
Part D

E-Recursion

E-recursion theory extends the notion of computation from hereditarily finite sets
to sets of arbitrary rank. Selection theorems, forcing arguments and priority
constructions are developed in the setting of E-recursive enumerability.





Chapter X
£-Closed Structures

The class of partial ^-recursive functions is defined. A connection is made between
^-closure and GόdePs L. Gandy selection is proved. Moschovachis witnesses are
introduced and used to characterize divergence of computations in terms of
reflection phenomena.

1. Partial E-Recursive Functions

The intent of ^-recursion theory is to assign a meaning to {e} (x) for every set x via
an appropriate notion of computation. The Σx admissibility approach of Part C is
deemed inappropriate since it equates "computation" with "existential witness".
Let/: K-> Fbe a partial Σx function; that is the graph of/is definable over F, the
class of all sets, by some formula (Ew)Z)(x,)>,w), where D is a Δo formula of ZF. It
makes sense to speak of computing/(x) by searching for a pair <y, w> that satisfies
£>(x, y, w) in V, but it does not seem sensible to construe a wide open search through
V as a computation procedure. Even if V is replaced by L, thereby allowing the
search to proceed methodically through the ordinals, it is still difficult to view the
search as the execution of a rule of computation.

Computation rules permit a computer to move in a direct way from argument to
value by following an initial instruction and then other instructions developed
along the way. Following the rules generates a tree-like object called a com-
putation. An element of self-reference is to be expected since rules may talk about
rules.

Kleene [1959] was the first to give schemes that assign a meaning to [e] (x) when
x is an object of finite type. (Integers are of type 0, and an object of type n is an
arbitrary collection of objects of type less than n) ^-recursion generalizes the so-
called normal version of his theory; "normal" indicates that equality is a recursive
predicate. The Normann schemes for ^-recursion [1978] extend the normal Kleene
schemes to objects of arbitrary type, namely sets. They were devised by Normann,
and subsequently by Moschovakis.

1.1 The Normann Schemes. Assume some standard method of encoding finite
sequences. Let (al9. . . , an} be the code for al9. . . , an. Each Normann scheme
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is a closure condition in the positive inductive definition of E, the class of all tuples
<e, <Xχ, . . . , x«>, y} such that {e} (xl9 . . . , xn) is defined and equal to y.

(1) [e] (x l 5 . . . , xn) = Xi if e = <l,n,i> (projection).

(2) {e} (xί9...9xH) = xi- Xj if e = <2, n, ί,j} (difference).

(3) {e} (xl9...9xn) = {xi9 Xj} if e = <3, n, ij} (pairing).

(4) {e}(xί,...,xn)~v{{c}(y,x29...9xn)\yex1} if e = <4,w,c>
(bounding with union).

The left side of (4) is not defined unless {c} (y,x2,... . , xn) is defined for all
yext.

(5) {e} (x l 5 . . . , xw) ~ {c} ({dj (xl9 . . . , xj, . . . , {dm} (x l 5 . . . , xj) if

e = <5,tt,m,c,dl5 . . . , dm} (composition).

(6) [e] (c9xl9 . . . , xn9 yί9 . . . , ym) ^ {c} (xl9 . . . , xn) if e = <6,n,m>
(enumeration).

~ is Kleene's symbol for strong equality. If/and g are partial functions, then
f(x) ~ #(χ) iff neither/(x) nor g(x) is defined, or/(x) and g(x) are defined and equal.

Let A be a class of sets. A is closed with respect to scheme (1) if <e, <x x , . . . , xn),
Xi}eA whenever x x , . . . , xn e V and e = < 1, n, f>. The closure of A with respect to
schemes (2) and (3) is defined similarly. A is closed with respect to scheme (4) if
<e, < x 1 ? . . . , xn>, z}eA whenever

e = (49n9c}&xu. . . ,xneV,

(y)yeXi (Ew) [<c,<)/,x2,. . . , xπ>, w ) e i ] , and

z = {w|(Ey)y e x i [<c, <^,x2, . . . , xπ>,w>

The closure of A with respect to schemes (5) and (6) is defined similarly.
E is defined to be the least class closed with respect to schemes (l)-(6). E is

viewed most simply as the intersection of all classes closed under (l)-(6). This view
makes good sense, since each scheme is equivalent to a positive closure condition.
Something is put in E if something else was put in earlier. The "intersection" proof
of the existence of £ can be formalized in ZF by thinking of Fas the union of many
Σx admissible sets and doing the "intersection" proof within each Σ1 admissible set.
Another approach to the existence of E is that of natural enumeration. First some
definitions.

{e} (xί9 . . . , xn) is defined and equal to y

if <e, <xx, . . . , xn >, y > e E. A partial function/from V into V is partial ^-recursive
if there exists an e such that f(x) ~ {e} (x) for all x e V. {e} (x) converges (in symbols
{e} (x)l) if [e] (x) is defined. Otherwise [e] (x) diverges (in symbols {e} (x)|).
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1.2 Natural Enumeration of E. σ is an arbitrary ordinal number. Proceed at stage
σ as follows.

σ = 0: <e, <x r, . . . , xH>, xf> is put in E if e = <1,n,ί>. Schemes (2) and (3) are
treated similarly.

σ > 0: <e, < x l 5 . . . , xn>, z> is put in £ if

e = <4, n, c>,

(yW, (Ew)[<c, <;y,x2, . . . , xw> w> put in E prior to stage σ],

and z = {wI(Ey)yexi [<c, <y,x 2 , . . . , xπ>, w> is already in £]} .

Schemes (5) and (6) are treated similarly.
Note that scheme (4) is the only scheme that pushes the natural enumeration into

infinite stages.
The natural enumeration makes it easy to check certain points about E. For

example, if {e}(x) is defined, then it has only one value (cf. Exercise 1.5). Thus for all
e, Ax|{e}(x) is a partial function. The natural enumeration is defined by a Σί

recursion, and so E is a Σ x class (cf. VII. 1.6). To be precise there is a Σί formula
& (x) of ZF such that for all a e K,

tt follows that the graph of each partial E-recursive function is Σ x definable over V.
The converse is false. Consider Θ{x\ GodeΓs order of constructibility function

G(x) is partial Σ x but not partial ^-recursive. Roughly speaking, if xeL, then Θ(x)
can be found by an unbounded search but not by any computation procedure that
moves in a direct manner from x to Θ(x). Some forcing arguments will be applied in
Chapter XI to show the non-£-recursiveness of certain predicates. On the other
hand many Σ x functions are ^-recursive, and the reason for this is best expressed by
van de Wiele's theorem in Chapter XIII.

Let /: ω -> ω be a partial function. Then / is partial recursive in the sense of
classical recursive theory iff / is partial ^-recursive iff / is Σ1 over HF, the
hereditarily finite sets (cf. Exercise 1.8). Agreements between ^-recursion and Σ x

admissibility will figure prominently up ahead. They are often consequences of
selection theorems that make it possible to ^-recursively compute existential
witnesses.

Let P(x) be a predicate and f(x) its representing function:

P(x) ^ / ( x ) = 0; - P(x) ^ / ( x ) = 1.

P(x) is said to be ^-recursive if / i s ^-recursive.

1.3 Proposition. IfP(x) is Δ§F, then P(x) is E-recursive.
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Proof (a sketch). By induction on the logical complexity of P(x). Observe that

xey<r+{χ}-y = 0.

Suppose g(x,y) is the representing function of Q(x,y). Then

Wxez Q(χ,y)~(χ)xez lg(χ>y) = 0]

++u{g(x,y)\xez} = 0. D

A predicate P(x) is said to be E-recursively enumerable if there exists a partial
^-recursive function / such that for all x,

P(x)~f{x)l.

A is ^-recursively enumerable if x e A is ^-recursively enumerable.
Warning: The graph of a function can be ̂ -recursively enumerable, or even E-

recursive, without the function being partial E-recursive. One example is GόdePs
order of constructibility function Θ(x). The graph of 0 is £-recursive, but λx \ Θ{x) is
not partial ^-recursive. Another example is the predicate, "x is an ordinal but not a
cardinal". It is Σx but not £-recursively enumerable.

1.4 ^-Closed Structures. Let A be a transitive set (that is, xeA8ιyex-+yeA). A\&
said to be ̂ -closed if

xeA &/(x)j -»/(x)e A (x is xl9 . . . , xn)

for every partial ^-recursive / It will be seen that every Σ x admissible set is
E-closed, but not conversely. Part D is devoted largely to the study of forcing and
priority arguments over £-closed structures. What does it mean to force a com-
putation to converge?, to diverge? How is Post's problem formulated and solved in
E-recursion? The answers bear little resemblance to their counterparts in α-
recursion theory.

The E-closure of x, in symbols £(x), is the least E-closed y 2 TC({x}). Recall that
TC(z) is the least transitive y^z. E(x) is transitive by an induction that parallels
the natural enumeration of E. Suppose zeE(x) to see z ̂  E(x). Assume
z is v{{c}(y)\yex}. Let e be <4, l,c>. Suppose <e,x,z> is put in E at stage σ.
But then

is put in E prior to stage σ for all y e x. By induction {c} (y) £ E(x) for all y e x, and
so z ̂  x. Note that the natural enumeration of E induces a natural enumeration of
E(x).

E(0) is HF. E(ω) is L(ω?κ). Let Aγ{x) be the least Σx admissible y 2 TC({x}).
Then £ (X)^^1 1 (X) (cf. Exercise 1.7). It will be shown that E(2ω) is not Σ x

admissible. Thus E(2ω) is a proper subset of A^l").
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1.5-1.8 Exercises

1.5. Show: if {e}(x)J,, then the value of {e}(x) is unique.

1.6. Complete the proof of Proposition 1.3.

1.7. For any set x, let ocx be the least γ such that L(y, TC({x})) is Σ x admissible.
Show L(α*, ΓC({x})) is the least Σx admissible y 3 TC({x}\ namely A^x).
Show E(x) c Aiix). (L(y,x) is defined just before 2.8.)

1.8. Let/: ω-^ωbe partial. Show /is partial recursive iff/is partial ^-recursive.

2. Computations

A computation instruction is any (n + l)-tuple of the form <e, x 1 ? . . . , xn>, or more
simply <e, x>. <e, x> is to be thought of as instruction to compute {e}(x). Associ-
ated with computation instruction <e, x> is a tree T<βt x>. Every node of the tree is a
computation instruction. The tree is to be visualized as starting at the top of the
page and then branching downward. All the Normann schemes, save (4), give rise
to finite branching. The process of forming Γ<β> x > can be regarded as a reversal of
the natural enumeration of E (cf. subsection 1.2). If {e} (x) J, and <e, x, {e} (x)> is put
in E at stage σ, then Γ<e x> traces [e] (x) back to its roots below stage σ. If [e] (x) |,
then T<βfXy witnesses the fact that (e,x,w}φE for any w.

2.1 The Universal Computation Tree. The nodes of £/, the universal computation
tree, are computation instructions, b is a subcomputation instruction of α, in
symbols a > υ b, if there exists a finite sequence b0, . . . , bn such that a = bo,bn = b,
and bi + 1is an immediate subcomputation instruction of bt (i < n). The definition of
immediate subcomputation instruction (immed. subcomp. instruc.) has six clauses
corresponding to the Normann schemes and a seventh clause technical in nature.

(i) If e = <l,n, ϊ) (1 < i < n\ then <e,x l 5 . . . , xn> has no immed. subcomp.
instrucs. In other words <e,x1 ? . . . , xn> is a terminal, or minimal, node of U.

(ii) Similar to (i) with e = <2,n,/J>.
(iii) Similar to (ii) with e = <3,n, ij}.
(ίv) If e = <4,n,c>, then <c,y,x2, . . . , xπ> is an immed. subcomp. instruc. of

<e,x 1 ? . . . , xπ> for every yex1.
(v) (a) If e = <^59n,m,c9dl, . . . , dm}9 then <d i,x1, . . . , xn> is an immed. sub-

comp. instruc. of <e,x l 5 . . . , xM> for 1 < i <m.
(v) (b) If e = (5,n,m,c,dl9. . . , dm> and {dj ( x 1 ? . . . , xπ) converges and

equals yt (1 < i < m), then <C,>Ί, . . . , ym} is an immed. subcomp. instruc. of
<έ?,x1 ? . . . , x n > .

(vi) If e = <6,n,m>, then <c,x1 ? . . . ,xw> is an immed. subcomp. instruc. of
<e,c,x l 5 . . . , xw, yl9. . . , y m > .

(vii) If e is not an index of a scheme, or n is not the correct number of arguments,
then <e,x1 ? . . . , xπ> is an immed. subcomp. instruc. of (e,xl9. . . , xπ>.
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Clause (vii) is needed in the proof of Proposition 2.2.
Clause (v) (b) is worthy of a moment's attention. It differs from the other clauses

by requiring convergence information for the establishment of subcomputation
instructions. If (v)(b) is overlooked, then it is easy to think (mistakenly) that the
immediate subcomputation relation is ̂ -recursive. In fact it is not ^-recursive, but
is ^-recursively enumerable thanks to scheme (6), the enumeration scheme.
Another trap is to think >υ is ^-recursively enumerable. Not so, it is merely Σ1.

The tree-like object consisting of <e, x> and that part of > v below <e, x> is called
the computation of [e] (JC), and is denoted by Γ<e x > .

2.2 Proposition. {e}{x)l<-+T<efX> is wellfounded.

Proof. First suppose Γ<βfJC> is wellfounded. By clause (vii) of the definition of
immediate subcomputation, e is the index of a Normann scheme. A straightforward
transfinite induction on > υ restricted to T<e x> shows if <c, z> is a node on T<e x>,
then {c}(z) I.

Now suppose {e}(x)j. Then <e,x, {e}(x}} was put in E at some stage σ, as
described in subsection 1.2. If <c,u> is an immed. subcomp. instruc. of <e,x>, then
<c,w, {c}(w)> was put in E prior to stage σ. By induction on σ, T<CtU> is well-
founded. But then Γ<e x> is well-founded. D

If {e}(x)|, then travelling down the tree T<βtX> retraces the steps by which
<e,x, {e} (x)> was put in E.

2.3 Effective Transfinite Recursion (ETR). ETR is an essential tool in the study of
^-recursion. It originated in the work of Kleene and Church on notations for
ordinals, and was clarified by Rogers. In this book it is presented as Theorem 3.2.1.
It is a consequence of Theorem 3.1.1, Kleene's fixed point theorem. The proof of
3.1.1 remains valid when {d} is interpreted as the {d}-th partial £-recursive
function. Consequently 3.2.1 is valid under a similar interpretation. The next
proposition, 2.4, is a useful recursion principle, more comprehensible than ETR,
but weaker.

2.4 Proposition. Suppose H is a total E-recursive function. Then the unique f such
that

f(y) = H(f { y) for every ordinal y

is E-recursive.

Proof. Let I: ω^>ω be a recursive function such that for all e < ω and all y,

By the fixed point theorem (for partial £-recursive functions) there is a c such that
{/(c)}~{c}. Then/is {c}.
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2.5 Lemma. There exists a partial E-recursive function g such that for alld < ω and
all x:

(0 {d}(x)l
(ii) {d}(x)l-+g(d,x)=T<dtX>.

Proof. By effective transfinite recursion. The definition of the recursive iterator /
has several cases, one for each Normann scheme. From now on it will be
convenient to restrict attention to an artificial Normannesque scheme that com-
bines the important features of the Normann schemes. Regard scheme

(T) {2m 3Λ} (x)~{{n}(y)\ye{m}(x)}.

It is understood in (T) that {2w 3w}(x)| iff{m}(x)| and {n}(y)i for all
ye{m}(x).Ύhe immediate subcomputations of <2m 3",x> are:

(Ta) <m, x>;

(Tb) <n,y> if {m}(x)i and ye{m}(x).

A recursion or induction based on the Normann schemes has six cases, one for each
scheme. From now on only one case will be considered, that of scheme T. (T stands
for typical.)

Thus the recursive iterator I(e) is defined explicitly only for case T. If

{2w 3π}(x)|, then

(The (J operation of (1) is the union operation of set theory slightly modified so as
to produce trees from subtrees in an appropriate fashion.) Define I(e) so that

(2). {/(*)} (2™ 3",x) * M(m,x) u[]{{e}(n,y)\ye{m}(x)}.

Observe that I(e) is defined even when {2m 3π} (x)|, because I(e) is merely an
instruction.

By the fixed point theorem, there is a c such that {/(c)} ~ {c}. Let g(d,x) be
{c}(d,x). If {d}(x)l, then T<dfX> is well-founded according to Proposition 2.2. In
that event an induction on >υ restricted to T<dfX> shows g(b,u) = T<bfU> for all
<b,u) <υ <d,x>. The induction succeeds because {I(c)} ^ {c}. D

Let $ be an £-closed structure. Lemma 2.5 implies $ is closed with respect to the
formation of convergent computation trees: if x e £ and [e] (x) j , then Γ<e> x > e S. A
major question to be considered shortly is: Suppose x e S and {e} (x) | ; does Γ<ε> x>,
or some significant part of Γ<e§ x>, belong to SΊ The answer is yes in many cases.
For example, if L{κ) is E-closed but not Σ1 admissible, xeL(κ) and {e} (x)|, then
some infinite descending path through Γ<e> x> is an element of L(κ) (cf. Theorem
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Every computation tree T<βt x> has a height denoted by | T<βfX> |. If T<βf x > is not
wellfounded, then | T<βt x> | is defined to be oo with the understanding that oo > γ
for every ordinal y. If Γ<e> x> is wellfounded, then | Γ<e> x> | is sup+ (strict least upper
bound) of

{I <̂c,y> I I (c>yy i s a n immed. subcomp. instruc. of <e,x>}.

Also \{e] (x)|, by definition, is | T<e x> | and is called the length of the computation
of<e,x>.

2.6 Lemma. There exists a partial E-recursive function h such that for all e and x:

(i) {e}(x)l~h(e9x)l

(ii)

Proof By effective transfinite recursion. Only scheme T is considered, as in the
proof of Lemma 2.5. Thus e — 2m 3", and | {e} (x) \ is the strict least upper bound of

(1) {\{m}(x)\}u{\{n}(y)\\ye{m}(x)}.

The recursive iterator /: ω -> ω is such that for all c < ω and all x,

The supremum operation is effective thanks to Normann scheme (4) of 1.1. ft is {</},
where {/(</)} - {d}. D

2.7 Lemma. The predicates, \ {e}(x)\ < y and \{e}(x)\ = y, are E-recursive.

Proof By effective transfinite recursion on y. Similar to the proof of Lemma
2.6. D

Let x be any set. Define:

L(0,x) = x;

L(δ + l,x) = set of all first order definable subsets of L(δ,x);

L(λ,x) = \J{L(δ,x)\δ < λ} (limitλ).

If y is transitive, then L(δ,y) is transitive for every ordinal δ. TC({x}) is the least
transitive set with x as a member.

The proof of Proposition 2.8 relies on aflat, ordered pairing function f an idea of
Quine.

f( ) = ̂ x'y^ i f x>yeL(ω)>
{f(a,b)\aex & bey} otherwise.
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If x or y has infinite rank, then rank (/(x, y)) = max(rank(x), rank(y)). This last says
/is flat, / i s relativized to x by replacing L(ω) by L(ω, TC({x})).

2.8 Proposition, // {^(x) ! and \ {e}(x)\ > ω, then {e}(x) and T<etX> are first order
definable over L( \ {e} (x) |, ΓC({x})).

Proof. Let e be 2m 3" (scheme (T) of Lemma 2,5). By induction on | {e} (x) |, {m} (x)
and {n}(y) (ye{m}(x)) belong to L(\{e}{x)\9 ΓC( {*})).

is {

View T<βtX> as a set of ordered pairs defined by the flat function /immediately
above. D

2.9 Recursive Ordinals. y9xί9 . . . 9 xn are sets, y is said to be ^-recursive in
xl9 . . . , xn (in symbols, y <Exu . . , xn) if y = {e} (x l 5 . . . , xn) for some e. Iff
is an ^-recursive function, t h e n / ( x ) < £ x for all x. More precisely, /(x) <Ex
uniformly in x. Note that TC(x) <Ex uniformly. <E is not a generalization of
Turing reducibility. That will come later. < E can be viewed as a generalization of
hyperarithmetic reducibility. If x, y ^ ω, then

An ordinal y is said to be ̂ -recursive in x if γ < E x. Thus the recursive ordinals of
Part A are simply the ordinals ^-recursive in ω. Define

KQ is always a limit ordinal of countable cofinality. In general the ordinals recursive
in x do not constitute an initial segment. If x £ ω, then Church-Kleene ω^ is κ%ω.

/eg need not be a Σ x admissible ordinal. Consider x = ω 1 . ω x </CQ1 since
ωί <Eω1. But /CQ1 is less than the first Σ x admissible greater than ωί9 as will be
seen below (cf. Exercise 5.15.)

KQ has a natural development akin to the enumeration of a complete Postian set.
A is said to be E-recursively enumerable in x if

Λ = {y\{e}{y,x)i}.

The complete £-recursively enumerable-in-x subset of ω is

K' = {n\neω & {(n)0} ((n)i,x)l}

It follows from Lemma 2.6 that

(1) κx

0 = sup{\{(n)0}((n)1,x)\\neκx}.
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The ordinals occurring in the set on the right side of (1) are, by definition, the
ordinals constructive in x. For each y constructive in x, define

Kx = {n\neω & |{(n)0} ((*) !) !< γ}.

Then Kx = \J{K*\γ constructive in x}. Let AJ be the ordertype, necessarily
countable, of the set of ordinals constructive in x. Then Kx can be enumerated in λl
steps. Step y produces K*. a set ^-recursive in x. The natural development of Kx

is sometimes described as an "enumeration with gaps", since consecutive, E-
constructive-in-x ordinals can be quite far apart.

Warning: an ordinal can be ^-recursive in x without being ^-constructive in x
(cf. Exercise 2.13).

Recall that the ^-closure of x (in symbols, E(x)) is the least ^-closed
y 3 TC({x}). Thus x eE(x) and E(x) is transitive. In fact E(x) is the least transitive,
E-closed set with x as an element. Each member of E(x) is of the form
{e} (x, a0, . . . , an\ where at e TC(x). It follows that κx, the supremum of all ordinals
in £(x), is

sup{y < £ x , α 0 , . . . , an for some aθ9 . . . , ane TC(x)}.

With the aid of Proposition 2.8 a precise connection can be made between £(x) and
L(x). First observe that κω = ω ? κ and E(ω) = L(ω?κ).

2.10 Proposition. E(x) = L(κx, TC({x})).

Proof. By Proposition 2.8, £(x) c L(κx, ΓC({x})). Suppose γ < κx and y is first
order definable over L(γ, ΓC({x})) via parameter peL(y, TC({x})). Then y <EL{y,
TC({x}))9 p. By induction on γ9 peE(x), so it suffices to show L(y, ΓC({x})) <Ey, x.
The usual set theoretic definition of L(y, TC({x})) by transfinite recursion is in fact
effective, hence λy \ L(y, TC({x})) is ^-recursive in x. D

2.11-2.12 Exercises

2.11. What is the role of flat pairing in Proposition 2.8?

2.12. Verify that κω = ω<fκ.

2.13. Let λ be the limit of all countable ordinals ^-constructive in ω1. Show λ is E-

recursive i n ω 1 (

3. Reflection

The notion of reflection is needed in the study of divergence in Section 4. If {e} (x)|*
then any infinite, descending path through T<e, x> is termed a Moschovakis witness
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to the divergence of {e}(x). The least ordinal that suffices to construct such a
witness is, under favorable circumstances, the greatest x-reflecting ordinal. A
precise connection between divergence and reflection was first made by Harrington
[1973] in the setting of Kleene's theory of recursion in normal objects of finite type.

An ordinal δ is said to be x-reflecting if

L(δ, TC({x}) \= P -> L(κx

0, TC({x})) N JF

for every Σ? F sentence ^ whose only parameter is x. Clearly the union of x-
reflecting ordinals is x-reflecting. Define

κx = the greatest x-reflecting ordinal.

KQ < κx

9 and in a moment it will be seen that κx < κx. The situation of greatest
interest occurs when KQ < κx < κx, because it is then that non-trivial reflection
phenomena occur within E(x). An important early result of Harrington [1973],

had key applications in forcing and degree-theoretic arguments. It was preceded by
a result of Sacks [1974] needed for a forcing proof,

For a dynamic view of κr let A ^ TC({x}) be E-recursively enumerable in x.
Suppose be A and the height of a computation c that puts b in A is y for some
y < κx. Thus

L(y + 1, TC({x})) N (Ec)(Eb) [c puts b in A].

By reflection there is a c 0 and b0 such that | c o | < KQ and c 0 puts fc0 in A. Since /eg is
the limit of ordinals recursive in x, there is an infinite β <Ex such that | c o | < β. By
Proposition 2.8, Kβ, the set of all computations from x of height less than /?, is first
order definable over L{β, TC{x})). Let y0 be the length of the shortest computation
that puts some y into A. y0 < β9 and y0 is first order definable over L(β, TC({x})).
Hence y0 < E x. Let Ao be the set of all y put in A via computations of height at
most y0. Then Ao is a non-empty subset of A ^-recursive in x.

To sum up, if a Σ x fact about x is true in L(y, TC({x})) for some y < κx, then it is
true in L(yθ9 TC({x})) for some y0 <Ex.

3.1 Proposition. There exists a Hψ sentence 3* such that for all transitive A,

A is £-closed <-»
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Proof. Let 3F have ΠfF clauses that require closure under pairing, difference and

union operations. The remainder of & insures:

(1) (x) [(jO,β,(Ey)P(c, y, y) - (Ey) (y),6,P(c, y, y)],

where P(c, y, y) is

(2) Γ<c>3;> is first ord. def. via M over L(y, TC({x})).

M is a recursion, hidden in the proof of Proposition 2.8, that tries to define Γ<c y>

over L(γ, TC({x})). M succeeds iff yex and y > max(ω, |{c}(jθ|). It follows that
(1) is Π f . D

3.2 Proposition. κ£ α < κ:x/or α// a e ΓC(x).

Proo/ Suppose aeTC(x) and < ' f l > /cx. Since £(<fl,x» = £(x), it follows from
Proposition 2.10 that

(1)

With the aid of Proposition 3.1, (1) can be "reflected down" to κ^a. Thus

But then κx'a < κ%a, an absurdity. D

In Section 4 it will be shown that κ?x = κx for all ae TC(x) only if E(x) is
admissible.

4. Gandy Selection

Selection principles in ^-recursion theory have the following form. If A is E-
recursively enumerable in x and nonempty, then there exists a nonempty b <Ex
such that b c A. In addition there is a uniform method for computing b from x and
an index for A.lϊ A ^ ω and xeω, then A is a classical recursively enumerable set
and selection is proved by enumerating A until some element appears. This trivial
proof is worth considering more closely. Let K£ be the set of all computations from
x of length less than σ for σ a limit ordinal. By Proposition 2.8, K£ <Eσ, x
uniformly in σ and x. Let σA be the least σ such that some computation in K£ puts
an element in A. Let b be the set of all such elements of A.
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Then b <E σA, x. So to complete the proof of selection it need only be shown that
σA <Ex. In general, this last is false. It is true if A ^ ω and xeω by arguments of
classical recursion theory. If A ^ ω and x is an arbitrary set, then the arguments of
this section show σA <Ex. Later it will be seen that there exists a nonempty A ^ 2ω,
^-recursively enumerable in 2ω, such that σA £E2ω. The study of forcing over un-
closed structures in the next chapter owes some of its technical interest to the lack
of general selection principles.

Gandy [1967] originally proved selection for A c ω and x = ω. Moschovakis
extended the result to x's of higher type. The proof given here is derived largely
from Moldstad [1977].

4.1 Theorem (Gandy Selection). There exists a partial E-recursive function φ(e,x)
such that for all e < ω and all x:

(ΐ)

(ii) φ(e,x)l^{e}(φ(e9x),x)l

The proof of Theorem 4.1 requires a preparatory lemma originated, and dubbed
"stage comparison", by Moschovakis.

4.2 Lemma. Suppose {d}(x)i or {e}(y)l Then

min(|{d}(x)|, \{e}(y)\) <Ex,y (uniformly).

Proof By effective transfinite recursion on min. The rough idea behind the
recursion step is:

min(|u|, |i;|) = max{min(|fl|, \b\)\a<υu & b <vv},

where <v is the universal computation tree of Section 2. Some smoothing is
needed to make this idea work, because if u | , then {a\a <vu) may not be E-
recursive in u. Assume d = 2m 3n and e = 2P 3q. (As in the proof of 2.5, only scheme
T is considered.) Define:

oc1 < α, so by recursion <x1 <Ex,y. With the aid of Lemma 2.7, an se{{m}(x),
{p} (y)} can be selected so that \s\ = α x .

Suppose s is {m} (x). Define:

βb = mm(\{n}(b)\,\{p}(y)\);

β = sup+{βb\be{m}(x)}.
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By recursion βb<Ex,y,b (uniformly in ft), hence β <Ex,y. Now use 2.7 to see if

(1) α

If (1) is false, then {n}(6)ί for some be{m}(x), and so α = | {2P- 3q}(y) |.
If 5 is {p} (y\ then proceed as in the above paragraph with q, m in place of n, p. D

4.3 Proof of Gandy Selection. For simplicity drop x. By Lemmas 2.7 and 4.2 there
exists a partial ^-recursive φ such that

l( k\ W ( ^ k + 1 ) + 1 X {r}(e,k+l)l&\{r}(e9k+l)\<Z\{e}(k)\,
nr'e>K)^0 iϊ\{e}(k)\<\{r}(e9k+l)\.

The instructions for computing φ are as follows. Use Lemma 4.2 to compute the
min of {r} (e, k + 1) and [e] (k). If the min is undefined, then φ(r, e, k) is undefined. If
the min is defined, then use Lemma 2.7 to decide which case of the definition of φ
applies.

Kleene's fixed point theorem provides a c such that

φ(c,e,k)~ {c}(e,k)

for all e and k. Observe that the computation of {c}(e,0) compares |{c}(β, 1)|
with I {e} (0) I; the computation of {c}(e, 1) compares | {c} (e, 2) \ with | {e} (1) |; and
so on. {c} is designed to seek the least k such that |{e}(A;)| is the minimum of
{|{e}(m)||m<oo}.

First note that

(1) (k)l{c}(e,k+l)l^{c}(

(2) (k)ί{e}(k)i^{c}(e9k)il

Hence

(3)

Now observe that

(4) {c}(e9O)l-+(Ek)l\{e}(k)\ < |{c}(e,fc+

Otherwise {c} (e, k) > {c} (e, k + 1) for all fe, an absurdity.
It remains only to show

(5) {}

Suppose the left side of (5) holds. By (3) and (4),

{c}(e,0)J, and \{e}(k)\<\{c}(e9k+l)\
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for some k; let fc0 be the least such k. Then

{c}(e,/co) = 0, and {c} (e,j) = {c} (ej + I) + I

for all j < k0. Hence {c} (e, 0) = k0. D

4.4 Corollary. The class of E-recursively enumerable predicates is closed under finite
disjunction and existential number quantification.

Proof. Suppose n is a number variable and P(n,x) is ^-recursively enumerable. By
Gandy selection there is a partial ^-recursive φ(x) such that

(Eή)P(n,x)~φ(x)l. D

4.5 Corollary. Suppose P(x,y) is E-recursively enumerable and

M*ez(Ey)[>< £ χ & P(x,y)l

Then there exists a partial ^-recursive function / such that

&

Proof The predicate, {e}(x)| & ^ ( ^ J {e} (χ)λ ^s ^-recursively enumerable. By
Gandy selection there is a partial ^-recursive φ such that

& P(x,{β}(x))

{φ(x)}(x)| & P(

D

The proof of Corollary 4.5 deserves a gloss. Suppose R(x,y) is an E-recursively
enumerable predicate and there is a y such that

(1) y<E* and R{x,y).

Then Gandy selection legitimizes a search through the / s ^-recursive in x until one
is found that satisfies (1). In addition the search procedure is uniform in x and R.
Other selection principles will be proved in later sections. They too can be viewed
as legitimizing certain searches.

4.6 Corollary. Ifa^ω, then E(a) is Σ x admissible.

Proof. Let D(x,y,z) be a ΔQ F formula. Suppose

E(a)(x)X€p(Ey)D(x9y9q)
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for some p,qeE(a). Since a £ ω, every yeE(a) is ^-recursive in a. It follows from
Corollary 4.5 that there exists a partial ^-recursive function /such that

MxeplfMl & D(xJ(x9q))l

Let r = {f(x,q)\xep}. Then r <Ep,q and

E(a)ϊ(x)xep(Ey)yerD(x9y9q). D

Let Adx(x) be the least Σ x admissible set with x as a member. Adx(x) is
L(α, TC({x})) for some Σ x admissible α determined by x. Adx(x) is E-closed, hence
E(x) c Adx(x). It follows from Corollary 4.6 that £(α), for α £ ω, equals Adx(a).
According to Exercise 4.9, subsets of £(α) are Σ x definable over E(a) iff they are E-
recursively enumerable in a.

The situation with respect to E(2ω) is more complex. It will be seen that E(2ω) is
not Σ x admissible because it admits Moschovakis witnesses.

4.7 Corollary. Suppose κx/a = κx for all aeTC(x). Then £(x) is Σx admissible.

Proof. Suppose D (M, V, W) is a ΔQF formula, and

for some c,peE(x). For the moment assume c £ ΓC(x) and p = x. By Proposition
2.10

= L(κx>a, TC({x}))

for all aεTC(x). By reflection, for each aεc, there is a 5 <Ex9a such that

It follows from Corollary 4.5 that δ can be construed as a partial ^-recursive
function / of x and α, defined for all aec. Normann's bounding scheme, (4) of
subsection 1.1, implies that {f(x9a)\aec} is bounded above by some y<Ex9c.
Hence there is a deE(x) such that

d is L(y, ΓC({x})). Thus E(x) is Σ x admissible.
The assumptions, c ^ ΓC(x) and p = x, have to be discharged. ΓC(x) is infinite;

otherwise E(x) is HF, hence Σ x admissible. According to Exercise 4.11 there exists a
# eE(x) such that # is a one-one map of c into TC(x). Then

(M)uec(Ev)D(M, *;,/>)

is equivalent to

(u)ueg[c](Ey)D(g-ί(ulv9p).

Thus it is safe to assume c ^ TC(x).
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Recall that p = {e}(x,b) for some beTC(x). Then D(u9v,p) is equivalent to
(Eβ)(Eb)beTC{x)[I{e}(x9b)\ = β& D(u,v,{e} (x,b))]. D

4.8-̂ 4.12 Exercises.

4.8. Prove the class of ^-recursively enumerable predicates is closed under finite
disjunction.

4.9. Assume a c ω and x c E(a). Show x is £-recursively enumerable in a iff x is
Σx definable over E(a).

4.10. Assume a ^ ω. Show α is E-recursively enumerable in ω iff a is Π}.

4.11. Assume x is infinite and c e E(x). Find a g e E(x) such that g is a one-one map
of c into ΓC(x).

4.12. Fix x. Show the predicate, γ is not x-reflecting, is ^-recursive in x. Hint: make
use of a ΣfF predicate &, whose only free variable is x, such that

Slaman has shown that ^ cannot be chosen effectively from x.

5. Moschovakis Witnesses

Suppose [e] (x) diverges. A Moschovakis witness to the divergence of {e} (x) is any
infinite path in > υ, the universal computation tree, below <e, x>. More precisely, a
witness is a function λn\t(ή) such that: ί(0) = <e,x>; and for each n, ί(n+ 1) is an
immediate subcomputation instruction of ί(n). Note that "ί is a witness to {e}(x) f
is ^-recursively enumerable. This section is devoted to locating the least ordinal
that suffices to enumerate a witness to the divergence of {e} (x). In many cases that
ordinal will belong to E(x). Thus the process of forming an ^-closure by closing
with respect to convergent computations will often close with respect to divergence
witnesses as well.

A structure $ is said to admit divergence witnesses if for all e < ω and xeS: if
[e] (x)t then some witness to [e] (x)t belongs to S. It will be seen shortly that L(κ)
admits divergence witnesses if L(κ) is £-closed but not Σ x admissible. The study of
forcing and priority over £-closed structures in future chapters will depend heavily
on the presence of divergence witnesses.

There is a connection between the current section and the Gandy basis theorem
for Σ} predicates (cf. Part A). Suppose xe£(ω) and {e}(x)f. Then there exists a
witness t to [e] (x)| first order definable over L(ω^κ). In addition t can be chosen so
that E(t) = L(ω?κ, t). Also E(ω) does not admit Moschovakis witnesses.
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5.1 Theorem (Kechris). Suppose y <Ex and A is E-recursively enumerable in x. If
y — A is nonempty, then

(Eb)[bey-A & κx>b < *?] .

Proof. First observe that

(1) κ%b <κx

r-+κx

r>
b <κx

r.

Let 3F be a Σx sentence of ZF with x as its only parameter. 3F reflects from κXfb

down to Kgfb. Suppose κ%b < κx. Then £F reflects from κx'b down to KQ. Hence
κXib < κx, since κx is the greatest x-reflecting ordinal.

By (1) it suffices to find &bey—A such that KQ* b < KX. Suppose there is no such b
with the intent of showing y ̂  A. Then

(2) y^Av{b\κϊ<κ$b}.

Note that the predicate, κx < κ%b, is JE-recursively enumerable in x by Corollary
4.4 and Exercise 4.12 since it is equivalent to

{Eδ)[δ <Ex,b & δ is not x-reflecting].

Thus y is contained in the union of two sets, as indicated in (2), each of which is E-
recursively enumerable in x. For each bey, there is a δb <Ex,b such that either (i)
or (ii) holds:

(i) δb is the length of a computation that puts y in A;
(ii) δb is not x-reflecting.

By Corollary 4.4 δb can be construed as a partial ^-recursive function of x, b defined
for all bey. Let

(5s = sup{δb\bey}.

Then the bounding scheme yields δs <Ex and so δs < κx. If (ii) holds for some b,
then δb > κx > δs. Hence (ii) never holds, and y c A. D

The Kechris basis theorem is analogous to the Gandy basis theorem for Σ} sets
of reals (Part A). In both an element b of a "co-recursively enumerable" set is found
so that some ordinal generated by b is minimized. This minimization is precisely
what is needed to prove Lemma 5.3. The next result is a technicality required for
the proof of 5.3.

5.2 Proposition. Assume some wellordering of TC(x) is E-recursive in x. Suppose
(c,y} is an immediate subcomputation instruction o/<e,x>. Then some wellorderjng
ofTC(y) is E-recursive in x,y. In addition if{c} (y)l, then some wellordering of{c] (my)
is E-recursive in x, y.
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Proof. Let e be 2m 3n. Suppose {m} (x) J, and z e {m} (x). Let v < E x be a wellordering
of ΓC(x). By Proposition 2.8,

for some γ <Ex. A recursion on the ordinals less than γ extends v to a wellordering
w of L(γ, TC({x})). w <Ev,γ, hence w <Ex. Since L(γ, TC({x})) is transitive, w
induces a wellordering of {m} (x) ^-recursive in x, and a wellordering of TC(z) E-
recursive in x,z. If [ή] (z) j , then another application of 2.8 yields a wellordering of
{n} (z) ̂ -recursive in x,z. D

Lemma 5.3 occupies a central place in ^-recursion theory. It was inspired by an
early theorem of Harrington [1973] in the setting of Kleene recursion in objects of
finite type. His result, in the language of ^-recursion, is: if ae2φ and {e}(α,2ω)ΐ,
then some Moschovakis witness to {e} (a, 2ω)ΐ is seen to be such via a computation
of height κ}ω>a.

5.3 Lemma. Assume some wellordering ofTC(x) is E-recursive in x. If{e} (x)t, then
some Moschovakis witness to {e}(x)f is first order definable over L(κf9 TC({x})).

Proof. The witness, λt \ (et9xt>, is defined by recursion on t < ω. (eo,xo > is <e,x>.
Fix t > 0 and assume <^,x,> has already been defined so that

(1) W(χ t )T,

(2) x f eL«,ΓC({x})λand

(3) <>κ?o> ••>**.

Let et = 2m 3". (As in the proof of 2.5, only scheme (T) is considered.) (3) implies

V7 ^r — ^ 0 — 0 *

Hence anything ^-recursive in xt belongs to L(κ?, TC({x})). In particular, if
{m} (XfH, then its computation tree belongs to L(κ?9 TC({x})). Hence examination
of L « , TC({x})) reveals whether or not {m} (x,) | .

Case A: {m}(xt)t
Define < β f + 1 , x f + 1 > = <m,xr>.
Case B: {m}(x f)|.
By Proposition 5.2 there is a wellordering <w of {m} (x,) £-recursive in xt. The

choice of w can be made in a uniform way with the aid of Gandy selection
(Theorem 4.1), as in the remarks following the proof of Corollary 4.5, because the
predicate, {c} (xt)l & {c} (xt) is a wellordering of {m} (xj, with c as a free variable, is
£-recursively enumerable. Define

et+1 = n , and

xt + 1= w-least u [us {m}(xt) & \ {n} (u)\ > κ*~\.
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Observe that {xt + 1} is first order definable over L(κx, TC({x})). It remains to be
seen that

(5) {*}(*,+i)ΐ & K? - t > ^ o , . . . , χ t + 1 >

The Kechris basis theorem (Lemma 5.1) provides a z such that

(6) ze{m}(xt) & {n}(z)| & κxo> - Xt > ιc*o,....χt,z#

Let z0 be the w-least z that satisfies (6). (5) is proved by showing xt + ί = z0. Clearly
xt+1 < z0.

Every z < w z 0 is such that either {n} (z)j or

(7) /c*° χt<κχo. ,.χuzm

As in the proof of (1) of Theorem 5.1, (7) is equivalent to

(8) κϊ°> • - > Xt < κx

0°
 Xt>z.

Thus for all z < w z 0 , either {n}(z)J, or (8) holds. (8) is equivalent to

(Ee)[{e}(x o . . . ,x ί ,zH & κ?-~-* < {e}(x0, . . . ,x f,z)].

It follows from Gandy selection that there is a partial ^-recursive function
/(x 0 , . . . , xt, z), defined for all z < w z 0 , such that either

(9) | { n } ( z ) | = / ( x o , . . . , x ί 5 z ) or < ° ' " * </(x 0 , . . . ,x,, z).

Let y = sup{/(x0, . . . , xt9z)\ z < w z 0 } . The bounding scheme gives γ <Ex0,. . .,
x ί5 z 0 . Consequently y < jc?° Xt by (6), and so

{n}(z)| for all z < z0

by (9). If x f + 1 < w z 0 , then

an absurdity. D

A reformulation of Lemma 5.3 will prove helpful. Let > y

υ be the universal
computation tree restricted to computations of height less than y. To be precise,
clause (v)(b) of the definition of > υ in subsection 2.1 is modified as follows. Replace
"{di}(xί9. . . , xn) converges*9 by "| {di](xι, . . . ,x n ) | < y". In the arguments to
come only scheme (T) of the proof of Lemma 2.5 will be considered. The precise
definition of >y

υ requires that "{m}(x)J," of clause (Ta) be replaced by
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"I {m} (x)| < y". Let T\et x > be the tree-like object consisting of <e, x> and that part
of > I below <>, x>.

5 4 Reformulation of Lemma 5.3. Suppose some wellordering of TC(x) is E~

recursive in x. If {e}(x)ΐ, then

Γ<^ xy is not wellfounded,

and both it and its left-most infinite path are first order definable over

The term "left-most infinite path" in 5.4 refers to the witness λt \ xt defined in the
proof of Lemma 5.3. "Left-most" is appropriate because xt + x is the w-least z such
that ze{m}(xt) & {n}(z)ΐ, when case B holds.

5.4 indicates the importance of another parameter. For all z define

θz = μy(e)l{e](z)] -> T\e%z> not wellfounded].

Harrington's ground breaking results [1973] are:

Kr,a =θ2»,a

κγ,a,b > K2*,a for all ,

Warning: Slaman [1985a] has found an x and y such that

K* > θx and κϊy<κϊ.

5.5 Lemma

(0 κu

r>θuforallu.
(ii) θu>v > θu for all u and v.

(Hi) κ;* = θx if some wellordering of x is E-recursive in x.
(iv) κx'u > κx for all w, if some wellordering of x is E-recursive in x.

Proof (i) Repeat the proof of Lemma 5.3 stripped of most definability consider-
ations. Assume (et,ut} has been defined so that

teHiOΐ and ^ > C ' 'Ut.

In case B choose ut+ί so that

ut+ίe{m}(ut), {n}(M ί+1)t and κx > κu

r°> -u<+ι.

The choice is made with the aid of Lemma 5.1. Hence | {m} (ut) | < K" when case B
holds. Thus all the ordinals needed for checking convergence in the course of
defining λt\ut are less than κu

r. (Only scheme (T) is being considered.) So λt\ut is a
path through > Jf.
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(ii) follows from the existence of an e* such that the instructions for computing
{e*}(u,v) are essentially the same as those for {e](u). Then T<e*tUtV> consists of
finitely many trivial nodes above a copy of Γ<βj M>.

(iv) κx/u >θx>u>θx = κx by (i), (ii) and (iii).'
(iii) By (i) κx > θx. In a moment it will be shown that there exists a recursive

function h such that for all e < ω:

(1) {e}(x)l~{h(e)}(x)l;

(2) if {λ(e)}(x)ΐ, then T^h(e)tX> has a unique infinite path.

Intuitively, T<h(eh x> consists of the leftmost, infinite path of T<βf x> and everything
to the left of that path.

Suppose [e] (x)|. By (1) and (2) T<h(e)tX> has a unique infinite path t. t is first order
definable over L(θx, TC{{x})). Suppose for a contradiction that θx < κx. Then by
reflection there is a divergence witness for {/ι(e)}(x)| ^-recursive in x.

But then for any e the question, does {e}(x)J?, can be effectively decided by
searching through the sets ^-recursive in x until either a wellfounded Γ< e x > turns
up or a divergence witness to {h(e)} (x)t is found. The search is effective by Gandy
selection, as in the remarks following the proof of Corollary 4.5.

h is defined by abridging the Normann schemes so as not to allow computations
to continue past the leftmost path. Suppose e = 2m- 3W. (Only scheme (T) is being
considered.) The immediate subcomputation instructions of <ft(e),x> will be as
follows:

(a) </ι(m),x> is an immed. subcomp. instruc. of </ι(e),x>;
(b) suppose {h(m)} (x) j ; let <w be the wellordering of {h(m)}(x) ^-recursive in x

supplied by Proposition 5.2. If {h(n)}(z)i for all z <wy, then (h(n),y) is an
immed. subcomp. instruc. of </i(e),x>.

Let h ~ {d}, where {d} is a fixed point of φ(c); that is {d} ̂  {φ(d)}.
φ(c) is a partial recursive function such that the instructions for computing

{{φ(c)}(e)} (x) are as follows.
First compute {{c}(m)}(x). If it converges, then compute < w , a wellordering of

{{c} (m)} (x), as in Proposition 5.2. Then compute {{c} (ή) } (y) for all y e {{c} (m)}(x)
in the order imposed by < w. If this procedure terminates, then the final value is

Otherwise the procedure is stopped by the failure of {{c} (m)} (x) to converge, or by
the failure of {{c}(n)}(^0) to converge, where y0 is the w-least y such that
{{c}(n)}(>;0)t. In the latter case the procedure does compute {{c}(n)}(y) for all
y <wy0, but not for any y >wy0. D

5.6 Lemma. Let x be a set of ordinals. Suppose L(κ,x) is E-closed but not Σ x

admissible. Then κx'y < κfor all yeL(κ,x).
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Proof. Suppose κx-y > K for some yeL(κ, x) with the intent of showing L(κ9x) Σ 2

admissible. Assume

d,peL(κ,x)9 and $F is ΔQ F . For the moment assume

(1) κx

r^
p'b>κx

r<
y for all feed.

Then by reflection,

&

In fact

(b)bedm[c<Ex9y,p9b &

It follows from Corollary 4.5 that c can be construed as a partial recursive function
of x,y,p9b defined for all bed. Let

e = {c(x,y,p,b)\bed}.

Then eeL(κ\ since e <Ex,y,p,d and L(κ) is £-closed. Consequently

L(κ, x) N (w)ued (Ev)υee J^ (M, I;, p).

To prove (1) apply Lemma 5.5 (iv). All that is needed is a wellordering w of
TC({x,y}) ^-recursive in x,y. Since κx/y > K, there is a wellordering of TC{{x,y})
in L(fc?'y, ΓC({x,>;})). Then w exists by reflection.

5.7 Theorem. Suppose x is a set of ordinals and L(κ, x) is E-closed. IfL(κ, x) is not Σ t

admissible, then L(κ,x) admits Moschovakis witnesses. D

Proof. Suppose yeL{κ9x) and {e}(y)T Let weL(κ,x) be a wellordering of
TC({x,y}). By Lemma 5.6, κx'y'w < K. According to Lemma 5.3 there is a witness t
to {e}()0ΐ first order definable over

* w , TC({x9y,w})).

t <Eκx'y'w, x9y,w; hence teL(κ,x), since L(/c,x) is £-closed. D

5.8 Theorem. Let x be a set of ordinals. The following are equivalent.

(i) E(x) is not Σx admissible,
(ii) κx>yeE(x)forallyeE{x).

(in) E(x) admits Moschovakis witnesses.
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Proof, (i) -• (ii) by Lemma 5.6. (ii) -> (iii) as in the proof of Theorem 5.7. Assume (iii)
to prove (i). For each aeTC(x), define f(e,a,x) to be the least γ such that
I {e}(a,x)\ < y or some witness to [e)(a,x)] is first order definable over
L(γ9TC({x})).

By (m)f(e,a,x) is defined on ω x TC(x) x {*}./ is Σt over £(Λ;), and

E(x) c L(sup range/, TC({x})).

Consequently sup range/= κx

9 and L(κx,x) is not Σ x admissible. D

It is not known if Lemma 5.6 can be strengthened so that its conclusion reads:
Then κy

r <κ for all y e L(κ, x). Slaman [1985] has found a Σ1 inadmissible £-closed
set that does not admit Moschσvakis witnesses. Thus the supposition, x is a set of
ordinals, of Theorem 5.7 was not lightly made. Existing proofs of the existence of
Moschovakis witnesses rely on some form of dependent choice (DCω) obtained by
either effectively wellordering the underlying set x or closing it under the formation
of ω-sequences. As an example of the latter, let x = 2ω. Then (2ω)ω = 2ω and so
E(2ω) satisfies DC ω , if it is agreed that V, the class of all sets, satisfies DCω.
Otherwise DCω can be justified in E(2ω) by assuming either (a) V = L, or
(b) V = L(2ω) and the axiom of determinateness holds in L(2ω) (Kechris).

5.9 Recursive Enumerability on S. Suppose δ is £-closed and i g ^ J ί s said to be
E-recursively enumerable on $ if for some p e $ and e < ω,

(1) A = {z\ze£ &{e}(p9z)i}.

Equivalently, A = S n B for some B ^-recursively enumerable in some p e S.
Warning'. A can be E-recursively enumerable on δ without being ^-recursively

enumerable in any p e S.
In the next chapter it will be shown by a forcing argument that there exists an E-

closed L(κ) such that L(κ) is not ^-recursively enumerable in any peL(κ).

5.10 Theorem. Let x be a set of ordinals. Then (i) <-•(»)•

(i) E(x) is Σ x admissible.

(ii) For all A ς: E(x): AisΣί definable over E(x) iff A is E-recursively enumerable on
E(x).

Proof (i) -• (ii). Let E(x) = L(κ9x). Suppose A c E(x) and

z G A <-• L(/c, x)• N (Ev) & (z, v, p).

for some ΔQ F & and peL(κ,x). By Theorem 5.8 there is a yeL(κ,x) such that
κy

r'
x > K. As in the proof of Lemma 5.6, v can be construed as a partial £-recursive
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function of x, y, p and z defined for all z e A. Then

zeΛ <->/(x, y, p9z)i & L(κ9 x) N & (z, /(x, y9 p, z), z),

and so A is E-recursively enumerable on E(x) via y,p.
Now assume (ii) holds and (i) fails in hope of a contradiction. By Theorem 5.8,

E(x) admits Moschovakis witnesses, and so the predicate,

zeE(x) & {e}(e,z)t

with z and e as free variables, is Σ x definable over £(x). Hence it is ^-recursively
enumerable on E(x) via some parameter qeE(x). Then the set

κq = {e\{e}{e,q)]}

is ^-recursively enumerable on E(x) via g, hence ^-recursively enumerable in q,
since x e ω is an ^-recursive predicate. Thus for some c e ω,

But then {c} (c, g) t iff {c} (c, q)l. D

5.11 The Divergence-Admissibility Split. Theorems 5.8 and 5.10 yield a useful split
of all £-closed L(κ)'s into two disjoint classes.

Class I: L(κ) admits Moschovakis witnesses.
Class II: L(κ) is Σ t admissible; and for all A ^ L(κ\ A is Σ t definable over L(κ)

iff A is ^-recursively enumerable on L(κ).
In brief, either L(/c) admits divergence witnesses or Σ t equals ^-recursively

enumerable on L(κ\ but not both. A typical application of the split, made in
Chapter XIII occurs in the solution to Post's problem in the sense of ^-recursion
theory for every £-closed L(κ). If L(κ)ε Class II, then the admissibility methods of
Part B suffice. If L(κ)e Class I, then Moschovakis witnesses shoulder most of the
burden of proof.

For proof of the split first assume L(κ) φ E(x) for any x. Every xeL(κ) is
wellordered in L{κ% so Lemma 5.3 implies L(κ)el and {<e, x> | [e] (x) ]} is Σ x over
L(κ). If L(κ) were in II, then {<e, x> | {e} (x) | } would be E-V.Q.; hence ^-recursive, an
absurdity.

Now suppose L(κ) = E(x) for some x. It is safe to assume x is a wellordering.
Then by Theorems 5.8 and 5.10, L(κ)φl iff L(κ) is Σx admissible iff ^ definability
over" agrees with "^-recursively enumerable on" for L(κ).

5.12-5.17 Exercises

5.12. Make precise and prove the reformulation of Lemma 5.3 given in subsection
5.4.
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5.13. Supply the details of the proof of Lemma 5.5 (i).

5.14. Suppose A ^ q e S, 8 is £-closed, and A is ^-recursively enumerable on $ via
p. Show A is ^-recursively enumerable in /?, q.

5.15. Show Eiω^ is not Σx admissible.

5.16. (Kleene) Show 2 ω n E(ω) is ^-recursively enumerable in ω.

5.17. Suppose P{y) is £-co-recursively enumerable in a, and (£y) y < c P(y). Let y^ be
) Show




