Part A

Hyperarithmetic Sets

Hyperarithmetic theory is the first step beyond classical recursion theory. It is the
primary source of ideas and examples in higher recursion theory. It is also a
crossroads for several areas of mathematical logic. In set theory it is an initial
segment of Godel's L. In model theory, the least admissible set after w. In
descriptive set theory, the setting for effective arguments, many of which are
developed below. It gives rise directly to metarecursion theory (Part B), and yields
the simplest example of both a-recursion theory (Part C) and E-recursion theory
(Part D).






Chapter 1
Constructive Ordinals and IT] Sets

It is shown that a universal quantifier ranging over the real numbers is equivalent
in certain circumstances to an existential quantifier ranging over the recursive
ordinals, a countable set. Along the way notations for ordinals and the method of
defining partial recursive functions by effective transfinite recursion are developed.

1. Analytical Predicates

The analytical predicates are obtained by applying function quantifiers to recursive
predicates. Chapter I focuses on analytical predicates in which at most one function
quantifier occurs, since in that case an analysis based on ordinals goes smoothly.

1.1 Partial Recursive Functions. Some conventions, occasionally violated, in this
book are:

wis {0, 1,2, ...}, the set of natural numbers.

b, ¢, e, m, n are constants that denote natural numbers.

X, ¥, z, . . . are variables that range over w.

£, g, h, . .. are total functions from w into w.

X, Y, Z,...are subsets of w.

¢, Y, 0 are partial functions from  into w, that is functions whose graphs are
subsets of w?.

¢(b)~cis true iff (if and only if ) ¢ (b) is defined and equal to c. ¢(b) ~ Y(c) iff both
¢(b) and ¥ (c) are defined and equal, or neither is defined.

{e}/ is the e-th item in the standard enumeration of functions partial recursive in

f- There exist a recursive predicate T and a recursive function U, both devised by
Kleene, such that

1) {e}/®)=ciff €BY)[T(f()), e, b,y) & U(y)=cl

f(y) encodes {G, f@li<y}:
fo)=T1pt*’o.

i<y
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p; is the i-th smallest prime; p, = 2. The right side of (1) says there is a computation y
derived from the e-th set of equations, and the values of f restricted to i < y, whose
final outcome is c. All of the above extends to

{e}ﬁ,,..-,fm—l(xo, ey x,,_l)

for all nonnegative m and n.

1.2 Function Quantifiers. A predicate R(f, x) is recursive if there is an e such that:

(i) (N)(x)[{e}’(x) is defined]; and
(i) (NX)R(S, x) > {e} (x)=0].

Thus the truth value of R(f, x) is determined by a finite computation. As in
subsection 1.1 the definition of recursive predicate extends routinely to predicates
of the form R(fy, . .., fu—15 Xo» - - - » Xs—1) for all m, n>0. For simplicity R(f, x)
will be used somewhat ambiguously to denote a recursive predicate with an
arbitrary number of function and number variables.

A predicate is analytical if it is built up from recursive predicates by application
of propositional connectives, number quantifiers and function quantifiers. Thus

(1 (Ex)(f)(Eg)R(x, y, f, 9, h) and (Ef)(h)S(f, h, 2)

are analytical if R and S are recursive. A predicate is arithmetic if it is analytical but
includes no function quantifiers.

There is an aspect of the classification of predicates which will seem picayune
now but which will matter a great deal later. A predicate may be classified by virtue
of its explicit form, as were the predicates of (1), or by being proved equivalent to
another predicate already classified. For example, the predicate, “fis constructible
in the sense of Godel”, is seen to be analytical only after it is shown that every
constructible number-theoretic function is constructible via a countable ordinal.

1.3 Theorem (Kleene 1955). If P(f, x) is analytical, then it can be put in one of the
following forms:

(Eg)»)R(f,x,9,¥),  (Eg)W)(EY)R(f, X,9,h,y) ...

(9)EY)R(f,x,9,5),  (PED(R(f x,9,h,y) . ..

where A is arithmetic and R is recursive.

A(f, x)

Proof. First P(f, x) is put in prenex normal form with a recursive matrix by the
usual quantifier manipulations associated with first order logic. Then the resulting
prefix is put in one of the desired forms by applying the following rules. K is
arbitrary.

M ()(ENK (S, x) = EN)K((f)x> X).
(f)x is defined by (f).(y) =f(2*-3").
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fis thus interpretable as a code for { f,|n < w}. Rule (1) is a nontrivial consequence
of the axiom of choice. If K is (Eg)(h) A(f, x, g, h) for some arithmetic A4, then (1) is
provable in Zermelo—Fraenkel set theory (ZF). (See Chapter III, Section 9.) On the
other hand there is a K of the form (g)(Eh) B(f, x, g, h) with B arithmetic such that
(1) is not provable in ZF.

The dual of (1) is

%) EX)(N)K(f; x) = (NHENK((f)x, X)-

Each of the remaining three rules has a dual.

@ (Ex)K (x) = (Ef) K(f(0)).
©) (Ef)(Eg)K(/, 9) = (ENK((f)o, (S)s)-
Q) (Ex)(Ey)K (x, y) > (Ex) K ((x)o, (x);)-

(x); is the exponent of p;, the i-th smallest prime, in the unique factorization of x.
Note that the substitution of (f), or (x); for some of the variables of a recursive
predicate leaves it recursive. The following illustrates the normalization of a prefix.

(EN)(x)(Ey)(h)(z) is given.
(EN(x)(W)(Ey)(z) by (1*).
(EN(@)(m)(Ey)(z) by (2%).
(Ef)(9)(Ey)(z) by (3*).
(Ef)(9)(Ey)(h) by (2*).
(EN)(g)(R)(Ey) by (1*).
(Ef)(9)(Ey) by (3*).

Observe that a prefix can be normalized by deleting all number quantifiers,
collapsing each block of function quantifiers of the same sort to a single one of that
sort, and adding a single number quantifier on the right dual to the rightmost
function quantifier. O

Each of the nonarithmetic normal forms of Theorem 1.3 has a Greek name. An
analytical predicate in normal form is said to be X} (IT} respectively) if its prefix
begins with an existential (universal respectively) function quantifier and encom-
passes n—1 alternations of function quantifiers. Thus the forms of Theorem 1.3 are

DTSN 3 TN
Arithmetic,
i, i ami,...

A predicate is said to be A} if it is both £} and I1}. The A} predicates will eventually
be proved to be the same as the hyperarithmetic predicates.
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1.4 Set Quantifiers. The effect of applying function quantifiers to predicates can
also be realized by applying set quantifiers. X encodes a function if

1) ()[Ey][2*FeX].

If (1) holds, then the function encoded by X is denoted by fyx. Thus
fx(x)=ye2*-3eX.

A predicate R(X, y) is said to be recursive if it is equivalent to some recursive
predicate R(cy, y), where cy is the characteristic function of X. Let Ry(X, x, y) be a
recursive predicate such that (1) is equivalent to (x)(Ey)Ry (X, x, y). The rule for
replacing function quantifiers by set quantifiers is:

@ (EDK(f) = (EX)(X)(EY)[Ro(X, x,y) & K(fx)]

Rule (2), and its dual, are all that is needed to transform Theorem 1.3 into Theorem
1.5. It is a fact that the single alternation of number quantifiers occurring in the
normal forms of Theorem 1.5 cannot be reduced to a single number quantifier.
There exists a recursive predicate R(X, y, z, x) such that (EX)(y)(Ez)R(X, y, z, x) is
not equivalent to (EX)(y)S(X, y, x) for any recursive S.

A predicate P(Z, x) is analytical if it is built up from recursive predicates by
application of propositional connectives, number quantifiers and set quantifiers; it
is arithmetic if no set quantifiers are allowed.

1.5 Theorem (Kleene (1955).) If P(Z, x) is analytical, then it can be put in one of the
following forms:

(EX)(»)(Ez)R(X, y,2, Z,x),  (EX)(Y)Ey) 2R ...
A(Z, x)
(X)(Ey)(2)R(X, y, 2, Z, x), (X)EY)(»)(E2)R . ..

where A is arithmetic and R is recursive.

There is no harm in mixing set and function variables. Thus a predicate is
analytical if it is built up from recursive predicates by application of propositional
connectives, number quantifiers, function quantifiers and set quantifiers. It is
arithmetic if all quantifiers are number-theoretic. The resulting forms are again
denoted by X! or I} (n > 1).

The most important of all I} predicates is: X encodes a countable wellordering.
It turns out to be universal I1}, hence not X}. It gives rise to a bounding principle
with numerous applications. For example, it is used in Chapter IV to compute the
Lebesgue measure of a I} set of reals.

If K<2® then K is said to be IT! (! respectively) if XeK is II! ()
respectively). Similar conventions are in force when K < w or K < w? etc.
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1.6 Theorem (Spector 1955). Suppose A(X) is X1.
(i) N {X|AX)} is I1}.
(i) If (E{X)A(X), then the unique X that satisfies A(X) is A}.
Proof.
(i) Let B be N {X|A(X)}. Then
xeBe(X)[A4X) - xeX].
(ii) Let C be the unique solution of A(X). Then
xeC—(EX)[AX) & xeX]
—«X)[AX)->xeX]. O

In Chapter III, Section 6, it will be shown that every X] set with a non-A}
member has a continuum of members. The proof will require more than trivial
quantifier manipulations, namely an analysis of £} predicates by means of recur-
sive trees with infinite branching.

Part (i) of Theorem 1.6 is often alluded to as follows: a set (of numbers) is T} if it
is the closure of a IT} set under a £} closure condition. A predicate A(X) is a closure
condition if the intersection of any non-empty collection of solutions of A(X) is a
solution of 4(X), and if every set (of numbers) is contained in some solution of

A(X). Let A(X) be a closure condition. It follows that for each Y there is a least X,
call it Y, such that Y < X and A(X):

Yo=n{X|YSX & AX).

Y, is called the closure of Y under A. By Theorem 1.6(i), Y,eIl} if YeIl! and
A(X)e X!, because then

YeX & AX)
is T1.
1.7 Proposition. fe X! & feIll & feAl.
Proof. Since f'is a function,
(1) fX)=ye@Lly#z-f(x)#z]
If the left side of (1) is X} (I} respectively), then the right side is IT} (=%
respectively). [

1.8-1.12 Exercises

1.8. Show there exists a universal I1} predicate, that is a I1} predicate P(e, f, x)
such that for each IT! predicate Q(, x) there is a ¢ for which P(c, f, x) and
Q(f, x) are equivalent for all f and x.



8 1 Constructive Ordinals and I1} Sets

19. Show Il c =l ,, =l e}, , I} € £} and 2, & I1}.

1.10. Let o have the discrete topology and w® the product topology. Basic closed
subsets of w® can be coded by finite sequences of natural numbers, hence by
natural numbers. A closed subset of w®, regarded as an intersection of basic
closed sets, can be coded by a subset of w. Show “X codes a closed subset of
w®” is arithmetic. Show “X codes a countable, closed subset of w®” is IT}.

1.11. Let L be a first order language whose set of primitive symbols is recursive. Let
S(X) be “X codes a countable set of sentences of L”. Show “S(X) and X is
consistent (that is yields no contradiction via first order logic)” is arithmetic.
Show “S(X) and X has a model” is 1.

1.12. Suppose <, and <, are order-isomorphic, recursive wellorderings of w.
Show there exists a A} fsuch that x <,y < f(x) <,f(y) for all x, yew.

2. Notations for Ordinals

Suppose < is a wellordering of w. < is said to be recursive if the predicate x < y is
recursive. An ordinal is called recursive if it is finite or the ordertype of a recursive
wellordering. The recursive ordinals form a countable, initial segment of the
countable ordinals with strong closure properties. They constitute an effective
analogue of the countable ordinals. For example, the Cantor—Bendixson analysis
of a recursively encodable, countable closed set terminates at a recursive ordinal.

The definition of recursive ordinal is, in a manner of speaking, from above. The
question of whether or not a recursive linear ordering ¢ is wellordered is complex.
A straightforward resolution would require examination of every function f from w
into w to see if f defines an infinite descending sequence in £. A more constructive
approach would be from below. It seems reasonable to expect that the successor of
a constructive ordinal be constructive, and that the limit of a recursive sequence of
constructive ordinals be constructive. The constructive approach is made precise
with the help of notations. Afterwards it is shown the approaches from above and
below yield the same result; the recursive and constructive ordinals coincide. The
notion of ordinal notation is useful in proof theory as well as in recursion theory. It
facilitates delicate recursions and inductions.

2.1 Kleene’s O. The formula x <,y is to be read: x and y are notations for
constructive ordinals and x is less than y according to the ordering of notations.
The ordering < is not linear, because the same ordinal may have two different
notations.

The predicate x <, y, regarded as a set of ordered pairs, is the closure of a finite
set under a X! closure condition as described in the remarks following sub-
section 1.6.

The closure condition A(X) has three clauses.

(1) WE)[{uvdeX > (v, 2°>e X].
) (n) [{e}(n) is defined & ({e}(n), {e}(n+1)>e X] > m)[{{e}(n), 3-5¢>eX].
() @) (v) W) [<u, 0D, {0, w>e X — (u, wde X].
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(1) deals with successors, (2) with limits, and (3) with transitivity. All three are
positive in nature: if some elements belong to X, then some other elements belong
to X. The positiveness of A(X) implies it is a closure condition. Hence there is a
least X such that { 1,2>e X and A(X). <, is defined to be that least X.

Kleene’s O, the set of notations for constructive ordinals, is the field of <.

A binary relation r is said to be wellfounded if there is no f'such that (x)r(f(x+ 1),
J(x))-

2.2 Theorem

() <o and O are T1}.
(ii) <, is a wellfounded partial ordering
(iii) If ve O, then the restriction of <, to {ulu <y} is linear.

Proof.

(i) <, is I} by Theorem 1.6(i), since A(X) is arithmetic. Then O is I1} by rule
(1*) of the proof of Theorem 1.3, since ue 0 — (Ew)[w <,u V u <, wl.

(i) The following natural enumeration of <, is equivalent to a redefinition of <,
by transfinite recursion on the ordinals.

Stage 0: enumerate 1 <,2.

Stage § + 1: enumerate v < 2" and u <, 2" if u <, v was enumerated at stage 6.

Stage A (limit): enumerate {e}(n) <, 3-5° and u <,3-5% if not enumerated
earlier, if for each n, {e}(n) <, {e}(n+1) has been enumerated earlier, and if for
some n, u <, {e}(n) has been enumerated earlier.

By induction on y, a pair enumerated at stage y belongs to <,. On the other
hand the set of all pairs enumerated is a solution of A(X) and hence contains <.
Also by induction, ifu <, vand v <, w, then u <, vis enumerated at an earlier stage
than v <y w. It follows that <, is wellfounded, since otherwise there would be an
infinite, descending sequence of ordinals.

The natural enumeration also makes clear there is no x such that

(1) u<ox & x<g2% or x<gyl, or
(2) M[{e}(m) <o{e}(n+1)<px] & x<3-5°

Consequently 2" is said to be the successor of u, and 3 - 5¢ the limit of {e} (n) (n < w).

(iii) is proved by induction on <,. Assume u, u, <,v to check u, <o u, or
Uy =u, or u, <qyu,. If v =2% then (1) implies u,, u, <, u and the desired result
follows by induction. If v =3-5, then apply 2). O

In Part B of this book a generalization of recursive enumerability is offered that
allows <, to be viewed as a higher kind of recursively enumerable relation. The
natural enumeration of <, becomes a proof that <, is metarecursively enumer-
able. Elements enter metarecursively enumerable sets by means of metafinite
computations, which are infinite but have many of the properties of finite com-
putations.
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2.3 Constructive Ordinals. The function | |:0 — Ordinals is defined by transfinite
recursion on <.

11| =0.
12 = |u] + 1;

[3-5¢| = lim |{e} (n)].

n— oo

The definition is sound by 2.2(1)2). If u€ O, then u is said to be a notation for the
ordinal [u|. An ordinal ¢ is constructive if § = |u| for some u € O. There are no gaps in
the constructive ordinals. They form a countable, initial segment of the ordinals.
The least non-constructive ordinal is called Church-Kleene omega-one and is
written w$¥.

The fact that each infinite constructive ordinal has many notations is a conse-
quence of the “approach from below”. The choice of a preferred notation for w is no
simple matter. A bad choice for @ might make choices difficult further on (cf.
Exercise 2.4). Later it will be seen that there exists a I1} subset of O, linearly ordered
by <o, and of ordertype w{¥. Such a subset is called a set of unique notations. It
will be defined from above.

2.4-2.6 Exercises

24. A path in O is a set Z < O such that Z is linearly ordered by <, and
W) (v)[u <oveZ — ueZ]. A path can be continued if there is a w e O such that
(w)[ueZ - u <,w]. Find a path in O of ordertype less than w{* but which
cannot be continued.

2.5. Spell out the details omitted from the proof of Theorem 2.2(ii).

2.6. Prove Theorem 2.2(ii) without any reference to ordinals. For example, prove
~(Ex)[x <o1] by showing A(X) = A(X —{<{x, 1)}).

3. Effective Transfinite Recursion

Let f map w into w, and let f } n denote the restriction of f to {m|m < n}. To say fis
defined by recursion on w is to say there exists an iterater I such that

(1) f(m)=1(fn) for all n.

(1) is called a recursion equation. For each I there is a unique f'such that (1) holds. If
I is computable, then fis computable by virtue of a straightforward, but limiting,
intuition. f(n) is computable from I and the set of previous values, { f(m)|m < n}.
More precisely, f(n) is computed by iterating I n times. The record of that n-fold
iteration is the computation of f(n). With this intuition in mind, it appears
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farfetched to replace the standard wellordering of w by some arbitrary wellordering
of w and still expect f to be computable when I is. For one thing, n may have
infinitely many predecessors and the iteration of I infinitely many times is not a
finite computation. For another, it is no longer clear what is meant by the
effectiveness of I, since a typical argument of I in (1) may be an infinite object.

Church and Kleene made the remarkable discovery that (1) remains a valid
scheme for defining recursive functions when the standard wellordering of w is
replaced by an arbitrary one, so long as I remains effective in an appropriate sense.
It is tempting to think that the wellordering should be recursive, but that limitation
is unnecessary, and fortunately so, since many of the applications are to <,.
Rogers was the first to use the phrase, “effective transfinite recursion”, and to
provide a general result similar to Theorem 3.2.

First a technical result of classical recursion theory, Kleene’s fixed point
theorem. The fact that (1) above has a unique solution ffor each I is often described
in a set theoretic setting by noting that f'is a fixed point of I. The next result is an
effective counterpart of the essential existence argument employed in the set
theoretic treatment of definition by transfinite recursion.

3.1 Theorem (Kleene). Suppose I: w — w is recursive. Then for some c, {I(c)} ~ {c}.

Proof. Let t be a recursive function such that

{t@)} = {{e} (@)}

for all e. Choose b so that

(1) {b}(x) =I(¢(x))

for all x. Then

{1 @)} = {{b}(B)} = {t(b)}-

Thus ¢(b) will serve for c. O

Note that a fixed point ¢ of I is computable in a uniform manner from a Gédel
number of I, since ¢ is independent of I, and since the composition that occurs in (1)
is effective. It follows that if I depends effectively on some parameter p, then the
fixed point ¢ can be construed as a recursive function of p.

3.2 Theorem. Let < g be a wellfounded relation whose field is a subset of w, and I:
® — w a recursive function. Suppose for all e < and x in the field of <y, {e}(y)
defined for all y < g x implies {I(e)}(x) defined. Then for some c, {c}(x) is defined for
all x in the field of <g, and {c} ~ {I(c)}.
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Proof. By theorem 3.1 there is a ¢ such that {c} =~ {I(c)}. Suppose x is a minimal (in
the sense of <) element such that {c}(x) is not defined. Thus {c}(y) is defined for
all y <gx. But then {I(c)}(y) ~ {c}(y) is defined. O

Warning: definition by effective transfinite recursion (ETR) is more than an
effective version of the set theoretic method of definition by transfinite recursion.
There is an element of self-reference in ETR with no counterpart in set theory.
There is also a use of indices to transform potentially infinite computations into
finite ones. Thus f'(n) is computed not by iterating I n times, but by having I act on
an index for f } n. An excellent example of ETR is the definition of +,.

3.3 Addition of Notations. The key property of +,, the addition function for
notations in 0, is: if a, be O, then a + ,b € O and |a + ,b| = |a| + |b|. The definition of
+ o by effective transfinite recursion is aimed at realizing this key property.

Let h be a recursive function such that

(1) {h(e, a, d)}(n) ~ {e}(a, {d}(n))

for all e, a, d and n. By the use of pleonasms (that is, each partial recursive function
has infinitely many Gédel numbers), it is safe to insist & be one-one from ? into .
Let I be a recursive function such that

a if b=1

) {I(e)}(a, b) ~ 2}@m if b=2"
3. 5head if b=3-5¢
7 otherwise.

The first three clauses of (2) mimic the definition of + for ordinals. Thus o+ = a if
B=0,a+pf=(a+y)+1if f=y+1,and a+ A=lim(x+7,) if A =limy,. I is recursive,

despite the non-recursiveness of <, because the splitting of O into notations for
zero, successors, and limits is effective. Also the instruction coded by I(e) makes
sense whether or not a and b belong to O.

By Theorem 3.1, I has a fixed point c. Define a+,b to be {c}(a, b). Since

{I(e)} = {c},

a if b=1
a+ob~ 2" if b=2"

3. 5hcad if b=3-54

7 otherwise.

Note that {h(c, a, d)}(n) >~ a + o {d}(n) by (1).
Nothing in Theorem 3.1 requires +, to be defined anywhere. The proof of
Theorem 3.2 shows the domain of + , contains O. (2) has a quirk that compels +,
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to be total. Suppose a + ,b is not defined. Then b must be 2™, since h is total, and so
a+om is not defined for some m <b. Thus an induction on w shows +, is total.

3.4 Theorem (Kleene). The recursive function + , has the following properties for
all a and b.

(i) a,beO0O—>a+,beO.

(ii) a, be0 —|a+,b| =|al +1b|.

(iii) a, be0 & b#1>a<ga+,b.

(iv) ae0 & c<pgbeora+,c<ga+,b.
(v) ae0 & b=ceO—a+yb=a+,c.

Proof. First all inferences from left to right are proved simultaneously by induction
on b, an induction that proceeds according to <,.
Case I: b=1. Then a +,b=a, and (i) and (ii) from left to right are immediate.
(iv) is vacuous by 2.2(1).
Case 2: b=2" Then me 0. Hence by induction a +,meO0, |a + om| = |a| + |m],
and a<gpa+om. Soa+ybe0, |a+,bl=|al+|b|, and a <ga +,b.

Suppose ¢ <b. Then ¢ <,m by 2.2(1). Hence by induction a +,¢c <pa +,m,
and so a +yc <gpa+ob.
Case 3:  b=13-5% Then by 2.2(2), {e}(n) is defined and {e}(n) <, {e}(n+1) <x3-5°
for all n. By induction a <ga +o{e}(n) <pa +o{e}(n+1)and |a +,{e}(n)| = |a| +

|{e}(n)| for all n. Hence a + o b = 3-5"*9 €0, |a + o b| = lim |a + o {e}(n)| = |a| + |b],

and a <pa +,b.

Suppose ¢ <ob. Then ¢ <, {e}(n) for some n by Theorem 2.2(1) and 2.2(2). By
induction a + ¢ <gpa +o{e} (n) <pa +ob.

Now the inferences from right to left are proved by induction on a + ,b with
respect to <.

Case I: a+ob=aand b=1. Trivial.
Case2: a+ob=2"%"0"and b=2" Thena +,me0, and by induction a, m, be 0.

Subcase 2a: a +yc=a+,b. Then c is of the form 2", and a + yn=a + ,m. By
induction n=m, so ¢ =b.

Subcase 2b: a +oc<a+ob. Thena+,c<ga+om,c<omand c <,b.

Case 3: a+,b=3-5"@%9 and b=3-5° Then a +,{e}(n) <pa+o{e}(n+1)
<03-5"@*9 for all n. By induction ae O and {e}(n) <,{e}(n+1) for all n, hence
beO.

Subcase 3a: a+qoc=a+b. Then ¢ =3.5 for some d such that h(c, a,d) =
h(c, a, ). Recall that h is one-one. Thus d =e and ¢ =b.

Subcase 3b: a+oc<a+ob. Thena+,c <pa+o{e}(n) for some n. By induc-
tion ¢ <, {e}(n), hence c <,b. 0O

From now on W, is the e-th recursively enumerable subset of w, that is the
domain of {e}, the e-th partial recursive function.
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3.5 Theorem (Kleene). There exist recursive functions p and q such that for all
beO:

() Wypy={ala <ob};
(i) W= {<u, v)|u <ov <ob}.

Proof. The essential properties of p are:

Woay = ?,
(1) W =1{a} U Wy,
Wpia-sa= 9 { Wyqam|{d} () is defined}.

An induction on <, shows that any p that satisfies (1) also satisfies 3.5(i). The
existence of a recursive such p is obtained by an effective transfinite recursion on
<o Let e, be a Godel number and j and k recursive functions such that

I'Vec, = ¢’
2 Wie.w ={a} U Wie
Wie,ay =Y { W{e}({d}(n))|" <o}

In (2)itis intended that W, , = ¢ when {e}(a) is undefined; similarly for W,y a))-
There exists a recursive I such that

e, if b=1
{I(e)}(b) ~ j(e, a) if b=2°

k(e,d) if b=3-5¢

0 otherwise.

By theorem 3.1, I has a fixed point c: {I(c)} ~ {c}. Define p(b) to be {c}(b). Then

e, if b=1
p(b) = j(c, a) if b=2°

k(c,d) if b=3-5¢

0 otherwise.

Note that p is total because j and k are. (2) implies that p satisfies (1).
The definition of q is similar to that of p. [

Some applications of Theorem 3.5 need only the fact that {a|a <,b} is re-
cursively enumerable whenever b € O. But it does not seem possible to establish this
fact without establishing it uniformly, that is without developing a uniform method
p for enumerating the predecessors of an element of O. Not surprising, since the
only general approach to showing every element of O has some constructive
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property is by effective transfinite recursion, an approach that can only be made by
means of an effective recursion step.

3.6-3.7 Exercises
3.6. Prove there exists a recursive function g that satisfies Theorem 3.5(ii).

3.7. Fill in the details of the proof of Theorem 3.4.

4. Recursive Ordinals

An ordinal is said to be recursive if it is finite or the ordertype of some recursive
wellordering of w. In a moment it will be shown that the recursive ordinals coincide
with the constructive ordinals. This theme will recur in Part D, where it will be seen
that the ordinals E-recursive in x are cofinal with the ordinals constructive in x for
every set x. It is sometimes said that the notion of recursive ordinal is more intrinsic
than that of constructive ordinal. This merely means there is no element of chaos in
the notion of recursive predicate, but there is great freedom in the development of
notations for ordinals. In Part D it will be the case that every ordinal constructive
in x is recursive in x, and every ordinal recursive in x is less than some ordinal
constructive in x. In the present section every ordinal less than a constructive
ordinal is constructive, but that will not be so in Part D.

There exist very small subclasses of the recursive predicates which give rise to the
recursive ordinals. Thus each recursive wellordering is order isomorphic to some
primitive recursive wellordering and even to some rudimentary (in the sense of
Smullyan) wellordering. In fact O’Neill has observed that predicates computable in
polynomial time suffice. In the other direction if {{x, y)|x <,y}is Z{ and <,is a
wellordering, then the ordertype of <, is a recursive ordinal.

The next lemma states that every recursively enumerable subset of O is bounded
in a highly effective manner. Later it will be shown that every X! subset of O is
bounded in a somewhat less effective manner.

4.1 Lemma. There exists a recursive g such that for all e:
(i) gle)c0 W, < 0
(i) g(e)e 0 — |a| < |g(e)| for all ae W,

Proof. g(e) is an “infinite sum” of W,. Let r be a total recursive function such that
for all e: {r(e)} is total and the range of {r(e)} is W, U {1}. There exists a total
recursive function s defined by recursion on n such that for all e:

{s()}0)={r(e}0)=1,
{s(e)}(n+1) = {s(e)} (n) + o 2{r@}n+ 1),

+ o was defined in subsection 3.3.
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Let g(e) be 35,

First assume g(e)€ O to see W, < 0. Clearly {s(e)}(n)€ O for all n. Fix n > 0. By
Theorem 3.4(i), 2@} e 0, and so {r(e)}(n)eO.

Now assume W, < O. Then for each n, {r(e)}(n)e O, and by Theorem 3.4(iii)
{s(e)}(n) < o{s(e)}(n+1). Hence g(e)€O.

Lastly assume g(e)e O and 1 # a€ W,. Choose n> 0 so that {r(e)}(n) = a. Then

{s(e)}(n) = {s(e)}(n—1) +,2°

Hence 2° <, {s(e)}(n), and so |a| <|g(e)]. O

4.2 Enumeration of Wellfounded Relations. A binary relation R(s, y) is said to be a
wellordering if it is:

(i) connected . .. R(x,y) v R(y,x) v x=y;
(ii) transitive . .. R(x, y) & R(y, z) = R(x, z); and
(iii) wellfounded ...if S is a nonempty subset of the field of R, then
(Ey)yes(x)xes ~ R(X, y)
Note that (iii) implies R is
(iv) irreflexive . .. ~ R(x, x), and
(v) antisymmetric . . . R(x, y) &> ~ R(y, x).

Certain aspects of the effective study of ordinals make it necessary to consider
wellfounded relations rather than wellorderings. In addition a computation is a
wellfounded tree rather than a wellordering.

If a binary relation R is wellfounded, then it has a height denoted by |R| and
measured by an ordinal. Let § be an ordinal variable. Read “uf” as “the least
such that”. Define

x| = uB[R(y, x) = |yl < B],
|R| = uB(x)[x efield of R — |x| < B].

The notion of height is useful for proving theorems about wellfounded relations
by transfinite induction.
Let R, be the e-th recursively enumerable binary relation, that is

R.(x, y) < {e}(x, y) is defined.

Thus {R.|e < w} is a simultaneous recursive enumeration of all recursively enumer-
able binary relations.

4.3 Lemma. There exists a recursive f such that for all e:

(i) R, is wellfounded < f(e)€ O; and
(i)) R, is wellfounded — |R,| < |f(e)].
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Proof. The idea is to define a one-one, order-preserving map from the field of R,

into O by an effective transfinite recursion on R,. One difficulty is the uncertain

nature of the field of R,. It is recursively enumerable, but may be empty or finite.
Let h be a total recursive function such that

Rye,m(X, ) = Re(x, ) & R.(x,n) & R.(y,n)

for all e, n, x and y. Ry, , is the initial segment of R, below n. R, , is empty if n is
not in the field of R,. There exists a total recursive ¢ such that

¢ if R.=9,

(1) Wb = {{b}(h(e, n))|n < w} otherwise.

Recall g from Lemma 4.1. Let k be a recursive function such that

{k(b)}(e) = g(t(b, e));

let ¢, be a fixed point of k, that is {k(co)} =~ {c,}. Define
f(e) ~{co}(e), and
t(e) = t(cy, €).

¢ if R,=9¢,
{f(h(e, n))In < w} otherwise,

Then
I/V!(e) =

and f(e) = g(t(e)).

Suppose R, is wellfounded to show f(e)eO and |R,| <|f(e)|. If the field of
R, is empty, then W, =¢ and f(e)eO by Lemma 4.1. Assume R, # ¢. Then
|Rpe,m| < IR,| for all n < w, and the desired result follows by transfinite induction
on |R,| with the aid of Lemma 4.1.

Now suppose f(e) € O to show R, is wellfounded. For all n, | f (h(e, n))| < | f(e)| by
Lemma 4.1. So by transfinite induction on <4, Ry, , is wellfounded for all n.
Hence R, is wellfounded. O

It can be shown that “<” in 4.3(ii) cannot be improved to “=".

Clause (i) of Theorem 4.3 implies that the predicate “R, is wellfounded” is many-
one reducible to Kleene’s O. This is the first indication that O is some kind of
complete or universal set. In Section 5 it will be shown that O is a.complete IT} set,
that is every I1} set is many-one reducible to 0. With the aid of insight supplied by
metarecursion theory in Part B, it will be seen that O is a complete 1! set in the
same sense that

K = {{e, n)|{e}(n) is defined}

is a complete, recursively enumerable set. From the viewpoint of Part B, a number
belongs to a IT! set if and only if some metafinite computation says it does. A



18 1. Constructive Ordinals and IT! Sets

metafinite computation will be a wellfounded relation of recursive ordinal height
and of A} complexity.

4.4 Theorem (Kleene, Markwald). The recursive ordinals equal the constructive
ordinals.

Proof. Suppose f is a recursive ordinal. Let R be a recursively enumerable,
wellfounded binary relation of height . By Theorem 4.3 there is a b€ O such that
|R| < |b]. Since every ordinal less than |b| is constructive, f must be constructive.

Now suppose f is constructive. Then f = |b| for some be O. By Theorem 3.5(ii)
there is a recursively enumerable wellordering R such that |R| = B, namely W,,.
Assume f is infinite. Then there exists a one-one recursive f that maps w onto the
field of R. Define x <y by {f(x), f(y))> € W,4). < isrecursive and |<|=p. O

4.5-4.6 Exercises

4.5. Show each recursive wellordering is order-isomorphic to some primitive
recursive wellordering.

4.6. Recall q from Theorem 3.5. Suppose a, be O and |a| = |b|. Let f be the unique,
one-one, order-preserving map from W, onto W,,,. Show fis A}. Show f
need not be partial recursive.

5. Ordinal Analysis of TI! Sets

In this section I} sets are analyzed by means of recursive ordinals represented by
recursive wellfounded relations on sequence numbers. The analysis is applied to
show Kleene’s O is a complete IT! set, and to obtain Spector’s bounding principle
for 1 subsets of O.

5.1 The Partial Ordering of Sequence Numbers. Define f(x) as in subsection 1.1.
y is said to be a sequence number if y = f(x) for some f'and x. f(x) is thought of a
code for the sequence { f(0),f(1), ..., f(x—1)>. f(0)=1, and 1 encodes the null
sequence. The length of f(x) is x, and is denoted by #4(f(x)). If y is a sequence
number, then y encodes

<Pos W15+« -5 (.V)M(y)—1>-

If y and z are sequence numbers, then y is properly extended by z (symbolically
y > z) if £4(y) < £4(2) and (y); = (2); for all i < Z4(y).

Let Seq be the set of all sequence numbers. Seq is a recursive set, and > is a
recursive, antisymmetric, transitive binary relation. Seq (with >) is useful in the
study of I1} sets because it presents w® effectively as a tree.
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5.2 Normalization of I1} Predicates. Suppose R, (f;, x, y) is recursive. Then there is
an e such that for all f; x and y:

{e}” (x, y) is defined, and
R,(f,x,y){e} (x,y)=0.

As in subsection 1.1, there exist recursive T and U such that

{e}f(x’ y) =0

—(Ez)[T(f(2), e x,y,2z) & U(z)=0].

It follows that (f)(Ex)R,(f, x, y) is equivalent to

1) ()EXR(f(x), y)

for some recursive R. (1) is the preferred normal form for a I1} predicate. Since
Kleene’s T-predicate is “universal”, an enumeration of the IT! predicates is pro-
vided by (/)(Ex)T(f(x), e, y, x) (=0, 1,2,...).

For each y, let Sg(y) be the restriction of Seq (and >) to those sequence numbers
f(x) such that (i);<, ~ R(f(i), y). Clearly Sg(y) is recursive uniformly in y.

5.3 Proposition. (f)(Ex)R(f(x), y) iff Sg(y) is wellfounded.

Proof. Fix y. ~ (f)(Ex)R(f(x), y) iff there is an f such that (x) ~ R(f(x), y) iff there
is an f'such that £(0) > f(1) > f(2) . . . is an infinite descending sequence in Sg(y) iff
Sgr(y) is not wellfounded. O

Proposition 5.3 equates the problem of checking membership in IT! sets with
the problem of checking wellfoundedness of recursive relations. Thus recursive
ordinals suffice to analyze I1] sets.

5.4 Theorem (Kleene). Each I11 set is many-one reducible to O.

Proof. Suppose BeIl}. According to subsection 5.2 there is a recursive R such that

yeB o (f)EX)R(f(x), y)
for all y. By proposition 5.3,
y € B> Sg(y) is wellfounded.

Since Sg(y) is recursive uniformly in y, there is a recursive function ¢ such that

Sr(¥) =Ry (R, is the e-th recursively enumerable, binary relation as defined in
subsection 4.2.) Let f be the recursive function of Lemma 4.3. Then

v yeBeof(t(y)e0. O
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There is a uniformity concealed in the proof of Theorem 5.4 worth making
explicit. As in subsection 5.2, let

@ (NENT(f(x), e, y, x)

be the e-th I1] predicate. If Q(y) is equivalent to (2) for all y, then e is said to be an
index for the predicate Q(y). An index for a I1} set B is an index for the predicate
y € B. The recursive function ¢ of 5.4(1) is a function of two variables, e and y, where
e is an index for B. Thus there is a uniform method for passing from an index for B
to a recursive function that reduces B to O. In short the I} sets are uniformly
many-one reducible to O.

5.5 Corollary. 0 ¢X}.

Proof. Analogous to a proof that a complete, recursively enumerable subset of w is
not recursive. Observe that any set many-one reducible to a X! set is also Z}.
Hence by Theorem 5.3, if O were X1, then every I11 set would be Z1. So it suffices to
find a IT! set that is not X1,

Define Q(y) by (/)EX)T(f(x), , y, x). Suppose ~Q(y) is I1{. Then ~Q(y) is
equivalent to (f)(Ex)T(f(x), e, y, x) for some e. But then ~Q(e) iff Q(e). O

5.6 Corollary (Spector 1955). Suppose X < O and X eX}. Then there exists be O
such that |x| < |b| for all xe X (X! boundedness).

Proof. As in the proof of Theorem 5.4, with O in place of B, there is a recursive
function t such that for all y,

y€0 o R, is wellfounded,
where R, is the e-th recursively enumerable relation. Let Q(y) be

(Ez)[ze X & (Ef)
() (®)(Ry)(, v) > {f (W), f(v) ) € W)

q is the recursive function of Theorem 3.5 Q(y) is £1. If Q(y) holds, then R,,, is
wellfounded.

Suppose the hoped-for b does not exist. If R,,, is wellfounded, then by Lemma
4.3 thereisa ze X < O such that |R,,)| <|z|, and so Q(y) holds. But then y€ O is h
despite Corollary 5.5. O

There is a uniformity lacking in the statement of Corollary 5.6, whose existence
will be established in Corollary 3.4.11. e is said to be an index for X as a X set if

yeX —(EN)(x) ~ T(f(x), e, y, x)
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for all y. The effective version of Corollary 5.6 is: there exists a recursive function f
such that for all e and X, if e is a ! index for X, then
(i) X = 0o f(e)e0, and
(i) X<0-@)[zeX -zl <f(e)]-
5.7-5.8 Exercises
5.7. Show each I3 set is one-one reducible to O.

5.8. Suppose A4 is a I1} set such that every I} set is many-one reducible to A. Show
every I set is one-one reducible to A.





