Proposition. If A is tame Σf(ίC) and sup A < tσ\p{κ\ then AeL(κ).

Proof. The idea is to form a tame Σx hull H over which AisΣ1 definable. To say H
is tame means H is the range of a tame Σx function applied to an ordinal. The



2. Projecta and Cofinalities 321

collapse of H is isomorphic to some L(β). If β < K, then A e L(β + 1) e L(κ). If β = κ9

then there exists a tame Σx map from sup A onto L(κ).
Form // as follows. Put each δ < sup A into /f. For each δ e A, put the L-least

existential witness that establishes δ e A into H. Let Ho be if so far. If Ho is
bounded below κ;, then AeL(τc).

Suppose Ho is unbounded. Some "bounded" existential witnesses must now be
added to Ho. Suppose

bθ9 bί9 . . . ,bn.1<b <κ,

^e(x,y0,. . . ,)>„_!) is Δ o , and

(1) L

Let g(e9 b0, . . . , feπ_1? b) be the L-least xeb that satisfies #e(x, bθ9 . . . , &„_!). If
(1) is false, give g the value 0. g is Σx, and tame in the sense that any bound on the
arguments of g gives rise to a bound on the values of g. Now close H0 under g. Let

A slight alteration of g, denoted by g below, produces a tame Σf(ιc) map from
(sup A)κ ω onto H. The remainder of the proof requires a tame Σ^(κ) function/from
sup A, or from some ordinal less than tpσl(κ), onto H. Obtaining such an / from g
is troublesome because tpσl(κ) can be less than K without being an L(κ;)-cardinal.
Let μ be the L(/c)-cardinality of sup A. Then

sup A = μ η + β

for some β < μ. The proof of the proposition proceeds by induction on sup A. If
β > 0, then

A = (Anμ-η)v(An[μ'η, μ-η + β))

and so AeL(k) by induction. Thus β = 0. On similar grounds η is a limit or 1.
Since μ is a cardinal, there is a one-one map r of μ onto μ < ω. For each 5 < η, let ίa

be a one-one map of μ onto μ-δ. tδ induces a one-one map vδ of μ < ω onto
(μ 5) < ω . Define

f(x) = g°vδJ,1orots^ί(x) when x e [ μ <5, μ (<5 +1)).

/ is a tame Σ[ ( κ ) map from sup A onto H.
Since if is closed under g, H is extensional, hence isomorphic to a transitive set S

via the collapsing map. The unboundedness of H, and its closedness under g, imply

Consequently S = L(β) for some β<κ.lΐ β <κ, then i4eL(j!+ 1) s L(κ).
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Suppose β = K. Then / the collapse of/, is a tame Σf(κ) map from sup A onto
L(κ), an impossibility since sup A < tσlp(κ). Π

The next result is the principal structural fact needed in Slaman's splitting and
density theorems.

2.10 Lemma (Slaman 1985). Assume L(κ) is E-closed and admits Moschovakis
witnesses. Let C ^ K be regular, not E-recursive on L(κ\ and E-recursively enumer-
able on L(κ). Then

δc > tσ\p(κ).

Proof. Suppose δc < tσlp(κ) with the hope of showing C is ^-recursive on L(κ).
Recall the definition of δc, the recovery parameter, from subsection 2.8. Let p be

an ordinal that serves in 2.8(3) to define δc. Thus

(1) /c = sup{/£(x)|x<<5 c}.

Define "γ establishes (Ey)[C(y) Φ {x}(y, p)]" to mean: the computations and
Moschovakis witnesses in L(y + 1) show there is a y such that

W(^P)ΐ or

l{x}(y9p)l & C(y)Φ{x}(y9p)l

For each x < δc, define

(2) f(x) = μy [y establishes (Ey)(C(y) Φ {x} (y, p))].

/will help compute C. A reflection argument will supply bounds on/(x). Fix v < δC9

and let
w = sup+{/£(*) I x<ι;}.

For each x < v,f(x) establishes an inequality in at least one of three ways.
Case 1: {x} (y, p ) | for some y < w. Let y0 be the least such y. y0 is the least element
of a set co-£-recursively enumerable in x,pyw. Exercise 5.17.X, a corollary of
Kechris's basis theorem (5.1.X), implies

Hence/(x) < K?>P>™ by Lemmas 5.3.X and 5.6.X.
Case 2: case 1 does not hold, and there is a y < w such that C(y) = 0 φ {x}(y, p).
(Recall that "C()0 = 0" means yφC.) Let q be an ordinal parameter needed to £-
recursively enumerate C on L(κ). Let

S2 = {y\y<w & {x}(y,p)=l}
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Then S2 < £ x , p, w, and, as in case l,/(x) < K*' P> q'w. In this case/(x) establishes a
Moschovakis witness for some y not in C.
Case 3: case 1 does not hold, and there is a y < w such that C{y) = 1 φ {x}{y, p).
Let

w & {χ}(y,p) = 0}.

Since C is regular, there is an ordinal θ < K such that the computations in L(θ)
suffice to enumerate C n w. Hence /(x) < κ$ Pt w + θ.

The bounds provided in the above cases imply {/(x) | x < v} is bounded below K
by Theorem 2.5.

Consequently/is a total, tame Σ[ ( ι c ) function from δc into K:. Note that the range
σf/is unbounded by (1). Since/is tame, it is safe to assume/is strictly increasing.

Define E to be

{(x,z}\x,z<δc & (Ey), < / ( x ) [C(y)#{x}(y,p)]} .

E is tame Σf(κ) because/is, or more precisely, because of the above proof that/is
tame Σ[(IC). By Proposition 2.9, EeL(κ).

With the aid of E, C is ^-recursive on L(κ) as follows. Fix y <κ. There is a
ujiique zy such that

The definition of/in (2) via the least ordinal operator implies

{<χ,f(χ)>\f(χ)<y}<Ey,p

uniformly in y. Thus zy+1 can be computed from y, and

for some x. Such an x can be extracted from E. D

2.11 Tame Σ2 Cofinality. Tame Σ 2 functions are needed for the adaptation of
Shore's blocking method to the proof of Slaman's splitting and density theorems.
They arise in the course of approximating regular, £-recursively-enumerable-
on-L(κ) sets, when L(κ) is £-closed. Suppose C is such a set. Let

g(x) = Cc\x and go(σ, x) = C< σ n x

for all x, σ < K. (C < σ is that part of C enumerated via computations of height less
than σ.) g0 is ^-recursive on L(κ), and the regularity of C implies

(1) o ) 0()

In fact

(2) ( 4 , < K (Eτ)(x)x < a(σ)σ > τ lgo(σ, x) = g{x)\
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Let ft: dom ft -> K, where dom ft < K. ft is said to be E2 if there exists an E-

recursive-on-L(κ ) function ft0 such that

(x)Xedomh(Eτ)(σ)σ>τlh0(σ,x) = ft(x)].

Thus g is £ 2 by (1). ft is said to be tame E2iϊ there exists an £-recursive-on-L(κ;)

function ft0 such that

(*)« < dom ft (£τ)(x) x < β (σ)σ > τ [ f t 0 (σ, x) = ft(x)].

Thus g is tame E2 by (2).

Suppose Λ, < K. The tame £ 2 cofinality of A (in symbols, te2cf(λ)) is

μyy < A(Ef) [/: γ -• 2 & sup range/= J. & /is tame £ 2 ] .

According to Exercise 2.15,

te2cf(tσlp(κ)) = te2cf{κ).

This last fact will be quoted in the proof of Slaman's splitting theorem (4.1), where
requirements are indexed by ordinals less than tσlp(κ) and the number of blocks of
requirements is ίe2cf(κ;).

2.12-2.16 Exercises

2.12. Define rec cf (λ), the £-recursive-on-L(/c) cofinality of A, to be

μy(EB)[sup B = λ & ordertype of B = γ

& B is ^-recursive on L(κ)~\.

Assume L(κ) is ^-closed and show r.e. cf (K) = rec cf (k).

2.13. Assume L(κ) is £-closed. Show that there exists a function g from r.e. cf (pκ)
into pκ such that:

(i) graph of g is ^-recursively enumerable on L(κ);

(ii) sup range g = pκ;

(iii) g is strictly increasing;

(iv) τ 1 < τ 2 < r . e . c f ( p I C ) - > | < τ 1 , g(τί)}\ <\<τ2,g(τ2)}\.

(I <x, g(x)}\ is the length of the computation that enumerates <x, g(x)} in the
graph of g)

2.14. Assume L(κ) is £-closed and admits Moschovakis witnesses. Show δc ^ ρκ.

2.15. Assume L(κ) is £-closed. Show te2cΐ(tσlp(κ)) = te2cΐ(κ).
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2.16. Assume L(κ) is E-closed and admits Moschovakis witnesses. Show
tσlp(κ) < pκ.

3. van de Wiele's Theorem

van de Wiele [1982] found an important link between Σ x admissibility and E-
recursiveness. His theorem explains why some Σ1 functions are ̂ -recursive and
others are not. Intuitively, if f is Σ x and the search for existential witnesses needed
to evaluate /does not extend too far, then/is ^-recursive.

More precisely, let/ be a total function from Finto K./is said to be uniformly Σ x

definable on every Σα admissible set if there exists a lightface ΣfF formula <^(x, y)
such that for every Σ x admissible set A:

/M £ A;

"lightface" means that all parameters in ̂ ( x , y) are finite ordinals.
van de Wiele's proof is an application of proof-theoretic methods originated by

Girard. Subsequently S. Simpson found a proof based on the compactness theorem
for first order logic. The argument below is in the spirit of ^-recursion and is
extracted from Slaman [1981]. The latter approach appears to give more informa-
tion than any of the others.

Theorem 3.1 (van de Wiele 1982). Let f be a total function from V into V. Then (i)
and (ii) are equivalent,

(i) f is E-recursive.
(iί) fis uniformly Σx definable on every Σ x admissible set A.

Proof (i) implies (ii), since the relation, c is a computation of [e] (b)9 is Δ§F, and so
Δ o bounding implies A is closed under forming computations.

Assume (ii) holds. Fix x. The argument takes place within

(1) L(κ;

If/(x)e(l), then/(x)eL(/cS, TC{x)) by reflection, and s o / ( x ) < £ x by Gandy
selection./(x) will be located in (1) by means of a hull Z ̂  (1) that collapses to a Σ x

admissible set.
A curious technical step precedes the definition of Z. Choose pe(l) so that

(2) κϊ> = mxn{κ?'\qe(l)}.

For the moment assume TC(x) is countable. Z will be of the form {zf | i < ω}. The
zf's are chosen one at a time from

(3) L(κ?',TC({x,p}))
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so that for all ί < ω:

(4) zo = <x,p>;

(5) κ*ro> '-*' = κio;

(6) Z is £-closed; and

(7) (Ew)[we(3) & {e}{zt9w)n

In order to see that (6) and (7) can be honored without violating (5), fix i and assume
z 0, . . . ,zf have been chosen in accord with (5). If {e}(z0, . . . ,zf) = w, then
<z0, . . . , Zi,wy = E(z0, . . . ,zr >, and so

Z

—κr

If the antecedent of (7) holds, then Kechris's basis theorem (5.1.X) supplies a w such
that

θ , . . . , Zi,W ^ -.ZQ , . . . , Zi

S Kr

It follows from (2) and (4) that κz

r°
 Zi'w = Kz

r°.

By (7), Z is extensional, hence isomorphic to a transitive set Z via a collapsing
map ί. For each z e Z let z be ί(z) e Z. To see that Z is Σ1 admissible, let 9(u, v, y) be
a ΔQ F formula such that

(8) ZN(W) t t

for some ά,ceZ. To obtain a bound on t; in (8) it has to be shown that:

(9) (3)N (W) t t e a(Ev)^(M,ι;,4

The derivation of (9) from (8) is based on the following technical fact.

(10) [lie (3) & {3)t{Ev)9(u,Ό9c)-]^(Ev)(Eγ)lγ£Ex9p9c9u

& veL(y,TC({x,p,c9u})) & (3) N ^(w, υ9 c)].

Assume the antecedent of (10) holds with v0 as the existential witness. Then

υoeL(γ9TC({x9p})) for some y < < ' p ' c ' M

by (2), and so the consequent of (10) follows by reflection.
Suppose (9) is false. Then U, the set of all u such that

us a & (3) N (v) - ^(u, υ, c),
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is nonempty. It follows from (10) that U is co-£-recursively enumerable in x, p, c, a.
Then (7) implies some ueU belongs to Z. Hence

contrary to (8). Thus (9) follows from (8).
Let (lOr) be the result of replacing "we(3)" by "ueα", and "x, p, c, w" by

"x, p, c, α, «", in (10). The proof of (lOr) is the same as that of (10). Gandy selection
makes it possible to construe the γ of (lOr) as an ̂ -recursive function of u on a. Let

δ = sup {γ(u)\ue a}.

Then δ <Ex, p, c, a, <mάδeZ by (6). Thus (9) implies

where fe is L(<5, ΓC({x, p, c, a})). But then fe bounds f in (8) and the proof of the Σ1

admissibility of Z is complete.
Let ^ ( M , V) be the ΣfF formula that defines/in every Σ t admissible set according

to (ii). Then

(11)

In (11) Z can be replaced first by Z and then by (1). Finally by reflection

(13) L(β,TC(x))ϊ(Ev)<F(x,v)

for some β < £ x , and the unique v (=/(x)) of (13) can be computed from β.
Thus/(x) is computed by using Gandy selection to extract it from L(/c$, TC(x)).

The presence of/(x) in L(KQ, TC(X)) was established above by assuming TC(x) was
countable. That assumption is eliminable by the Levy-Shoenfield absoluteness
theorem. Let [e] be the procedure established above for computing /(x) from x
when TC(x) is countable. Suppose there is an x 0 such that

(14) / ( x o ) * {*}(*<>)•

By virtue of ^ , computations and Moschovakis witnesses, (14) is a Σx statement
about x 0 t ruein V. Let H be a countable Σ x substructure of V with XQ as an
element. Let H be the transitive collapse of H and x^ the image of x 0 in H. Then

is a Σ1 statement true in ϊϊ. But TC(x^) is countable. D



328 XIII. E-Recursively Enumerable Degrees

3.2 Exercise. What is the role of the curious parameter p in the proof df
Theorem 3.1?

4. Post's Problem for E-Recursion

The theorem to be proved is: assume L(κ) E-closed; then there exist two subsets of
L(κ), each ^-recursively enumerable on L(κ), such that neither is ^-reducible to the
other. In short, there exist incomparable ^-recursively enumerable degrees. A weird
feature of the argument is the absence of injuries. Priorities are assigned to
requirements, but only to insure that requirements are met before time runs
out. Conflicts between requirements are avoided with the help of Moschovakis
witnesses. Injuries occur in the next section in the proof of Slaman's splitting
theorem.

The conceptual differences between the solutions to Post's problem for E-
recursion and α-recursion arise from the differences between the notion of re-
cursively enumerable (r.e.) set as domain of partial recursive function and as Σx

definable set. Classical approaches to Post's problem rely on a dynamic view of r.$.
sets: an r.e. set is enumerated by stages. An α-recursively enumerable set A is
defined by a Σ x formula # \ A is enumerated by limiting the existential quantifier
in <F. For each σ < α, A< σ is the subset of L(σ) definable by # ' . Then
A = u {A < σ\σ < α}, and λσ\A < σ is α-recursive. Suppose B, the domain of a partial
^-recursive function, is to be defined dynamically by sifting through all com-
putations in L(κ). At stage σ, elements are to be added to B based on computations
of height at most σ. If x is added, then the computation that puts x in B must be $-
recursive in x, p, where p is a fixed parameter independent of x, e.g. the parameter
needed to enumerate B. It follows that x cannot wait around forever. Either x is put
in B prior to stage κ% p or it never gets into B. In contrast, in α-recursion it is never
to late to add x. Normally KJf p < /c, so it will eventually be too late to add x. To
make matters worse (or more interesting) there is no effective way of recogniziηg
KQ-P. Thus x's time may have expired without any awareness of the expiratidn
affecting the enumeration of B.

It may now seem immensely difficult to satisfy positive requirements in trie
setting of ^-recursion. It turns out to be simpler than first supposed, because the
presence of Moschovakis witnesses makes it easier than usual to satisfy negative
requirements.

Suppose L(κ) admits Moschovakis witnesses. A Friedberg-Muchnik incompati-
bility requirement is handled by waiting for a computation to converge. If it
converges, then measures are taken to create and preserve an inequality. If it
diverges, then by some stage the divergence is evident. At that stage a Moschovakis
witness is chosen, and its role as a divergence witness is preserved forever.

If L(κ) = E(ωι\ then the requirements are indexed by countable ordinals, arid
each can be satisfied in its turn. For an arbitrary Σ x inadmissible L(κ) the
requirements are indexed by ordinals less than p \ By Theorem 2.5

(1) if x < pκ and peK, then sup{κP'y\y < x} < K.
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It will follow from (1) that any set of requirements indexed by ordinals less than
x < p can be satisfied by stage σ for some σ <κ.

4.1 Theorem (Sacks 1985). Suppose L(κ) is E-closed. Then there exist two subsets of
L(κ\ each E-recursively enumerable on L(κ), such that neither is E-reducible to each
other on L(κ) (Posfs problem).

Proof. First suppose L(κ) is Σ t admissible and of the form E(x). According to
Proposition 1.2 the solution to Post's problem for L(κ) provided by α-recursion
theory, Theorem 2.6.VIII, is also a solution in the sense of £-recursion theory. So
assume L(κ) is either Σ x inadmissible or the limit of £-closed structures. In either
case L(κ) admits Moschovakis witnesses.

For yeL(κ\ let

{y}Λ(x) be {(y)0}
A(x,(y)i)

with the proviso that {(y)0} is null when (y)0 > ω. Let/be a partial £-recursive-on-
L(κ) map of ρκ onto L(κ). The requirements are:

req.2x: A Φ {/(*)}*, and

req.2x+l: B Φ {f(x)}A. l P j

Each requirement belongs to a block labeled by an ordinal less than

70, the £-recursively enumerable-on-L(κ:) cofinality of ρκ.

By Exercise 2.13 there exists a map g of y0 into pκ such that:

(la) the graph of g is ^-recursively enumerable on L(κ)\

(lb) sup (range g) = pκ;
(lc) g is strictly increasing;
(Id) τ 1 < τ 2 < 7 0 ^ | < τ 1 , ^ ( τ 1 ) > | < | < τ 2 , ^ ( τ 2 ) > | ,

where | <x, #(x)>| is the length of the computation that enumerates <x, g(x)} in the
graph of g.

In addition #(0) = 0. Define

(req. 2x) e block 2τ, and (req. 2x +1) e block 2τ + 1,

The construction of A and B has the form of an effective transfinite recursion on K.
At stage σ < K decisions are made by examining all computations in L(σ+1). For
convenience it is assumed that the length of a computation c, denoted as usual by
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\c\, has been redefined so that \c\ exceeds all ordinals mentioned in c. Let

A<σ = {x|x put in A prior to stage σ},

and Aσ =A<σ+1-A<σ.

Each requirement is acted on at most once!
Req. 2x is acted on at stage σ if (2a)-(2d) hold. Assume (req. 2x) e block 2τ.

(2a) Req. 2x has not been acted on prior to stage σ.
(2b) I <<5, g(δ)> I < σ for all δ < τ, and |/(x)| < σ.
(2c) Every requirement in block y, for all y < 2τ, has been acted on prior to

stage σ.
(2d) Let σ(2τ) be the first stage after all the activity of (2b) and (2c) has been

completed. Then either (2da) or (2db) holds:
(2da) {/(x)}β<ff(2τ)(<σ(2τ),/(x)»| via a computation in L(σ+1). (<σ(2τ),/(x)> is

an ordinal that encodes the ordered pair (σ(2τ),/(x)) and exceeds both of its
components.)

(2db) A Moschovakis witness to

belongs to L(σ+1) via a computation in L(σ+1). (Recall that the relation, x
witnesses {e}(y)T> is E-recursively enumerable.)

Suppose req. 2x is acted on at stage σ. If (2da) holds and

then <σ(2τ),/(x)> is put in A at stage σ. Thus

A°((σ(2τ)J(x)))=l.

Req. 2x + 1 is handled by swapping A and B9 odd and even, above.
End of construction.

4.2 Proposition. Suppose every requirement in block z is acted on. Then all such acts
occur prior to stage σ for some σ <κ.

Proof. Suppose z = 2τ and (req. 2x)e block 2τ. All activity with respect to block y,
for all y < 2τ, occurs prior to stage σ(2τ). Let pen encode B<σ(2τ\ σ(2τ), q, where q
is the parameter needed to compute/ Then req. 2x is acted on by stage κ^x\ by
that stage either convergence (2da) is evident or a Moschovakis witness (2db) has
appeared. Theorem 2.5 yields

sup { K? v 12v e block 2τ} < K,

since sup (block 2τ) < pκ. D
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4.3 Proposition. Assume z < r.e. cf(pκ). Suppose every requirement in block yjor all
y < z, is acted on. Then all such acts occur prior to stage σ for some σ <κ.

Proof. If u < v, then no requirement in block v is acted on until every requirement
in block u has been acted on. Hence if z is a successor, then the desired σ exists by
Proposition 4.2.

Assume z is a limit. Recall σ(y) from the definition of "acted on". By Prop-
osition 4.2

σ(y) < K for all y < z.

Let S be {σ(y)\y < z}. S is ^-recursively enumerable on L(/c), because the compu-
tations and Moschovakis witnesses that put σ(y) in S all lie inside L(σ(y)+1). The
ordertype of S is at most z, since λy\σ(y) is non-decreasing. It follows from
Lemma 2.7 that z < r.e. cf(/c). Hence sup(S) <κ. D

4.4 End of Proof of 4.1. An induction on block numbers shows every requirement
is acted on. Suppose (req. 2x) e block 2τ. Assume every requirement in block y, for
all y <2τ has been acted on. By Proposition 4.3, σ(2τ) < K. (σ(2τ) was defined in
clause (2d) of the definition of "acted on".) As in the proof of Proposition 3.2,
req. 2x is acted on by stage K? X, where p encodes B < σ ( 2 τ ), σ(2τ), q. End of induction.

Suppose req. 2x is acted on at stage σ, and

(1) {/(x)}«<ff(2l)«σ(

converges. Then clause (2da) holds at stage σ,

(1) Φ ^ « σ ( 2 τ ) , / ( x ) » = ̂ «σ(2τ),/(x)», and

(2) B<σi2τ) = B<σ =

Consequently A φ {/(x)}β.
Suppose (1) diverges. Then clause (2db) holds at stage σ, and some Moschovakis

witness w to the divergence of (1) belongs to L(σ+1). It follows from (2) that w also
witnesses the divergence of

Thus again Λ = {/(*)}*.
The most curious feature of the above version of Post's problem is the preser-

vation of divergence witnesses in addition to the usual preservation of inequalities.
A final word on the ^-recursive enumerability on L(κ) of A and B. Suppose z is

put in A at stage σ. Then z is of the form <σ(2τ),/(x)> and (1) converges, σ
is computable from B<σ

9z and some parameters r independent of z and σ. B<σ is
computable from L(σ(2τ)), r. Thus σ<Ez,r (uniformly in z), and so A is E-
recursively enumerable on L(κ). D
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4.5 Other Results. The proof of Theorem 4.1 shows:

(1) Assume (L(κ;A),A} is £-closed. If ηκ;Λ = pκ;A

9 and κ?;A<κ for all
XGL(K; A\ then <L(κ; A\ A} admits a positive solution to Post's problem.

It is unlikely that ηκ>A = pκ>A in general. The selection theorem of Griffor and
Normann, 5.3.XII, implies:

(2) If L(κ; A) 1= [there is a greatest cardinal and it is regular], then ηKf A = pκ; A.

The assumption in (1) on κr is related to inadmissibility, as in Lemma 5.6.X. To
be precise:

If (L(κ;A),A} is £-closed, but not Σ1 admissible, then κ^;A<κ for all
xeL(κ; A).

The proof of Theorem 4.1 is applicable to some other transitive £-closed
structures S. Let K be the least ordinal not in S. & is said to be effectively
wellorderable if there exists a partial ^-recursive on $ m a p / from K onto $ such
that the only parameter needed to compute / is an ordinal.

(3) Assume $ is £-closed and effectively wellorderable. If η = p for S, and $
admists Moschovakis witnesses, then $ admits a positive solution to Post's
problem.

A consequence of (3) is:

(4) Suppose x is a set of ordinals and L(/c, x) is not Σ x admissible. If η = p for
L(/c,x), then L(κ, x) admits a positive solution to Post's problem.

Normann's ground-breaking result [1975] on Post's problem for recursion in 3E
can be phrased as follows:

(5) If E(2ω) N [2 ω is wellorderable and of regular cardinality], then E(2ω) admits a
positive solution to Post's problem.

The quest for Theorem 4.1 was initiated by a desire to circumvent the
assumption of regularity in (5). Normann needed it primarily to show η = p for
£(2ω); his argument made use of a selection result, Theorem 1.3.XII. Slaman [1983]
has shown:

There exists a model M of ZFC in which E(2ω) N [2 ω is wellorderable and of
singular cardinality] and η = p for E(2ω).

It follows from (4) that Slaman's M admits a positive solution to Post's problem
for £(2ω).

According to 2.4 the A and B supplied by the proof of Theorem 4.1
are subgeneric. The proof yields a stronger property than subgenericity when
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r.e. cϊ(pκ) = pκ. The simplest example is:

(6) E(ω1) admits a positive solution (A, B) to Post's problem such that
for all δ < ωl9

A set A with property (7) is said to preserve the κo-spectrum of E(ω1). It is not
known if the 7co-spectrum can be preserved when p fails to be r.e. regular.

At this writing nothing is known about situations where Post's problem has a
negative solution, or where η φ p.

(8) Does there exist a set x of ordinals such that L(κ, x) is £-closed, is not Σ x

admissible, and does not admit a positive solution to Post's problem for
^-recursion theory?

(9) Does there exist a set x of ordinals such that L(κ, x) is £-closed, is not Σx

admissible, and η φ p for L(κ, x)Ί

A negative answer for (8) implies one for (9) by (4). It might be simpler, however,
to deal with (9) directly. Both questions are good candidates for forcing arguments,
but none of the techniques of Chapter XI appear to be of any use. Perhaps the most
pertinent open question about Post's problem is:

(10) Does there exist a model of ZFC in which

E{2ω) N [2ω is wellorderable]

and E(2ω) does not admit a positive solution to Post's problem?

Exercises 4.6-4.8

4.6. Verify 4.5(1).

4.7. Show that the A and B defined in the proof of Theorem 4.1 are subgeneric.

4.8. Verify 4.5(6)-(7).

5. Slaman's Splitting and Density Theorems

Unlike the solution to Post's problem given in Section 4, the proof of Slaman's
splitting theorem is a fullblown "finite" injury argument. A typical requirement is
injured repeatedly, and the set of stages at which it is injured is a member of L(κ).
Splitting in ^-recursion bears a superficial resemblance to splitting in α-recursion.
Both utilize Shore blocking and preservation of initial segments of equalities, but in
vastly different ways. In α-recursion the blocks were defined by a Σ 2 cofinality
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function, tame by reason oϊΣί admissibility. Since L(κ) may not be Σ x admissible,
the blocks in ^-recursion are defined by a Σ 2 cofinality function chosen to be tame.

The presence of Moschovakis witnesses drives away some of the uncertainties
that led to injuries in α-recursion. As in the solution to Post's problem for E-
recursion, some preservations are needed to develop Moschovakis witnesses.
Otherwise there might be relevant, convergent computations beyond L(κ).

Assume C is ^-recursively enumerable, but not ^-recursive, on L(κ). C is to be
split into A and B. The requirements are indexed by ordinals less than tσlp(κ), the
tame Σ x projectum of K. Let/be a tame Σ x function from tσlp(κ) onto K. For each
x < tσlp(κ),

req. 2x concerns preservation of {f{x)}A<\ and

req. 2x + l concerns preservation of {f(x)}B<°.

Let λ0 be the tame E2 cofinality of tσ\p(κ), and g a tame E2 function with domain
λ0 and range an unbounded subset of tσlp(κ). In other words, there exists an
recursive-on-L(κ ) function go(σ, r) such that

(a)a < λo(Eτ)(r)r < a(σ)σ > τ[go(σ, r) = g(r)l

Define
(req. 2x)e block 2r and

(req. 2x +1) e block 2r + 1 , if g(r) < x < g(r +1).

As usual let C<σ be the subset of C enumerated via computations of height less
than σ. For convenience accept a computation of height σ only if all ordinals it
mentions are less than σ. Cσ is C < σ+1 — C < σ. Assume Cσ has at most one element;
if it exists, denote it by v. At stage σ, v is put in A9 or in B, but not in both. Suppose
adding v to A would injure a requirement in block 2p but none in block 2r for any
r < p. Further suppose adding v to B would injure a requirement in block 2q +1
but none in block 2r + 1 for any r < q. Then v is put in A if 2q + 1 < 2p, and put in B
iϊ2p<2q + L

AH events at stage σ are determined by computations and witnesses in L(σ+1).

5.1 Theorem (Slaman 1985). Assume L(κ) is E-closed. Suppose C ^ L(κ) is regular,
E-recursively enumerable, and not E-recursive, on L(κ). Then there exist A and B,
each E-recursively enumerable on L(κ), such that

C = AuB,AnB = 0,

and C is not E-reducible to either A or B on L(κ).

Proof. First suppose L(κ) is Σ x admissible and of the form E(x). According to
Proposition 1.2, Shore's splitting theorem for α-recursion theory, Theorem 1.1.IX,
is also a splitting theorem in the sense of ^-recursion theory. Now assume L(κ) is
either Σ x inadmissible or the limit of E-closed structures. In either event L(κ)
admits Moschovakis witnesses. A preservation requirement on A at stage σ is a
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promise to keep some elements of K — A<σ out of A. Each such requirement is
attached to (indexed by) an even ordinal. Req. 2x is injured at stage σ if υ is added to
A at stage σ contrary to some promise made on behalf of req. 2x at stage τ for some
τ <σ.

Req. 2x is active at stage σ if a preservation requirement is attached to 2x at stage
σ, or if req. 2x is injured at stage σ, or if the block assigned to req. 2x changes at
stage σ. A change in block assignment at stage σ means: a change from stage σ — 1 if
σ is a successor; or the assignment was not constant on some upper segment of
ordinals less than σ if σ is a limit.

It will be shown that req. 2x is inactive for all sufficiently large σ.
Preservation requirements on A at stage σ arise as follows.
Let {x]σ be [x] restricted to computations of height at most σ. Define

For each y < £*{x\ promise to keep z out of A if

(1) {f(χ)}f'(y)

converges and "zφA<σ" is used in the computation of (1). If

(2) {f{χ)}ΓVt

diverges, and if no Moschovakis witness to the divergence exists in L(σ+1), then
promise to keep all elements of σ — A<σ out of A.

Certain conventions must be kept in mind. C < σ , A<σ, and B<σ are subsets of σ
and are defined by computations in L(σ). Thus A<σeL{σ+\). The relation,

(3) w is a witness to the divergence of (2),

is ^-recursive with x and σ as parameters. To say w exists in L(σ +1) means: there is
a sequence c (of computations) in L(σ+1) that makes (3) true.

Suppose (2) diverges, and some w witnesses the divergence via c e L(σ +1). Fix w
and c, and promise to keep z out of A if "zeA<σ" is needed in c. Once w and c are
chosen, they remain fixed until some promise associated with them is broken.

B and the odd-numbered requirements are handled similarly.
Adding v (from C) to A or B is described above. The block assignments at stage σ

are supplied by g0, the tame ^-recursive approximation of g.
The next lemma is the major part of the proof of Theorem 5.1.

5.2 Lemma. Fix b < dom g ( = λ0). Suppose block z is inactive after stage σofor all
z <b. Then there exists a stage σ after which block b is inactive.

Proof Since C is regular, there is a σx > σ0 such that

C<σιnσ0 = Cnσ0.
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Assume go(τ, z) = g(z) for all τ > σ1 and z < b. Suppose b is 2r. Further assume/(x)
is defined prior to stage σί for all x < g(r +1). At stage σ > σί all requirements in
u {block z\z < b} are safe from injury, since every relevant negative requirement is
bounded above by σ0. A typical requirement in block b (= 2r) is req. 2x:
C φ {f(x)}A. It follows that req. 2x is not injured at stage σ for any σ > σx.

Consider the behavior of

(i) {/(χ)}f'(y)

for σ > σt. If y < £^{x) for some σ > σu then (1) is preserved forever after. Define

The length of block 2r is less than tσlp(κ). Consequently Lemma 2.10 implies there
is an / < K such that

) , Φ C(y)l
Define

J ii {h{x)}{y)l for all y<^,
y* μyί{h{x)}(y)Ώ otherwise.

Choose σ2 > σx so that Cc\ί = C<σ2n/.
Suppose >>* = /. Then this fact is seen to be true by some ordinal less than

κ^'p (that is, witnessed in L(κ^^). p is an ordinal independent of x that encodes
several parameters such as b, σo,σl9 σ2 and others occurring in the definitions of
0O,/and C. Let.

and is Φ C(y)].

If wx 6 C, then this fact is evident by some ordinal less than κ$*>p. If wx φ C, then this
fact is established by a Moschovakis witness first order definable over κy*>x>*>P < K
by Lemmas 5.3.X and 5.6.X. Exercise 5.17.X, a corollary of Kechris's basis theorem,
implies

κwX9x,ί,p < κx,ί,p9

since wx is the least member of a subset of/ £-co-recursively enumerable in x, /, p.
In short; if yx — /, then req. 2x is inactive after stage /c*' ̂ p.
Now suppose yx < /. Then, as above,

(2) κyχ*χ,'*p < K*>' P

by 5.3, 5.6 and 5.17 of Chapter X. Let

w* = μyy<yxί{f(x)}(y)1 and is Φ C(y)l
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Assume w* < yx. If w* e C, then this fact is evident by stage κy

o

x'x^iP, hence before
K?>*>P by (2). If w*φC, then this fact is established by a Moschovakis witness
definable over

κw*,yx,x,S,p < κyx,x,S,p

by 5.17.X.
Thus req. 2x is inactive after stage K*>' P. Hence block b is inactive after stage

s\xp{κ^'P\x < g(b)}. The latter is less than K by Theorem 2.5, since
b < tσlp(κ) < ρκ. D

5.3 Lemma. Fix c < dom g = λ0. Suppose for each b < c there is a σ such that
block b is inactive after stage σ. Then there is a σ such that for all b < c, block b is
inactive after stage σ.

Proof A tame E2 function i:c^κ is defined so that block b is inactive after stage
i(b). According to Exercise 2.15, λ0 = te2d(κ), hence sup (range ί) < K.

Fix b < c. The procedure for ^-recursively approximating i(b) is derived from the
proof of Lemma 5.2. Notation from 5.2 is used below.

Keep checking on activity in block z for all z < b. If any such activity occurs at
stage σ, then the current guess at i(b) has to be increased to σ. Eventually stage σ0 is
reached. And after that, stage σx where

Meanwhile computations and Moschovakis witnesses are sought to establish
inequalities for requirements in block b. Some additional waiting for C to settle
down may be necessary as in the definition of σ2. •

Note that the function i of the proof of Lemma 5.2 is tame E2, rather than tame
Σ 1 ? because it was necessary to wait for C to settle down on some proper initial
segment of K. This is why tame Σ x blocking was adequate for Post's problem but
not for splitting.

The proof of Theorem 5.1 is readily completed. By construction C = AKJB and
AnB = 0 . A and B are ^-recursively enumerable on L(κ\ because the decision to
put v in A or B at stage σ is based on effective consideration of L{σ). Lemma 5.2 and
5.3 imply the desired inequalities are realized.

5.4 Theorem (Slaman 1985). Assume L(κ) is E-closed and admits Moschovakis
witnesses. Let C,D ^ K be regular and E-recursively enumerable on L(κ). Suppose
D <L(K)C. Then there exist A and B, each E-recursively enumerable on L(κ), such that
AnB = 0 , C = AvB9C£κD,AandC £KD,B.

It follows from Theorem 5.4 that the E-recursively enumerable degrees are dense
for every £-closed L(κ). If L(κ) does not admit Moschovakis witnesses, then L(κ) is
of the form E(x) for some set x of ordinals, and is Σ x admissible, by Theorem 5.8.X.
Consequently Shore's density Theorem (5.1.IX) for α-recursion theory applies to
L(κ) by Proposition 1.2.
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The assumption in 5.4 that L(κ) admit Moschovakis witnesses is necessary,
because Lachlan (197?) has shown that the conclusion of 5.4 fails when κ = ω.

The proof of Theorem 5.4 is left as the final exercise. Most, but not all, of the
difficulties that arise, as the proof of Theorem 5.1 is extended to cover 5.4, were
anticipated in Section 2. Note 2.2.

A final methodological point and question. Post's problem for inadmissible
L(κfs was solved without injuries with the aid of Moschovakis witnesses. Priorities
were necessary, but at most one attempt was made to satisfy each requirement.
Splitting an ^-recursively enumerable set C produced a κ>finite set of injuries for
each requirement, only because of the need to guess repeatedly at proper initial
segments of C; each requirement had to have true knowledge of some such segment
before it could be satisfied. Since 5.1 is so close in nature to 5.4, the proof of density
for E-closed structures that admit Moschovakis witnesses is a "finite" injury
argument. At this writing there are no "infinite" injury arguments in ^-recursion,
possibly because the search for an inequality can always be resolved below K by a
computation or a Moschovakis witness.

Does there exist an "infinite" injury argument in the setting of ^-recursion
theory?

5.5 Exercise. Complete the proof of Theorem 5.4.




