
For we know in part, and we prophesy in part.
But when that which is perfect is come, then
that which is in part shall be done away.

(I. Corinthians 13, 9-10)
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Chapter III

Self-Reference

Introduction. The preceding Part A was devoted to positive results in frag-
ments of arithmetic: recall that we already showed that Robinson's Q proves
all true Σ\ sentences (which was rather easy) and then devoted considerable
space to the development of mathematics in fragments (IΣn or BΣn+\). We
now know how to develop a theory of finite sets and definable infinite sets in
IΣ\ and we have arithmetized important parts of logic, recursion theory and
combinatorics, sometimes using fragments stronger than IΣ\. The present
Part B will deal with incompleteness of systems of axioms in arithmetic: we
shall prove the celebrated Gδdel's incompleteness theorems (saying among
other things that no consistent axiomatized theory containing Q is complete,
i.e. each such theory has a sentence φ such that (T + φ) and (T + -up) is con-
sistent. Moreover, we shall be interested in comparing theories (containing
arithmetic) with respect to their strength. One possibility is just to investi-
gate the inclusion of theories (Γ is a subtheory of 5, i.e. each formula provable
in T is provable in 5), but we shall study two related notions, namely inter-
pret ability (one can define basic notions of T in S such that T becomes a
subtheory of 5 modulo these definitions) and partial conservativity (for some
class Γ of formulas, e.g. ^-formulas, each φ 6 Γ provable in T is provable
in 5). The study will be confined to theories containing a certain fragment
of arithmetic.

The present Chapter III is devoted to GδdeΓs method of self-reference
(which is of proof-theoretical character); the next Chapter ΓV will deal with
models of fragments. Note that self-reference has interesting philosophical
aspects; but they will be entirely disregarded. Chapter III has the following
structure:

Section 1 contains preliminares, in particular it presents a definition of
a theory containing (some) arithmetic. This is important since the results
of this chapter are not confined to theories in the language of arithmetic
(and apply, for example, also to systems of set theory). Section 2 contains
GδdeΓs incompleteness theorems and related topics, as well as a character-
ization of interpretability among theories like PA (having induction for all
formulas). In Sect. 3 we shall deal with theories not having induction for all
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formulas, mainly with finitely axiomatized theories; we present a strength-
ening of GόdePs second incompleteness theorem and a characterization of
interpretability for such theories. Finally in Sect. 4 we shall systematically
study interpretability and partial conservativity with a special emphasis to
finitely axiomatizable theories. Among other theories we shall study the sys-
tem ACAo - finitely axiomatizable second order arithmetic extending PA
conservatively - and show how these theories differ with respect to inter-
pretability. (This will be obtained as a corollary to general theorems on in-
terpretability and partial conservativity.)

1. Preliminaries

(a) Interpretability and Partial Conservativity

This subsection may be viewed as a continuation of Sect. 0 (Preliminaries) at
the beginning of the book. We collect here several definitions and state some
obvious facts. Recall the notion of a theory T (0.11) and its language L. It
is clear what we mean by saying that T and L are A\.

1.1 Definition. (1) T is a subtheory of S (or: S is an extension of T) if the
language L j of T is a sublanguage of the language L$ of S and if each formula
of Lx provable in T is provable in S.

(2) Let Γ be a class of formulas. T is Γ-conservative over 5 if each Γ-
formula φ of L provable in T is provable in 5.

(3) 5 is a Γ-conservative extension of T if S is an extension of T, i.e. T is a
subtheory of 5, and, in addition, 5 is Γ-conservative over T; i.e. if any formula
is T-provable then it is 5-provable; and if a Γ-formula is S-provable then it
is T-provable. (Thus S is stronger then T but for Γ-formulas T-provability
coincides with 5-provability.)

1.2 Definition. (1) Let L\ be a language and let 5 be a theory in a language
£r2 To interpret L\ in 5 means to define the following in 5:

- the range of variables of ii-formulas in 5 and
- for each predicate P, each function symbol F and each constant c of L\,

its translation P*, F*, c* into 5.

In more details, such an interpretation * is given by:

- a formula χ(x) such that 5 h (3x)χ(x),
- for each n-ary predicate P of Li, a formula φp(x\ . . . £*) of L<ι with exactly

n free variables,
- for each n-ary function symbol F of £ j , a formula φp{x\ ...Xk,y) of L2

with exactly k + 1 free variables such that
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and similarly for φc (5 V (3!y)(χ(y)&^c(y)))

Using φp, φp and φc we may define in S a predicate P*, a function
F* (defining F*(xχ . . . x^) by φp if /\t χ(xj) and putting e.g. F*(x\ ...) =
xi otherwise) and a constant c*; this extends to a translation of each L\-
formula ψ{x\ . . . Xk) into an ^-formula φ*(xι,..., a?j.) (more precisely: into
a formula of L2 enriched by the *-symbols); φ* results from φ by replacing
each predicate, function, constant by its starred counterpart. The formula φ*
may be called "φ in the sense of the interpretation" or "the translation of

(3) If T is a theory in the language I i , S a theory in L2 and * is an
interpretation of L\ in 5 then * is an interpretation of T in 5 if, for each
axiom φ(xιy... ,arj.) of T,

k

s i-ΛxK )-**>*•

We have the following evident theorem:

1.3 Theorem. If * is an interpretation of T in S then for each L\ formula y>,
T\- φ implies 5 h f\ χ{x%) —* φ*\ in particular, for each closed Li-formula φy

TV ψ implies S V φ*.

Proof by induction on the length of a proof. D

1.4 Definition. This generalizes to a parametrical interpretation of L\ in
5: it consists of a formula #(z) such that 5 V (3z)i?(z) (range of param-
eters), a formula χ(#,z) such that S V ΰ(z) —> (3x)χ(x,z) (range of Li-
variables given parameters) and for each P, F, c as above formulas φp(x, z),
φp(ii, y, z)), φc(y, z) of appropriate arities such that S V ϋ(z) & /\t χ(x, , z) -»
(3!y)(χ(y, z) & ̂ F ( X > y, z)) and similarly for φc. The definition of φ* for a for-
mula φ{x\ . . . xn) (not contining the variables z) is clear; * is a parametrical
interpretation of T in S if, for each axiom <̂ (x) of T,

5 h (tf(z) & /\ χ(x i, z)) -> (/?*(x, z).

1.5 Remark. (1) A generalization of 1.3 for parametrical interpretation is
evident.

(2) The (parametrical) interpretation * has absolute equality if 5 h x =*
y —* x = y. We restrict ourselves to interpretations with absolute equality
except when stated otherwise.
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(3) Note that if * is parametrical and S can define an object satisfying
ϋ (i.e. for some tf'(z), S h tf'(z) -> ΰ(z) and 5 h (3!i)0'(i) then * may be
replaced by a non-parametrical interpretation ** such that, for each closed T-
formula φ, S h φ* -> y>** (just postulate that z is the unique tuple satisfying
ΰ1 throughout). This is in particular the case if S contains a fragment of
arithmetic and ΰ(z) is an arithmetical formula such that 5 proves Lϋ (least
number principle).

(4) The reader may observe that if * is an interpretation of T in 5 then *
defines in each model M \= S a model M' t= T; similarly for a parametrical
interpretation.

1.6 Corollary. If T is (parametrically) interpretable in 5 and S is consistent
then T is also consistent.

1.7 Remarks. (1) Clearly, each theory T is interpretable in itself by means of
the identical interpretation.

(2) If T is interpretable in 5 and 5 is interpretable in U then T is
interpretable in U by means of the composed interpretation.

1.8 Lemma. If T is interpretable in (5 + {φ}) and also in (5 + {~*φ}) then T
is interpretable in S.

Proof. Let (Xi,V>P,i •) be the interpretation in question; (i = 1,2). Put
χ(x) = (φkχi(x)) V

φP(x) s (φbφptι(τ)) V

etc. Similarly for parametrical interpretations. D

1.9 Definition. An interpretation * of T in 5 is Γ-faithful if, for each closed
φ € Γ, T h v? is equivalent to 5 h </?*. It is faithful if it is Γ-faithful for Γ
being the set of all L\ -formulas.

(b) Theories Containing Arithmetic; Sequential Theories;
PA and ACAo

1.10 Convention. Saying that S contains T we shall mean that T is inter-
pretable in S and a certain interpretation of Γ in 5 has been fixed. Thus, in
particular, if Γ is a subtheory of 5 then S contains T; but in general axioms
of T are assumed to hold only on a subdomain of the universe of 5. A typical
example is Zermelo-Prankel set theory ZF: in ZF we can define a set N and
prove that its elements satisfy axioms of PA with respect to appropriately
defined operations of successor, addition and multiplication. In other words,
PA is interpreted in ZF by these definitions.
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1.11 Remark. It is possible that there are two substantially different inter-
pretations of T in 5, so we have to fix one.

1.12 Definition. A theory T containing Q is sequential if there are predicates
SEQ(zyu) and β(x,v,z) coding sequences of arbitrary objects of T in the
following weak sense (read SEQ(z, u) "z codes a sequence of length at least
u" and β(x,υ,z) ux is the υ-th element of z"; let Number(u) be the domain
of the chosen interpretation of Q in T): T proves

(1) SEQ(z,u) -• Number(u) & (to < u)(Number(v) -> (3\x)β(x,v,z))]
(2) SEQ(z,u) -> (yy)(βz')(SEQ(z',u + 1) & (to < u){Number{v) -*

(Vx)(/?(x, v, z) ΞΞ /?(*, ti, z')) & β(y, uy z1).

(Here u + 1 means the successor of u in the sense of the interpretation.)

1.13 Remark. (1) says that if z codes a sequence of length u then for each
v < u, the v-th element of z is uniquely determined; and (2) is a prolongation
axiom. Note that we do not define the length of a sequence. Nor do we have
any extensionality etc. This notion is particularly importnat for the case that
T has also objects that are not numbers, as the theory ACAo below.

Note that a theory T in the language of arithmetic stronger than
is sequential; we may take Seq(s) & lh(s) = u for SEQ(s, u) and (s)υ = x for
β(x,v,s). In Chap. V we show that each theory in the langauge of arithmetic
containing IΣQ is sequential.

In the next definition we introduce a particular system ACAo of second
order arithmetic and later we show that it contains PA. Results of this chapter
will have various corollaries concerning relations of PA and ACAo. The reader
uninterested in ACAo may skip the rest of the subsection.

1.14 Definition. The language of second order arithmetic consists of
(1) variables of two sorts: number variables #,y,..., and set variables

X,Y,....
(2) predicates =, <, £ (binary), function symbols 5, +, * (usual arities) and

a constant 0.
First order terms coincide with terms of the language of (first order)

arithmetic, i.e. are elements of the free algebra generated by number variables,
the constant 0 and function symbols. Second order terms are set variables.

Atomic formulas are formulas of the following form: t = s, t 6 -X", X = Y
where t, s are first order terms and X} Y are second order variables. Formulas
result from atomic formulas using connectives and first order and second order
quantifiers (Vz), (VJQ.

The second order arithmetic ACAo has the language of second order
arithmetic and the following axioms:
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(1) Axioms of Robinson's arithmetic Q,
(2) Arithmetical comprehension scheme: for each formula φ(x, y, X) not con-

taining any second order quantifiers, and not containing the variable Z,
the axiom

(3) The following (single) induction axiom:

o € x&(Vχ)(χ e i - > S{χ) ex)^ (Vχ)(χ e x).

(4) X = Y = (Vz)(z e l E i G Γ ) (extensionality).

1.15 Remarks. (1) How does this fit into our notion of an axiomatic theory? It
is indeed possible to generalize the notion of an axiomatic theory as presented
in Sect. 0 to allow various sorts of variables (see e.g. [Kreisel-Krivine]); but, on
the other hand, we may consider any many-sorted theory as one-sorted with
an unary predicate for each sort. This means for ACAo: Instead of variables
of two sorts we have two predicates Number(x), Set(x) and axioms that there
are numbers, there are sets and Number(x) = -i5et(x); we have predicates
and function symbols of the language LQ of first order arithmetic and in
addition E. We formulate axioms saying that numbers are closed under 5,
+, * and satisfy Q (e.g. Number(x)kx Φ 0 -> (3y)(Number(y) & x = S(y))
etc.). Similarly we rewrite the comprehension.

Number(y) & Set(w) -> (3z)(Set(z)

k(yx)(Number(x) -> (x G z = φ'(x,y,w))))

(where φ1 results from a formula φ above by the obvious changes) and the
induction axiom. Finally we add extensionality:

Set(x) & Set(y) -> (Vu)(Number(u) ->(uezΞ=u6y))==z = y.

Thus we understand the two-sorted formulation as a shorthand for the one-
sorted system just described. (The interested reader could show that this is
equivalent to a consequent many-sorted approach; models of both formula-
tions are in an obvious correspondence.)

(2) How does A CAQ fit into various systems of second order arithmetic?
And why is A CAQ introduced and studied here? A much stronger theory
results from A CAQ if we postulate comprehension for all ψ\ this is the full
second order arithmetic. It has important particular subsystems studied in
Simpson's book [Simpson]. We shall not go into this; but we shall show below
that ACAQ extends PA conservatively and ACAQ is finitely axiomatizable.
We shall see later in this chapter that PA is not finitely axiomatizable;
but it is the union of the hierarchy of theories IΣ^, k £ TV, each being
finitely axiomatizable (see Chap. I, Sect. 2) and has a finitely axiomatizable
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conservative extension (in a richer, second-order language), namely ACAo.
Note in passing that the relation of ACAQ to PA is very similar to the relation
of Gόdel-Bernays set theory GB to Zermelo-Eraenkel set theory ZF (and, of
course, both ZF and GB contain both PA and ACAo).

1.16 Theorem. ACAo is a conservative extension of PA; more precisely, the
obvious interpretation of the language of PA in ACAo is a faithful interpre-
tation of PA in ACAQ.

Remark. If we treat A CAQ consequently as a two-sorted theory then for-
mulas of PA are particular formulas of A CAQ and it makes sense to say that
ACAQ is a conservative extension of PA. If we understand AC A as a one sorted
theory, we have to interpret PΛ-formulas as A CAQ-formulas by restricting all
quantifiers to Number (x). But if there is no danger of misunderstanding we
shall identify both approaches.

Proof. First we show that ACAQ extends PA, i.e. that each induction axiom
Iφ is provable in ACAQ. But this is easy: by comprehension, let Z = {x \
φ(x,y)}. Assume y>(0,y) and (Vz)(y>(:r,y) -• φ(S(x),y)). Then 0 € Z and
(Wx)(x £ Z -> S(x) e Z). We get ((Vx)(x G Z\ i.e. (Vx)φ(x,y). Now we
prove conservativity.

A model-theoretic proof is easy: take any countable model M of PA;
without loss of generality you may assume that no subset of M is an element of
M. Interpret elements of M as numbers and take all parametrically definable
subsets of M for sets: Let 5 be the set of all such subsets. The new model
M' has the domain M U 5 , operations and ordering are as in M (trivially
extended to S), and G is interpreted as the restriction of actual membership
to M x S. Checking that M1 1= ACAQ is not difficult and is left to the reader.
(One may consult 0.9 and/or Chap. IV, Sect. 1 (a) if necessary). Thus: if a
PA-sentence φ is consistent with PA it is consistent with ACAQ; thus ACAQ

is conservative over PA. D

Remark. In Chap. IV, Sect. 4 we shall formalize this proof in IΣ\ and
show that the assertion UACAQ extends PA conservatively" is provable in
IΣ\. By the results of Chap. IV, this will imply that there is a primitive
recursive function associating to each A CAo-pτoof of a PA-formula its PA-
proof. (Better results are known.)

1.17 Theorem. ACAQ is sequential.

Proof. We have to define coding of sequences of numers and sets. We shall
define a coding of sequences of sets, and give indications how to modify the
definition to code sequences of both numbers and sets.

Define SEQ(Z^u) iff Z consists of ordered pairs; and put β(X,v,Z) iff
(Vx)(x e X = (v,x) E Z). Note that if SEQ(Z,u) then SEQ(Z,u') for any
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ur. Thus we write just SEQ(Z). If SEQ(Z) and Y is a class then define
G(Z,Y,u) as follows:

(x,υ) G G(Z,Y,u) = (v φuk{x,v) G Z.V.v = ukyeY).

Existence follows by comprehension; and verification of necessary provabili-
ties is easy.

If we want to code sequences of both sets and numbers we may consider
sets Z of triples ((x,ε), v) such that for each v either for all (#,ε) such that
((z, e), v) G Z we have ε = 1 (and then β(X, v, Z) = X = {x J ((z, 1), υ) G Z}
or there is exactly one x such that (a;,0),v) € Z (and then β(x,v,Z) =
((x,0),t;)€Z). D

1.18 Theorem. ACAQ is finitely axiomatizable.

Proof. We are interested in a quick proof, not in a polished finite axiom
system. Thus we shall start with JΣΊ, which we know to be finitely axioma-
tizable. We add the induction axiom (Al), which is a single axiom. Observe
that ACAQ proves (\/X)(X is piecewise coded) (consider the class of all a:
such that there is a piece of X of length rr); thus take the axiom (A2) saying
that each X is p.c. Recall the relativized satisfaction SatQ x (see 1.2.55); take
the axiom (A3) (V/ € Σζ(X))(3Z)(Ve)(e £Z = SatOiχ(f, e)) (we may desire
that free variables of / are the first u free variables and e is an u-tuple of
numbers). In fact, it is enough to quantify / over all open J7o(-ϊ)-formulas.
Note that our theory proves Tarski's truth conditions for Sat^χ so that
we have "snowing"-snowing for ΣQ(X)-formulas. (A4) and (A5) will describe
universal and existential projection:

(A4) (VX)(3Z)(V5)(5 eZ = (Vx)((x) - s e X)
(A5) (VX)(3Z)(ys)(s eZ = (3x)((x) ~seX)
(A6) says (VX)(3Z)(Vx)(x G Z = (x) E X).
Clearly, IΣ\ + (A2) - (A6) proves each instance of comprehension for a

formula φ(x,X) without second order quantifier: Apply (A3) to φo, where
φo is the open part of φ (φ assumed prenex) and then apply (A4) and
(A5) according to the quantifier prefix of φ. Thus in particular we have
comprehension for all formulas not containing any set variables at all.

We add one more axiom that reduces the general case to the subcase
φ(x,X) just described.

We take the axiom stating the property of the function G(Z,Y,u):

(Vu)(YY)(yZ)(SEQ(Z) -+ (3W)(Vx,v)((x, v) G W

ΞΞ(vφuk(x,v) G ZVv = ukx 6 7 ) .

This makes possible to replace k sets by just one; e.g. Xo,-^l,-^2 are
replaced by G(G(G(0,X(h0),X1,l)),X2,2). D
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(c) Numerations and Binumerations

We have already mentioned the notion of a binumeration of a set of natural
numbers in a theory T D Q (see 1.1.65). In this short subsection we define
a more general notion of a numeration and prove some easy facts on them.
Deeper theorems on numerations will be proved (and used) in Sect. 3. At the
end of this subsection we shall show that our present knowledge is sufficient
for a proof of a weak form of Gδdel's first incompleteness theorem. A strong
form will be proved by means of self-reference in Sect. 2.

1.19 Definition. Let R C JVn be a relation. A formula φ(xχ,..., xn) numerates
R in a theory T containing Q if, for each &i,...,£n £ TV, we have the
following:

1.20 Remark. Note that φ binumerates R in T if φ numerates R in T and
-yφ numerates the complement of R in T, i.e. besides (*) we have

not R(*χ,..., kn) <* T h -.^(ii,..., kn).

1.21 Definition. A theory T containing Q is Γ-sound (where Γ is a class of
formulas of LQ) if each LQ-formula provable in T is true in the standard model
N. T is sound if it is Γ-sound for Γ being the class of all Lo-formulas. (Thus
PA is sound and so are its subsystems.)

1.22 Remark. We shall be particularly interested in Σ\ -sound theories. They
are also called 1-consistent; T is 1-consistent if (T + Tr(Πι)) is consistent,
where ΪV(iTi) is the set of all Π\-formulas true in N. (Show that the two
definitions are equivalent.) Note that Σ\-soundness implies consistency.

1.23 Theorem. (1) If A is defined by a Σ\-formula φ{x\,... ,a?n) in N then
φ numerates A in Q and also in each Σ\-sound theory T containing Q.

(2) If A is A\ (in N) then there is a Σ\-formula φ which binumerates A
in Q and also in each consistent T containing Q.

Proof. (1) follows immediately from Σ\-completeness and ΣΊ-soundness. (See
1.1.8). To prove (2) first assume A C ]V; take a ΣΊ-definition (3y)σ(x,y) and
a Πι-definition (V2/)τr(a:, y) of A (σ, π £ ΣQ). Consider the following formula
φ(x):

ψ(x) = (3y)(σ(x, y) & (Vz < j/)π(x, y)).

(This is our first example of witness comparison that will play an extremely
important role in the sequel: The formula says that there is a witness y for
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(3u)σ(x, u) such that beneath y there is no witness for (Ξιt)-iτr(a , tί).) If k G A
then for some m, N t= σ(fc,m), trivially, for each m' < m, iV t= π(fc,m) since
JV t= (Vy)τr(fc,_y). Thus Q proves -.τr( fc, m) & (Vy < m)-iσ(fc,y). Butjhen
Q proves ->v?(fc): Work in Q and assume φ(k); let yo be such that σ(ife,yo)
and (Vz < yo)τr(fc, z). We have either yo < m or yo > rn (cf. L1.6). But
yo < m implies ~ cτ(A;,yo), a contradiction, and yo > fn implies π(fc,rn), also
a contradiction. This completes the proof. D

Now assume that R is an n-ary relation. Let MLn be the maximo-
lexicographical ordering of Nn, i.e. (fci,..., kn)MLn(qι,..., qn) iff max(fci,
. . . , kn) < max(gi,..., qn) or [the maxima are equal and for the first i such
that k{ φ q{ we have fc, < q{]). Define MLn by a ΣQ formula (a?i,..., xn) <n

(yiy-iVn) by copying the definition (caution: we use a disjunction over
i = 1,..., n)^ Analogously as for <, Q proves (x\,..., xn) <n (ft, ,?n) =
V ί Λ i ^ = ki I (k1,...,kn)MLn(q1,...,qn)}. (Cf. 5.1.6.). Having this con-
struct a φ(x\y... ,xn) from (3u)a(x\ .. .xn,ιt) and (Vw)π(xi,... ,xn,u) as
above but using <„ instead of <.

1.24 Remark. (1) The preceding theorem implies that each Δ\ relation A
also has a Π\ binumeration ΊnT D Q (since the complement of A is also Λ\)

(2) Recall the simple remark in 1.1.65 which states that if A is defined by
a formula φ which is A\ in T then A is binumerated by φ in T.

(3) In Sect. 3 we remove the assumption of Σ\ soundness from 1.23 (1).
(4) Functions are particular relations; thus if F is a Δ\ mapping of N into

N then there is a Σ\ formula ψ such that

k = F(m) & Q \~ φ(k,m)

k φ F(m) <& Q h ->φ(k,m)

But for functions we can say even more (generalization for functions of several
variables being left to the reader):

1.25 Theorem. Let F : N -> N be Σ\ (possibly partial). Then there is a Σ\
formula φ(x, y) such that, for each m € dom(F),

Proof. Let F be defined by a_ΣΊ-formula (3z)σ(xyy,z)y σ being ΣQ (i.e.
F(m) = k iff N N (3z)σ(m,k,z)). Let φ(x,y) be the following formula
(3z)φo(x,y,z):

(3z)[σ(x, y, z) k (Viz, V < y)(u φ y -> -.σ(a:, u, υ)

υ < 2:)(u .^ y —> ->σ(x,u,υ)].



1. Preliminaries 157

(Note that in general we cannot speak on max(y, z) in Q.) First let F(m) = A:,
N t= <τ(m, k,q); then it is easy to show Q h φo(τn, k,q). Thus Q h y = A?i —•
</?(m, y). Second, work in Q and assume w φ k and let <^o(wϊ>u,v). For h and
^ we do have a maximum; denote it h.

Case 1. h < u or h < υ. Then start from γ?o(™> u, z) and show - σ(m, &, q)
- contradiction.

Case 2. u,υ < h. Then start from φ$(rn, k,q) and show -ισ(m, w, v), again
a contradiction. This shows (in Q) y φ k —> -«y>(m,y).

Remark. The reader may formulate and prove a generalization to functions
with several arguments as an exercise.

1.26 Remark. In Sect. 2 we shall study GδdeΓs celebrated incompleteness
theorem; our main method will be GδdeΓs self-reference technique. In the
following remark we shall show how to give a non-constructive proof of a
weak form of Gόdel's first incompleteness theorem using means available so
far. We claim the following:

If T is a Σ\-sound Σ\ theory containing Q then T is incomplete; there is
a Σ\ sentence v such that both v and -*v are improvable in T.

Proof. Recall that there is a Σ\ set KQ of natural numbers which is not Λ\
(the reader may find a proof of this in the next remark).

Now let a(x) be a Σ\ formula numerating KQ in T, i.e. K$ = {n | T h
α(n)}. Let K\ = {n | T I—*a(n)}. Since KQ is not Δ\ and T is consistent we
have -KΌ U JK"I φ N\ for n € N — KQ — K\ both α(n) and -iα(n) are unprovable
in T. D

1.27 Remark. For the reader's convenience we prove here that there is a Σ\
set of natural numbers which is not Δ\. For example, let KQ be the set of all
φ such that φ is a Σ\ -formula with just one free variable and is satisfied on
N by φ (itself). Then Ko is Σ\ (it is defined by

x € Σ*J & x has one free variable* & Satjjf\(x^ [x])).

If iV — if were ΣΊ then we could produce a ΣΊ-formula y?(:r) defining the
same set of natural numbers as the formula

x € Σ* & x has one free variable* & -lία*£}i(x, [x]).

By "snowing"-snowing.

N \=φ £ Σ* &ε φ has one free variable*

now it is easy to see that we get the liar's paradox:

N 1= SatΣΛ(ψ, [ψ]) = ^SatΣ<1(ψ, [ψ]),

which is a contradiction. We have shown that Ko is not ΣΊ.
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2. Self-Reference and GδdeVs Theorems,
Reflexive Theories

We now come to the substance of GδdeΓs method of proof of incompleteness
of arithmetic, namely to the use of arithmetizatization for self-reference,
which is often roughly described as the existence of arithmetical sentences
"speaking of themselves". Since in our representation, sentences are particular
numbers, we are not surprised if we encounter sentences speaking of (other)
sentences. Take, for example, the case of "snowing"-snowing: we know that
N f= φ iff N t= SatΣtn(ψj 0) (φ being Σn). Given any formula φ(x) with
exactly one free variable, a sentence φ is self-referential with respect to φ in
N (or: is a fixed-point of φ in N) if N t= φ = φ(φ), thus N 1= φ is equivalent
to N N φ(φ). We can say rather suggestively that φ says "I have the property
φ". As usual, we are more interested in provability in a theory than in truth
in N; we say that ψ is a fixed-point of φ(x) in T if Γ I- φ = Φ(φ).

In subsection (a) we prove various theorems on the existence of fixed
points; in (b) we prove GδdeΓs incompleteness theorems and related results,
and in (c) we derive consequences for theories similar to full Peano arithmetic
PA) among other things we show that PA is not finitely axiomatizable. We
shall pay much attention to finitely axiomatizable theories in Sect. 3.

(a) Existence of Fixed Points

2.1 Fixed-point Theorem (Or Diagonal Lemma).
(1) ((Non-parametric version). Let T be a theory containing Q and let φ(x)

be a formula with exactly one free variable. Then there is a sentence ψ
such that Thy> = φ(φ).

(2) (Parametric version). Let T 2 Q and let φ(x,y) be a formula with
free variables as indicated. Then there is a formula φ(y) such that
Thφ(y)=φ(φ(y),γ).

Remark. We prove (1) and indicate how to generalize to (2). The rest of the
subsection contains some corollaries and related results as well as definitions
of some properties that fixed points may have or not have.

Proof of (1). Let φ{x) be given. Let F be the Λ\ function associating with
each formula 6{x) (inj he language of T having exactly one free variable x)
the closed formula £(£), i.e. the result of substitution of δ into δ for x. (Let
F be 0 for other arguments.) By 1.25 there is a formula α(x, v) such that, for
each ί , Γ h α(ί, υ) = v = F(δ). Let χ(x) be the formula (3υ)(α(x, υ)bφ(v))
and let ψ be F{χ), i.e. χ(χ). Q proves the following equivalences:

ψ = χ(χ) = (3v)(a(χ,v)kφ(y)) = (3v)(u = F(χ)kφ(υ))

ΞΞ (3v)(υ = ψk φ(υ)) = φ(Tp).
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To_prove (2) modify F. F associates with each formula δ(x,y) the formula
δ(δ,y). Let a be as above, for the new F. If φ(x,y) is given, let χ(z,y) be
the formula (3v)(a(x,v)&εφ(v,y)), let φ be F(χ). We have

as above. •

2.2. Corollary. (1) Let T contain Q and let φ(x, z) be a T-formula. Then

there is a T-formula φ(z) such that for each k G JV, T h </>(£) = Φ(φ(k),k).
(2) More generally, if V>((#> 2,y) is a T-formula then there is a T-formula

φ(zyy), such that, for each A:,

Proof. We prove (1). Let F(ί, k) be the ^ i function associating with each k
the formula δ(k)\ let /?(u,υ,w) be such that Q h /?(£,£, w) = iϋ =
Let ψ'(x,z) be (3ιy)(/3(a;,^,ti;)&V(^^)); let y>(̂ ) be such that

Then T h y>(Jfc) = ^ ( ^ , Jb) = βw)(β(ψ, Jb, ui) & ^(w, Jb) = ^(v(*), *)- Π

The proof of the parametric version is left to the reader as an easy exercise.

2.3 Corollary. Let T be a consistent theory containing Q. Then there is no
formula Tr(x) such that for each φ, T h ψ =

Proof. Ί£ we had 2V(a;) we could reproduce the liar's paradox: let φ be such
that TV- φ = ->Tr(φ) (by 2.1). Then T b φ = -ι^, i.e. T is inconsistent. D

2.4 Remark. This means that T cannot define its own truth. In particular,
if T D IΣ\ is a consistent theory in the language of arithmetic we have, for
each A;, partial satisfactions Satsje &&& Satjj^ f°Γ ^ n e universe but there is
no formula Sat(zy e) such that T proves Tarski's properties of satisfaction for
all formulas.

2.5 Discussion. Let T h (Vx)^(^); then φ is a fixed point of φ in T iff T h φ.
(We can say that φ has only 'provable fixed points.). If T h (\/x)-*φ(x) then
φ has only refutable fixed points. In both cases, all fixed points of φ are T-
provably equivalent, i.e. if ψ\ and φ% are fixed points of φ then T h φ\ = ψ2
We say that φ has a unique fixed point up to an equivalence. These are trivial
examples; we shall construct non-trivial examples in the next subsection.
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2.6 Theorem (Existence of Self-referential Pairs). Let T contain Q and let
Φl(xi 2/)> Φ2(χiy) be two T-formulas. Then there are T-sentences ψ\,ψ2 such
that Th ψι= Φι{ψiyψ2) and T h ψ2 =

Proof. Let F{(δι(x,y),δ2(x,y)) be δi(δι,Ί>2) (* = 1,2); let α,'(tι,t;,u;) be such
that Q V α t (<Si,£2,w) Ξ w = ί;(£i,<52) Let χ(x,y)be(3wuW2))(<*i(x,y,wι)
k a2(x,y,w2) & Φi(wuw2))\ let ψi be Xi(χi,χ2) The proof of T h ψi =

n o w routine. D

(b) GδdePs First Incompleteness Theorem and Related Topics

Fixed points theorems are particularly fruitful when applied to formulas
related to the set of all T-proofs or the set of all T-provable formulas (where T
is a theory containing Q). If Γ is rich enough to make arithmetization possible
(T D IΣ\ suffices) then it is natural to work with the formalized proof
predicate Proof* (see Chap. I, Sect. 4); but for Gόdel's first incompleteness
theorem it suffices that T contain Q and that the set of all proofs is A\
and hence has a Σ\ binumeration. (GδdeΓs second incompleteness theorem
is more delicate and to prove it we have to guarantee some provability
conditions, see below.) The theorems are proved in a constructive way, i.e.
we give examples of sentences that are independent (neither provable nor
refutable). Since these examples are both famous and useful we give their
names (GδdeΓs formula, Rosser's formula).

2.7 Definition. Let T be a Σ\ theory containing Q and let π(x) be a Σ\
formula defining the set of all T-provable sentences (i.e. T h ψ iff N 1= τr(^)).
A Gδdel sentence based on π is a fixed point of -iτr, i.e. a sentence v such
that

(We may describe v by saying that it asserts its own unprovability.)

2.8 Theorem. Let T, π be as above and let v be a Gδdel sentence given by TΓ.
(1) If T is consistent then T does not prove v. (2) If Γ is ΣΊ-sound then T
does not prove -»ι/.

Proof (1) Assume TV v, then N t= π(]7), thus T f- π(F) by Σ\ -completeness;
thus T\—11/ and T is inconsistent.

(2) Assume T I •!/, i.e. T h τr(ϊ7). If T were ΣΊ-sound then π would
numerate the set of all provable sentences, thus we would have TV v and T
would be inconsistent. Thus T cannot be Σ\-sound. D

We present a technique that makes it possible to get rid of Σ\-soundness.
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2.9 Definition. Let (3u)a(x,u) and (3u)β(x,u) be two ΣΊ-sentences; thus
a,β are ΣQ. A witness comparison sentence given by these sentences is the
sentence

(Observe that this is again a Σ\ sentence; if we call each u such that ot(x7 u)
a witness for (3u)a(x, u) and similarly for (3u)β(x, u) then (*) says "there
is a witness u for (3u)β(x,u) such that no witness for (3u)a(x,u) is < u".
The formula (*) will be often denoted (3u)β ^ (3u)a. In particular, let
(3u)a(x, u) be a 27χ-formula defining the set of all T-provable sentences and
let (3u)β(x,u) be a Σ\-formula defining the set of all Γ-refutable sentences,
i.e. T h φ <*> N N (3u)a(ψ,u) and T h -*p <* N \= (3u)β(φ,u). A Rosser
sentence given by α and β is a formula p such that

i.e.

Thp = (3u)(β(p, u) & (Vt; < u)->a(p, u)).

Calling for a moment an element u such that a(x, u) a demonstration of x
and u such that /9(x, u) a refutation of x, a Rosser sentence says: "there is a
refutation of me beneath of which there is no demonstration of me".

2.10 Gδdel-Rosser Incompleteness Theorem. Let Γ be a Σ\ theory containing
Q and let p be a Rosser sentence for T. If T is consistent then T proves neither
p nor -1/9.

Proof Assume T h />, then for some d, JV t= Qf((p, <i) and hence T h α(/0, d).
Now work in Q and let y be a witness for (3y)/?(/>, y) such that beneath
y there is no witness for (3y)a(Ji, y). Then y < /> V d < y (cf. LI.6) and
d < y is impossible since α(jό, cί). We have proved T h (3y < d)β(j>, y),
i.e. T h \Je<dβ{β >^)- Bu* since Γ is consistent T does not prove -»/o and
thus for each e, iV t= -i/?(/>,e), thus T I—Φ(~p̂ e) by ΣΊ-completeness. Thus
T h t\e<d ^β^Pt^) a n ( ^ -̂  ̂ s inconsistent.

Second, assume T I—«/?, thus

(Beneath each refutation of me there isjt demonstration of me.) There is a
d such that T h /?(ρ); thus T \- (3z < 3)α(p,«). Similarly as above we get
T h Ve<ίί tt(?»β) and T h Λe < ίi ""^CPJ β), thus T is inconsistent. D

2.11 Theorem (Essential Undecidability of Arithmetic). Each consistent the-
ory T containing Q is undecidable; i.e. the set of its theorems is not A\.
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Proof. This is because if T were decidable we could extend it to a Δ\ theory T1

which is complete; but this is impossible by 2.10. (Indeed, let φo, ψl, be a
Λ\ enumeration of sentences of T; define an = φn if Coπ(TU{αo,..., Qfn-l})
and an = -*φn otherwise; axioms of T' are all an. This usual completion
procedure is easily seen to be Δ\ if T is decidable.) D

2.12 Remark. There are many ways in which GδdeΓs incompleteness theo-
rems can be generalized, strengthened or modified. We shall present some of
them in this book. To close this subsection we prove a theorem showing the
existence of a formula which is "as independent as possible" (called a flexible
formula).

2.13 Definition. Let T contain Q. A formula φ(x) with just one free variable is
flexible over T if each elementary conjunction of formulas φ(0), vKl)> ̂ (2), .
is consistent with T. In more details, let (0)α be -iα and (l)α be α; then for
each string eo> £l5 > £n> the theory

is consistent.

2.14 Lemma. Let T be a Σ\ theory containing Q. Then there is a Σ\ formula
φ(x) such that for each A:, (T + (Va?)(y?(a;) = x = k) is consistent. (The
additional axiom says that k is the unique element satisfying φ.)

Proof. Define a function F as follows: F(ψ) = k iff ψ is a T-formula with just
one free variable and there is a T-proof d of -*(Vx)(ψ(x) = x = k) such that
for each d1 < d and each k1 < d', d! is not a T-proof of -*(Vx)(ψ(x) = x = kf)
(thus d is minimal possible). Clearly, F is a partial Σ\ function. By 1.25,
let α(x, y) be such that if F(ψ) = k then T h a(ψ, y) = y = I . By the
diagonal lemma, let <p(y) be such that Γ.h φ(y) = α(^,y). We claim that
F(φ) is undefined, which means that for each fc, (Γ + (Vx)(φ(x) = x = jfc))
is consistent. Assume not and let d be the minimal possible proof as above,
d proving -»(Vx)(y?(a:) = x = fc). Then T h α(< ,̂ y) = y = Jk, thus T h

= a: = k) and T is inconsistent. D

2.15 Theorem (on flexible formulas). Let T be Δ\ theory containing Q. Then
theree is a flexible Σ\ formula.

Proof. Let β(s,i) be a Σ\ formula defining the i-th element of a sequence s;
let φ(x) be the formula from 2.14 and let ψ(x) be

Now let e be a string (εo,ei... ,en) and take T + (V:r)(v?(a;) = x = e).
This theory is consistent and proves φ{k) = Έ^ = 1, i.e. proves {ek)φ(k)
(k = 0,..., n). This completes the proof. •
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(c) GόdePs Second Incompleteness Theorem

Our formulation of GόdePs first incompleteness theorem was rather general;
it concerned any Σ\ definition π of all T-provable formulas. In formulating
the second GόdePs incompleteness theorem we shall first present a rather
general formulation (2.21) but then shall immediately present a particular
case (2.22) concerning theories in which syntax has been developed (i.e. the-
ories containing IΣ\). We derive the following consequences: Lob's theorem
(2.25), the fact that PA is not finitely axiomatizable (2.24) and a stronger fact
saying that, for each n > 1, IΣn is not axiomatizable using I7n+2 formulas
(2.27).

2.16 Definition. Let T be a theory containing Q and let π be a Σ\ definition
of the set of all T-provable formulas. The 'provability conditions for TΓ are the
following conditions:

(1) T\-φ implies T h π(φ) ,

(2) Γ h ^ ) - ^

(3) T h π(ψ) & π(φ -• φ) -> π(ψ)

2.17 Lemma. Let T contain I Σ Ί , let r be a Σ\ definition of T and let the

predicates Proof* (s,x) (s is a r-proof of x) and Pr*(x) (x is T-provable) be
as in 1.4.3. Then Pr* satisfies the provability conditions 2.16.

Proof. Observe that if r is a Σ\ definition of T then Pr* is a definition of
the set of all T-provable formulas and is Σ\ in T. Thus if T h ψ then the
formula Pr^.(ψ) is true and therefore T-provable, by Σ\-completeness (see
1.1.8). This proves (1). To prove (2) reason inside T and repeat the proof
of (1), now using formalized Σ\-completeness (see 1.4.32). (3) is immediate
from the definition of Proof*. Π

2.18 Definition. Let T be a theory containing Q and let π be a definition of
the set of all T-provable formulas. The consistency statement given by π is
the formula -ιπ(0 = 1). We denote the last formula by Conπ or Con(π).

2.19 Lemma. Let T and π be as above and assume that π satisfies the
provability conditions (1) and (3) (see 2.16). Then, for any T-sentence <p,
T proves Con(π) = (~»π(^) V " iτr( :=^)).

Proof By (1), T h π(-.(ΓΞT). Thus

T h -i Con(π) -> π(U^T) &

T h τr(O = 1 -> (-nO = 1 -• φ))
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(by (1)) and hence, by double use of (3), T h -«£7on(π) -* π(^). Similarly,
T h )() ( )

Conversely, note T f- π(φ -+ (~*φ —•0 = 1)) by (1), thus double use of (3)
gives T h (π(φ) & τr(^)) -> -ι Con(π). . D

2.20 Lemma. Now assume T includes IΣ\ and let Pr* be as above. If Con is
the consistency statement given by Pr* then

T h Con = Con* ,

where Con* is as in 1.4.7.

Proof. Fully analogous to the proof of 2.19, but now not as a schema but as
a single theorem. •

2.21 Theorem. (Gδdel's Second Incompleteness Theorem). Let Γ be a theory
containing Q and let π be a Σ\ definition of the set of all T-provable formulas
satisfying the provability conditions.

Let v be Gόdel's sentence based on π. Then

T h i / Ξ Con(π)

and hence T does not prove Con(π) provided T is consistent.

Proof. Thι/-4 -<7r(ϊ7), thus T h v -> Con(π). Conversely, T h -n/ -4 π(F)
and, by (2), T h τr(ΐ7) -> π(τr(F)), i.e. T h π(F) -> π(=ϊF). Therefore we have
T h -11/ -» (π(ϊ7) & π(=ΰ/)), i.e. T h -u/ -> -iCon(π). D

2.22 Corollary. Let T be a theory containing IΣ\ and let v be Gδdel's sentence
based on Pr*, where r is a £Ί definition of axioms of T. Then T h i / = ConJ;
thus T does not prove Con*, provided T is consistent.

2.23 Remark. In the terminology of 2.5, Gδdel's second incompleteness the-
orem gives us an example of a formula having a unique fixed point and
such that this fixed point is an independent formula (neither provable nor
refutable) - assuming that our theory Γ is ΣΊ-sound.

On the other hand, if \(x) is a flexible formula then for any two different
fixed points φ, φ of λ, T does not prove φ = φ (and it is easy to see from the
proof of the diagonal lemma that each formula has infinitely many different
fixed points).

2.24 Corollary. Peano arithmetic PA is not finitely axiomatizable.

Proof. If PA were finitely axiomatizable then for some ifc, PA would be
equivalent to IΣk] but PA h Con(IΣΪ) and, by 2.22, IΣk does not prove
Con(IΣ*k). •
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2.25 Iδb's Theorem. Let T be as in 2.22, i.e. T contains IΣ\, τ is a Σ\
definition of T. Assume that φ is a sentence such that T h Pr*(φ) —> φ.
Then T h φ.

Proof. By our assumption, (T + ̂ φ) h -»Pr*(^), thus (T + -*φ) +^
(where (r + -«y?)(x) = τ(x) V x = <̂ ), thus by 2.22, (T + -K/?) is inconsistent.

D

2.26 Corollary. Let T contain IΣ\ and let K be a fixed point of the formula
Pr*τ(x) (where r is a i7χ definition of Γ), i.e. T h AC ΞΞ PrJ(Tc). The formula
/c is called Henkin's formula (and says "I am provable"). By Lob's theorem,

2.27 Theorem. For each n > 1, IΣn is not axiomatizable by Σn+2 formulas.

Proof. First show that IΣn is not axiomatizable by Πn+\ formulas. If it were
we would have a finite set 5 of JTn+i formulas axiomatizing IΣn (since the
last theory is finitely axiomatizable, see 1.2.52, but by 1.4.33, IΣn proves the
consistency of the set of all true iTn+i formulas and hence, by "snowing"-
snowing, we would have IΣn h Sm C 2>(iTn+i) (5* is {φλ,... , ^ n } # where S
is {φι,..., φn}) Furthermore, since finite axiomatizability of IΣn is provable
in JΣΊ, we would get IΣ\ h Conm(Sm) -> Conm(IΣn) and, by the above,
IΣn h Conm(S). Thus we would get IΣn h Cfon (/Σl ) which contradicts
GδdeΓs second incompleteness theorem.

Now assume that 5 is a finite set of Σ"n+2 formulas axiomatizing IΣn^
S = {<£>i,... ,^n}j V5* = (S^)^*^)* where ψa is ϋn+l Let us work in
IΣn. We have JVΓ n + 1(S' ) and ConΦ(S*) -> Con*(7i:*); thus for some
s i , . . . , z n we have /\i'Γrπn(Ψi(xi)) and for 5J = {?i(xi) , .. ,? n (xn)}
we have Con (S ) -* Con9(S9). But Con (5 ) follows by 1.4.33. We have
proved IΣn h Conm(IΣ^) and have again a contradiction with Gδdel's second
incompleteness theorem. D

2.28 Discussion. Till now we have worked with arbitrary theories containing
Q or IΣ\ and either have assumed nothing about the complexity of T as a
set of formulas (thus as a set of natural number) or have assumed that T is
Σ\ (has a Σ\ definition). We shall often need stronger assumptions on T; we
shall now list and discuss four most frequent possibilities.

(a) T i s Γ i ;
(b) TiSAi;

(c) Γis JΣΊ-provably Δχ\
(d) TisΣ™'
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Let us stress the fact that we identify a theory with the set of its axioms
(not the set of provable formulas). It is easy to see that (d) =Φ (c) => (b) =Φ-
(a); let us comment on this.

For Σ^9 formulas cf. 1.1.28 and 1.2.73; we allow bounded quantifiers of the
form (Vx < t/), (Vx < 2y) and similarly for 3. For provably A\ sets cf. 1.1.51;
by 1.1.50 and 1.1.52 each provably A\ set is A\ and each A\ set is Σ\.

Σ\ sets are often called recursively enumerable and A\ sets are called
recursive (cf. Sect. 0). We also know that each primitive recursive set is
JΣΊ-provably A\ and have promised to show the converse in Chap. ΓV by
model-theoretic means (cf. 1.1.54). Concerning Σ^9 sets, it is easy to prove
that they coincide with Σ^^exp) sets and with elementary recursive sets as
defined e.g. in Grzegorczyk's book (but we shall not need this fact).

Define two theories T, S to be deductively equivalent if they prove the
same theorems. (Thus deductively equivalent theories are just two different
axiomatizations of a deductively closed set of formulas).

2.29 Craig's Theorem. Each Σ\ theory T is deductively equivalent to a Σ^9

theory.

Proof. We show that T is deductively equivalent to a provably A\ theory;
the reader may show that the same construction gives in fact a ΣQXJ> theory.
Let r be a Σ\ formula defining the set T of axioms, let r be {3y)τ(x, y)
where τo is Σo. Craig's trick is to replace each axiom φ by a sufficiently long
conjunction

φ&εφ&ε . . .φ
n times

(denoted by Repeat(n, φ) if the number of conjuncts is n) which makes it
possible to bound the quantifier (3y). Thus put

6{x) = (3y < x)(3u, v < x)(x = Repeat*(v, u) & ro(u, y))

where Repeat9 is defined in the obvious way and is Aι in JΣΊ, thus δ(x) is
also A\ in IΣ\. The set 5 defined by S(x) is an axiom system related to T
as follows: φ G T iff, for some n, Repeat(n,φ) 6 5. Clearly, 5 is deductively
equivalent to T. •

2.30 Remarks. (1) Observe that in fact we can prove more: if r is a Σ\-
definition of T in IΣ\ and 6 is as above and defines 5 then IΣ\ proves that
the theories* r and 8 are deductively* equivalent*.

(2) A formalized version of Craig's theorem reads as follows: IΣ\ proves
that if T is a 27* theory* then there is a A\ theory 5 such that T and 5 are
deductively* equivalent*. (Proof obvious).

(3) Observe that if 6 is A\ in IΣ\ and defines T then r binumerates T in
IΣ\ (and hence in T). (This is because, by 1.23, if A is any set of natural
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numbers and r is its definition and is Δ\ in a sound S 2 Q then τ binumerates
A in 5.)

2.31 Further Remarks. (1) We know that each Δ\ set of natural numbers has
a Σ\ binumeration (and a Π\ binumeration) in T where T is any consistent
Δ\ theory containing Q. Note that a Δ\ set may have, and in fact always
has different Σ\ Enumerations whose equivalence is not provable in T: let
C C N and let 7(0:) be any Σ\ binumeration of C. Let p be a Rosser sentence
of T, let (3y)β(x7y) be a Σ\ definition of refutable formulas; put

Ί2(x) ΞΞ Ί(x) V (Ξy < x)β(py y).

Clearly, T h 71 (x) —> 7(2) —> 72OOJ w e show that both δ\ and 72 binumerate
C but T does not prove 71(2:) = 72(2:). Observe that for each k, T h 71 (fc) =
7(fc) = 72(fc) since for each k

(pp being unprovable), thus all three formulas binumerate the same set; but
(T + p) is consistent, i.e. T + (3y)/?(/9, y) is consistent; and in the last theory
we prove (3y)(72(y) & ~^7l(y))- Thus T does not prove 72(y) —• 7l(y)

(2) Let us show that for each ΣΊ-sound Δ\ theory T containing Q there
is a Δ\ set A such that no formula 6 which is Δ in T\ binumerates A in T
(thus the claim of (1) above cannot be improved to a binumeration which is
Δ\ in T). Let T be given and observe the following:

If Γ proves (Vx)(δ(x) = π(x)) where 6 € Σ\ and TΓ 6 iZΊ,_then for each
keN,Nϊ= (ί(Jb) = ir(Jb)) (i.e. N 1= ί(Jb) V -iπ(Jb) and ΛΠ= -wS(Jb) V π(fc) - Σλ

soundness suffices), thus N 1= (Vx)(ί(a;) = π(x)). Thus for each k G iV, either
there is a witness for δ(k) or there is a witness for -»π(fc).

Now define A as follows: if n is a T-proof of (Vx)(ί(a;) = 7r(x)) (where
ί G i?i,7r 6 i l l) then look for witnesses for δ(n) and -iπ(n). If you find a
witness for 5(n), define n ^ A; if you find a witness for -»τr(n), define n € A.
For remaining n define e.g. n G A.

The reader may check that this is a Δ\ definition of a set A and that if
n, ί, π are as above then A differs from the set defined by δ (and TΓ) at least
in n.

(3) By 1.23, if φ is a Σ\ definition of a set A then <p numerates A in each
ΣΊ-sound theory S D Q. Let us show that the assumption of Σ\-soundness
in essential; in general, φ numerates a superset of A. (For example, let A
be the set of axioms of PA, let π(x) be the formula x G PA* (where PA* is
defined by copying the definition of PA in IΣ\) and let φ(x) be the formula
τr(z) V (^Con*(PA*) & x = 0 = 1)). Then π is ΣΊ in PA, numerates PA
in PA but numerates (PA + 0 = 1) in the consistent (but Σi-ill) theory
(PA+ ^ Con* (PA*)).
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(4) Returning again to Craig's theorem, let us observe the following: If
r is a Σ\ definition of a theory T and δ is the Δι-'m-IΣι definition of the
corresponding Craig theory 5 then (i) T is deductively equivalent to 5, (ii)
IΣ\ proves that τ is deductively* equivalent* to 6, (iii) δ binumerates 5 in
T (even in IΣ\) but (iv) r may numerate a proper extension of T in T.

(d) Pure Extensions of PA

In this and next subsection we shall deal with extensions of PA having the
same language as PA. Here we show that each such theory T is essentially
reflexive (2.35) and if T is 4χ then it has a Δ2 definition π such that T
proves Con*π (2.37). This last result shows some limitations of GδdeΓs second
incompleteness theorem but it should not be overestimated; its main use is
in technical proofs.

2.32 Definition. (1) For each theory T, let T f k be the set of all axioms of T
less than k.

(2) As above, for each finite set 5 = {y>i,... ,ψn}^ let 5* denote

&!,...,ψn} .
(3) Let T be a theory extending IΣ\. T is reflexive if for each fc, T proves

Con*((T f fc)*) (i.e. for each finite subtheory To of T, T proves the consistency
of To).

2.33 Definition. (1) A theory T' is a pure extension of T if T' extends T and
has the same language as T.

(2) Let T D IΣ\. T is essentially reflexive if each pure extension of T is
reflexive.

2.34 Lemma. Let T D IΣ\. T is essentially reflexive iff for each sentence φ,
Thφ-> Con ({φ} ).

Proof. If T is essentially reflexive and φ is a sentence then (T + φ) is reflexive,
thus (T + φ) h Con*({v?}*), hence T h φ -* Con {φ}m). Conversely, let
T\- φ -* Conm({φ}m) for each φ and let T1 be a pure extension of T; let φ be
the conjunction of all axioms of T1 \ k. Then the last provability immediately
gives T' h Con((T' \ k)9). D

2.35 Theorem. PA is essentially reflexive.

Proof. Immmediately from 1.4.34. •

2.36 Theorem. (1) Let T be any consistent pure extension of PA. Then for
any k, T is not axiomatizable using only Σ^ formulas.
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(2) For each k > 1, no consistent pure extension of IΣ^ is axiomatizable
using only i ^ + 2 formulas.

Proof. Clearly, (1) follows from (2). The proof of (2) is a variant of the proof
of 2.27: Let T be a pure extension of IΣfc. First, if 5 is a finite set of -ΠΓfc+i
formulas such that S proves JJCj. then we get S h Con*(Sm) using 1.4.34,
hence 5 is inconsistent by Gόdel's second incompleteness theorem, thus T
is not ϋfc+i axiomatizable (and (1) follows). The generalization to 27fc+2
formulas is as in 2.27, again getting S h CΌπ (S' ), a contradiction. D

2.37 Theorem. Let Γ € Λ\ be a pure extension of PA. Then there is a
binumeration r of T in Γ such that r is Aη> in T and T h Con*(τ).

Proof. By 1.23, Γ has a ΣΊ binumeration σ in T and a J7i binumeration
7Γ in T; let ί(a?) be σ(a?) & (Vy < aθ(<τ(y) = τr(y)). Evidently, δ is a Δ2

binumeration of T in T. Let r(x) be the formula δ(x) & Con*(π \ x) (where
π f :r(y) is τr(y) & y < x). Then r is another A<ι binumeration of T_in T (since,
thanks to reflexivity, for each k we have T h τ(ίe) = ί(fc) = σ(ϊfc) = π(jfc)).
We prove T h Conm{τ). Let us work in T. We distinguish two cases. First
assume Conφ(π)\ then evidently Conm(τ) (since r implies TΓ). Second, assume
-iC7on#(π) and let z be the least number such that -yCon*(π f (z +1)). Then
Con*(π \ z) and for all x, τ(x) implies (π f z)(x). Thus Con*(r) and the
proof is complete. D

2.38 Remark. The reader has observed that r just describes the largest initial
segment of 8 which is consistent; thus it is not much surprising that Conm(τ)
is provable. Reflexivity guarantees that r defines (and T-binumerates) T.
Observe also that the formula Con*(τ) is Π2 in Γ.

(e) Interpretability in Pure Extensions of PA

Our aim is to prove the following two theorems.

2.39 Theorem. Let T G Λ\ be a pure extension of PA, let 5 € A\ be another
theory. Then the following are equivalent:
(i) S is interpret able in T.
(ii) 5 is locally interpretable in T, i.e. each finite subtheory of S is inter-

pret able in T.
(iii) For each Jfc, T h Conφ((S \ k)φ)
(iv) There is a binumeration r of 5 in T such that T h Con*(τ).

2.40 Theorem. If T and 5 are as in 2.39 and 5 is also a pure extension of PA
then S is interpretable in T iff S is JTi conservative for T.
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2.41 Proof of 2.39. We prove (i) =*• (ii) => (iii) =* (iv) => (i). (i) =Φ (ii)
is evident. To prove (ii) =Φ- (iii) it suffices to show that if So is finite and
interpretable in T then T h Con%{Sm

o). We apply the following

2.42 Lemma. Let SO, To be finite theories, let To contain IΣ\. If So is
interpretable in To then To h Conm(T*) -> Conm(Sl).

Proof Let inty(<ί) mean that d is a tuple containing TΌ-formulas χ, φp,...,
^ir,..., ^ c of respective arities (given by the language of SO) as well as
To-proofs of (3x)χ(x) and of the translations of the axioms of S o . This is
a finite sequence since SO is finite. Clearly, intp(d) is Δ\\ moreover a little
checking shows that it is defined by a formula intp*(x) which is Δ\ in IΣ\
(just formalize!). Similarly, let for each So-formula y>, i(φ) be the translation
of φ into a T0-formula given by the above. Similarly, we have a definition i#,
Δι in JΣΊ, of i. Using ΣΊ-induction we get To h PrΦ

So(x) -> Pr^( i # (x) ) ;
and similarly, To proves the properties of i concerning connectives. Thus
To H Coτι (T0 ) -» CΌn (S ), as desired. D

2.43 Proo/ o/ 2.39 continued. The lemma gives T h Con*((S \ k)*) since if
5 0 = 5 f k and 5 0 is interpretable in Γ then S o is interpretable in a finite
subtheory To of T; and T h Con*(T£) due to reflexivity. This completes the
proof of (ii) => (iii).

Now we prove (iii) =» (iv). Assume (VJt)T h Conm((S \ k)*) and let σ,π
be Σ"i and Π\ binumerations of S in IΣ\ (thus in T); let δ(x) be σ(x) &
(Vy < x)(σ(y) = π(y)) (cf. 2.37). Finally, let φ ) be δ(x) & Con#(ί f x).
Then T h Conm(τ) and r binumerates S in T.

(iv) => (i). We prove the arithmetized completeness theorem appropriately
relativized. Let T h Conm(τ) where r is Σ*m (say), r binumerates S in T. Then
r is ^ m + i in T and therefore T proves that S has a full low Δm+2 model.
In fact, the proof of Low basis theorems gives as formulas (χ, ^ 5 , ψ+, Ψ*,...)
defining a low Zim+2 model M of S in T. These formulas can be directly taken
to define the desired interpretation i. (To see this prove a small "snowing"-
snowing lemma for each S-formula ψ:

This completes the proof of 2.39. D

2.44 Proof of 2.40. First assume that S is interpretable in T; we prove Π\-
conservation. Let i be an interpretation of S in T. Thanks to the least number
principle we may assume that i is absolute with respect to equality, i.e.

TV- χ

(Otherwise define a factorization).
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The interpretation defines, in T, a model (Άf, £",+*, * ι, 0*, <*) of the lan-
guage of arithmetic (nothing is claimed on the existence of a full satisfaction!).
Let us work in T. We show that there is an isomorphic embedding F of the
universe onto an initial segment of M. (Cf. IV.1.3.) Let pism(s) (partial is-
mophism) mean Seq(s) & (s)o = 0 M & (Vt < lh(s) - l)((*) t +i = SM((s)i)).
Show, by induction, that there are (uniquely determined) partial isomor-
phisms of arbitrary length; their union is the desired F. Verify by induction,
that F preserves + and * (better: F is an isomorphic embedding of the uni-
verse into M) and that the range of F is an initial segment of M w.r.t. <Λ/
Then, outside T, show for each bounded formula we have

Thus if (Vx)φ(x) is Πι and S h (\/x)φ(x) then T h ((\fx)φ(x)γ, which gives
T h (Vx)^'(F(a:)), thus T h (Vx)φ(x).

Conversely, let T be Π\-conservative for 5". Since 5 is reflexive, we have, for
each k, S h Con*((S \ fc)#), thus T h Conm((S f Jfc)#), thus S is interpretable
inT. D

3. Definable Cuts

Pure extensions of PA, studied in the preceding section, are never finitely
axiomatized. In this section we shall investigate mainly finitely axiomatized
theories containing IΣ\ but possibly having a richer language than the lan-
guage of arithmetic. These may be e.g. fragments IΣn, BΣn+\ (n > 0) or
ACA0, Gόdel-Bernays set theory and many others. Besides other things, we
prove (in (c)) that a consistent finitely axiomatized sequential theory can-
not prove full induction, i.e. there is a formula φ(x) such that T h φ(β) Sz
(Vx)(φ(x) —> φ(x + 1)) but T does not prove (Vx)φ(x). (Here x is a vari-
able ranging over numbers, but φ may contain other variables and symbols
of the language of T, e.g. in the case of ACAQ φ may contain quantified set
variables.) It follows then that there is a formula I(x) such that T proves
that I(x) defines an initial segment (i.e. T proves 1(0), (\/x)(I(x) —* I(x +1),
(Vz, y)(I(x) & y < x -> I(y)) but T does not prove (Vx)I(x). (Take J(x) to
be (Vy < x)φ(y).) We call such an / a proper definable cut. Definable cuts
will play an important role in the present and the following section. Here,
after proving an important theorem on shortening cuts (subsection (a)) we
shall strengthen GόdeΓs second incompleteness theorem to a theorem saying
(roughly) that if T D IΣ\ is consistent and finitely axiomatizable and / is
a definable T-cut then T cannot disprove the existence of a T*-proof* z of
contradiction, z belonging to / (subsection (b)). In subsection (c) we shall
study an alternative notion of provability, called Herbrand provability (or
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direct provability) and show, for reasonable finitely axiomatized theories T,
that there is a definable cut I such that T does prove that in I there is no
Herbrand proof of a contradiction in T. Finally, in subsection (d) we prove a
very useful criterion of interpretability of finitely axiomatized theories using
definable cuts and Herbrand provability.

(a) Definable Cuts and Their Properties

3.1 Definition. Let T contain Q (the language of T may properly extend the
language of arithmetic). A formula I(x) with one free variable (understood
as a number variable) is a definable cut in T (in short, a T-cut) if T proves
1(0), (Vx)(J(x) -> I{x +1)) and (Vz,y)(ϊ, < x k I(x) -* I(y)). I is proper if
T does not prove (Vrr)J(#). (In the case of ACA0, be aware of the fact that
I is a formula, possibly with bound set variables; I is not a set variable.)

3.2 Remark. (1) Clearly, if I is a T-cut then, for each natural fc, T h I(k).
(2) If T D IΣn then clearly no Σn formula (and no Πn formula) is a

proper T-cut. But IΣn has a proper Σ"n+i cut: let n > 1 and let (3y)φ(xyy)
be a J7n_j_i formula for which T does not prove induction. Take the formula

(3s)(Seq(s)klh(s) = z&(Vi < x)φ(ii(s)i).

It is an /ΣΉ-cut and is i7n+i in IΣn. For n = 0 a similar proof works but
one has to use a coding of sequences developed in Chap. V.

3.3 Definition. Define 2* in IΣ\ by the following recursion: for each x,

2 X „ 2

0 = X,

Similarly, we define α;y(0) = 0 and for x > 0, ωo{x) = 2x, ωy+\(x) =
2w»(lίCl"~1)5 where |x| is the upper integral part of the binary logarithm of
x + 1, i.e. y = \x\ iff y is the least z such that 2Z > x.

3.4 Lemma. IΣ\ proves the following:

(1)

(2)

(3) ^W^yfHl),
(4) ωy(x) < ωy+1(x) ,

Proof elementary. Note that the present use of the symbol ω differs from its
use in Chap. II ( where we dealt with ordinals). Both uses are common in
the literature and we prefer to be in accordance with it. D
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3.5 Theorem. Let T D IΣχ. For each k > 0 and each T-cut I there is a T-cut
J such that

(VxeJ)(ωk(x)€J).

Proof, (a) First we prove that for each T-cut J there is a T-cut J such that,
in T, J C I and J is closed under addition: just put

J(x)=.I(x)k(Vy)(I(x + y)).

Clearly, J is a cut, and J C J; if x, z G J then, for each i /6J,2; + i /G / and
therefore x + z + y G / , thus x + z G J. (Consequently, J is closed under ωo.).

(b) For each n, there is a T-cut Jn such that T h J n C T and T h
(Vx)(x € Jn —• 2£ G / ) . This is proved by induction on n: Assume Jn

given. By shortening we may assume that Jn is closed under addition. Define
x G «7n+i = 2X G Jn . Then in T, x G Jn+ι -> 2* G J n -> (2)^ G / and J n + i
is a cut: if x G J n +l then 2* + 1 = 2X + 2X G J n thus x + 1 G J n +l

(c) For each n, there is a T-cut Kn such that T h if„ C / and T h
(Var)(x G -KVi —> ^n(^) G Kn) (i.e. UΓn is closed under ωn). First let J n be as
in (c) and put

x G Kn = (βy G J n ) (* < 2R)

Then clearly T h J n C Kn C /; in T, if a; G ifn and x < 2y

n for some y G J n

then ωn(a?) < ωn(2K) = 2^+ 1 and y + 1 G J n , thus ωn(x) G ifn. Finally, ίCn

is a cut: in T, if x G Kn and a: < 2n for y G Jn then x + 1 < 2«+ (for each
n, 7ΣΊ proves 2^ > 2« + 1 - show by induction on n).

(d) Theorem 3.5 follows by (b) and (c). D

(b) A Strong Form of Gδdel's Second Incompleteness Theorem

We shall investigate existence of proofs of a contradiction in a definable cut.
Theorem 3.9 is a general theorem for T D Q (not mentioning cuts), 3.11
is a consequence for T D IΣ\ saying that, if consistent, T does not prove
the consistency of T over a cut. Note that using the apparatus of Chap. V,
3.11 can be generalized for T D Q (but a careful formulation is necessary,
see V.5.28 (ii)). The key device for 3.9 is simultaneous use of two provability
predicates.

3.6. Let T D Q and let 7Γχ, π2 be two definitions of T-provable formulas.
Generalized provability conditions for π\ and ?Γ2 over T are the following
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three conditions: For all φ,

(1) TV φ implies

(2) T h i r i ( £ _

(3) Thπi(^)&τri(^

3.7 Remark. Observe that (1) and (3) imply T h πχ(^) -• π2(φ): take φ for

3.8 Definition. The consistency statement for π based on φ is the formula
-iτr(^) V -*π(^φ). We may denote the last formula by Conb(π,φ) (cf. 2.18).

3.9 Generalization of Gδdel's Second Incompleteness Theorem. Let T D Q
be consistent and let 7Γχ, 7Γ2 satisfy the generalized provability conditions over
T. Then there is a sentence φ such that T does not prove the consistency
statement ()

Proof. Let i / b e a fixed point of ->7Γi(x), i.e. Γ h i / = " " ^ ( F ) . This is like
GόdeFs fixed point but now πi need not be Σ\ and need not define T-
provable formulas. Nevertheless, condition (1) is sufficient to show that T
does not prove v (cf. 2.8). Let φ be TΓI(J/). We show T I ^2{ψ) —* v and
T I—χf^2^pψ) ~* v\ thus T does not prove "»7Γ2(̂ ) V " " ^ ( ^ v ) .

First we prove T I — i/ —* 7Γ2(7Γi(l7)). This is because T I—«i/ —• πι{v) and

Second, we prove T I — i/ —> 7Γ2(-«7Γi(ί7)). Indeed, T h i/ —> -iτri(i/), thus

T h πi(ϊ/ —> "^7Ti(F)) by (1); furthermore, T I—>i/ —> τri(F), which, togetherwith the preceding provability gives T h -u/ —• ^("^^lί^ 7)) by (3). This

completes the proof. D

3.10 Definition. Let TDIΣχ, let I be a T-cut and let r be a Σ™v definition

of T. Then Pr**{x) is the formula

(3z)(I(z)kPτoorr(z,x)

(saying that there is a r-proof* of x in J).
(2) Con*1 is the formula -*(βz)(I(z) & Proof *τ(z, O^T).

3.11 Another Generalization of GδdePs Second Incompleteness Theorem. Let

T D /ΣΊ, let J be a T-cut and r a Γ^-definition of Γ. Then T does not

prove Con*1.

3.12 Remark. The rest of this subsection contains a proof of 3.11. Without any
loss of generality we shall assume that T contains a unary function symbol
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for exponentiation (2*) and the corresponding axioms. (It is easy to check
that all uses of 2X may be understood as abbreviations.)

3.13 Definition and Discussion. A function F of one argument is multi-
exponent ially bounded in T D IΣ\ of there is a k such that T h (Vx)(f (a) <

2%)-
Let us indicate that natural functions describing syntax (as concatenation

of two sequences, concatenation of a sequence of sequences, substitution etc.)
are multi-exponentially bounded in IΣ\. To simplify matters, we shall just
show existence of multieponential bounds in the standard model N; the
formalization is obvious.

(1) Call a function F(m>..., n) of several arguments multi-exponentially
bounded if there is a A: since that, for each q,

(m<qk ...kn<q)-+ F(m,. . . ,n) < 2\ .

Observe that each term of the language Lo(exp) (i.e. having the constant 0
and function symbols 5, +, *, 2X) defines a monotone and multi-exponentially
bounded function. Write m.e.b. for "multi-exponentially bounded".

(2) Recall that the pairing function is polynominally bounded: (x,y) <
(x + y + 1 ) 2 . Furthermore, recall that our coding of finite sets of numbers
(introduced in IΣ\) satisfies x C (< y) -» x < 2y and x C (< y) x (< 2) ->
x < 2( J / + 2 + 1 ) 2 . This implies that if s is a sequence (Seq(s)), lh(s) < x and
each member of s is < y then s < 2( ίC+2/+1) . If θ, t are two such sequences
then their concatenation s ^ t satisfies s ^ t < 2(2ίB+2/+1) if q is a
sequence of sequences, lh(q) = z and each member of q is a sequence satisfying
the assumptions above then the concatenation of q (denoted Concseq(q) in
Chap. I) satisfies Concseq(q) < 2(2aj+sH"1) . The concrete formulas are not
too important; what is important is the fact that the bounds are multi-
exponential. Now it is easy to see that the substitution function Subst(φ, x, r)
is m.e.b. and similarly for other syntactic notions.

3.14 Lemma. Let T and r be as in 3.11, i.e T C IΣ\, τ a Σl*v-definition
ofT.
(a) If φ is Σ^ then there is a k such that

T\- x < uk . . . ky < u.

(b) Similarly, if I is a Γ-cut then there is a A: such that

Proof, (a) The proof is a re-examination and generalization of the proof of
Σ\-completeness of Q (1.1.8). For simplicity prove again a non-formalized
version saying the following:
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if m < p&ε ... &εn < p and N 1= y?(m,...,n) then threre is a T-proof of
φ(m,..., n) beneath 2^ (where A; is a constant depending only on φ).

(1) First assume that ψ is m + n = ra + n. The usual proof of this formula
looks as follows:

x + Sy = S(x + y)

m + SO = 5(m + 0)

m + π =

It depends on details of your Hilbert-style formalism whether this is a proof
as it stands or if you have to make some inessential modifications; but in any
case, the length of the proof (i.e. the number of proof lines) is polynomial
(here linear) in max(m, n) and the length of each row is polynomial (linear)
in max(ra,n). Thus, by the above the whole proof is m.e.b. in max(m,n).

Similarly for m * n = m*n, m φ n (if m φ n), and other cases (cf. 1.1.8).
Also the proof of 2™ = 2 m is easily estimated.

(2) Let Val(t(m,..., n)) be the value of a closed term (possibly containing
exponentiation). For a given t there is a k such that for m,... ,n < q there
is a d < 2q

k such that d is a T-proof of *(m,..., n) = Val(t(m,... ,ή)).
To see this, first note that, by (1) in the proof of 3.13, Val(t(rή,... ,n) is

m.e.b., i.e., for some Λ, whenever m,..., π < q then Val(t(jrϊ,..., n)) < 2^.

Put r = 29

h. For simplicity, just take one example: let t(m, p, n) be ( 2 m +n)*p;

we want to estimate a proof of ( 2 m + n) *p = ( 2 m + n)*p. By (1) here, we

can successively produce proofs of

There is a common j such that there is a proof of each of these equalities
beneath 2£ (since each argument involved is < r). A proof of the desired
equality results by concatenating proofs of the equalities above and adding
some few lines (instances of transitivity of =) . Clearly, the whole proof is a
m.e.b. function of r, i.e. of the initial arguments m,...,n.
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(3) It follows that if φ(x,..., y) is a true atomic or negated atomic formula
then the function assigning to m,...,n the least T-proof of <p(ra,..., n) is
m.e.b.

(4) Prove by induction the following: for each i?oXp-formula φ(x,..., y), the
function assigning to each m,... ,n such that φ(m,..., n) is true, a T-proof of
y>(m,..., n), and to each ra,..., n such that φ(m,..., n) is false, a T-proof of
->y>(m,..., n) is m.e.b. This is true for φ atomic (see (3)); the induction step
for connectives is easy. It remains to handle bounded quantifiers (Vx < y)
and (Vx < 2^).

(5) Observe that T proves

(Vx <

and we can find a proof of this equivalence by m.e.b. function (with arguments
m,. . . , n). Indeed, analysing 1.1.6 (4) we see that finding a proof of

is m.e.b. (in the argument m) and so are functions witnessing the following
T-provabilities:

(Vx < m)y?(x,m, . . . ) - * y>(*,m,...), (k < m)

(Vx<m)v?(ar,m,...)~> f\ γ?(Jb,m,...),

k<m

)-+(x = k-4 φ(x, m , . . . ) ) ,

,...)-* \J i = i.->^(i,m,...),
k<m k<m

f\ y>(fc,m,...) -*(x <m-^(^(x,m,...)),
k<m

f\ φ(ky m, . . . ) - > (Vx < m)φ(x, m , . . . ) ) .
b<m

Similarly for (Vx < 2 m ), i.e. for (Vx < 2m): provably a function m.e.b. in
the argument 2 m (or even 2̂ *) is m.e.b. in m. This completes the proof of
3.14 (a).

Now we prove (b); this is much easier.
Assume that J(x) is a T-cut; let d be a T-proof of 7(0) & (Vx)(/(x) ->

I(x + 1)). Let m be given; a proof of I(τn) consists of proofs of 7(0),/(I),
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1(0)

I(x) -+ I(x + 1)

J(ϊfΓ).

It is easily seen that this is a m.e.b. function of m, J, cί, i.e. for fixed I and
d, a m.e.b. function of m. This completes the proof of 3.14, except for the
following pedantical

Remark: In proving (a) we in fact assumed T D IΣι(exp), i.e. used
explicitly the power-of-two operation. If T D IΣ\ but does not have 2X in
the language then we may extend it by adding the definition of 2X; this is
a particular conservative extension and one can check that there is a m.e.b.
function F assigning to each T(exp)-proof of a T-formula φ a T-proof of φ.
This shows how to get rid of 2X. D

3.15 Lemma. Let T, r be as above. For each T-cut / there is a T-cut J such
that T h J C J and Pr* J , Pr%

τ

J satisfy the provability conditions 3.6.

Proof. Let us write Pr1 instead of Pr*J and similarly for PrJ. The condition
(1) is evidently satisfied: if d is a T-proof of φ then T h Proofl(d,φ) and
T h I(d). To get (3) it suffices to have T h J(x) -> I(2£) where, provably in
T, u, v, it; C a: —> u ^- υ ^ w < 2^. We prove (2). Let us work in T.

Assume PrJ(φ), i.e., J(x) & Proof (φ,x). Then, by 3.14, for an_ appro-
priate j given from outside there are 21,22 < 2 | such that Proof {J{x),z\)

and ProofΦ(Proof*(φ,x),Z2). Then 2 = 21 ^ 22 ^ (PrJ(φ)) (or something
very similar, details are unimportant) is a r-proof* of PrJ(jφ); thus it suffices
that z is in /.

We see that for example putting k = h + j and choosing J such that
T h J(x) -> 1(2%) (by 3.5), we have (1), (2), (3). This completes the proof.

D

3.16 Proof of^3.11-conclusion. Let T, T, I be as in 3.11 and let Jo be the cut
constructed in 3.15. Then for some particular φ T does not prove Conb(τ, φ).
To get the unprovability of 0 = 1 in the desired cut J, we shorten Jo again in
such a way that T proves the following: if x G J is a r-proof of φ and y G J
is a r-proof of = ^ then the concatenation of x, y, and the (standardly long)
propositional proof of 0 = 1 from φ and -up is in Jo (use e.g. the h above).
This completes the proof of 3.11. D
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(c) Herbrand Probability and Herbrand Consistency

In this subsection we are going to investigate an alternative notion of prov-
ability called Herbrand provability (since it is based on Herbrand's theorem).
Even if Herbrand provability is equivalent to the usual provability (prov-
ably in IΣΊ), Herbrand proofs are much "slower" (or: longer) than the usual
Hubert style proofs; we shall show that under some conditions on a theory
T, we may always find a cut / in T such that T proves that in I there is no
Herbrand proof of inconsistency in T. This is interesting at its own; but the
methods we present here will be very useful in studying interpretability and
partial conservativity in the next section.

Recall Herbrand's theorem (0.21 and, formalized, 1.4.15): it says that a
formula Φ is provable (in predicate calculus) iff there is a disjunction D of
instances of the open part of the Herbrand form He(Φ) of Φ such that Φ is a
propositional tautology. This leads to the following

3.17 Definition (IΣi). A H-proof (Herbrand proof) of a formula x is a
propositional proof z of a disjunction of instances of the open part of He*(x).
(Notation: HProof*(z, x).) If T is a finite theory consisting of closed formulas
then a H-proof of x in T is a JEΓ-proof z of (/\ Γ —* x) (/\ standing for a
finite conjunction); notation HProofj*(z,x). A formula x is ff-provable in T
(EPrj,(x)) if there is a fί-proof of xmT.T is If-consistent (HConm(T)) if
there is no H-pτoof of -»/\ T.

3.18 Remark. We know that IΣ\ proves Herbrand's theorem, i.e. IΣ\ h
HPr τ(x) = Pr*T(x) and IΣχ h HConm(T) = Con9(T). But for weaker
theories not proving Herbrand's theorem, these notions may differ. This will
be discussed in Chap. V; here we pay attention to the fact that the notions
of provability and fΓ-provability may differ on a definable cut, i.e. there may
be a cut provably not containing a ff-proof of a given formula (expressing
consistency) but the same cannot be proved for usual Hilbert-style proofs.

3.19 Definition. Let Γ be a finite theory containing IΣ\ (i.e. we assume that
Γ proves all the axioms of IΣχ) and let / be a T-cut. We make the following
definitions:

(X) = (3y)( I(y) & HProofτ(x, y)),

HCOU'T1 = ^HPr'1^ /\ T ).

We also write HCon0l(T*).

3.20 Theorem. Let T be a finite theory in the language of arithmetic extending
IΣ\. (1) There is a T-cut I such that

T \- ^
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(2) More generally, there is a T-cut I such that T proves

(Vu 27i-sentence )(IVj;fi(u) -> HConmI(Tφ + u)).

3.21 Theorem. Still more generally, let T be a finitely axiomatized sequential
theory containing IΣ\ (i.e. an interpretation of IΣ\ in T has been fixed).
Then there is a T-definable cut / such that T proves

(Vu Γi-sentence )(ΪVΓ,i(tx) -> HConmI(Tm + u)).

Let us make a definition and describe the method of proof; then we shall
elaborate the proof in details.

3.22 Definition. For each k we define Qj.-formulas as certain formulas of the
language of arithmetic. QQ-{OTIΏ\UΆS are ΣΌ-formulas; Qfc+1-formulas are Qj.-
formulas and boolean combinations of formulas of the form (3x)φ where φ
is Qk (say, boolean combinations of ΞQj.-formulas). Thus a Qk-formula has
nesting of quantifiers at most fc, 27o-formulas being disregarded. A Qk'Proof
is a (Hubert style) proof consisting only of Q&-formulas.

3.23 Remark. Even if a detailed proof of our theorem is rather long, the idea
is easily comprehensible. We shall prove 3.20 (2); then we indicate how to get
3.21. First we show that for each k, satisfaction and truth for Qj.-formulas is
definable in IΣ\. It follows that there is a T-cut J such that Qj.-proofs lying
in J preserve truth. Consequently, no Q^-proof of - f\ Tm is in J. Finally, it
can be shown that each iΓ-proof of a Qk-formula can be transformed, in a
multi-exponentially bounded way, to a Q^.+2-PΓO°f °f the same formula. Thus
if / is a suitable shortening of J then / has the desired properties.

3.24 Corollary. Let T D IΣ\ be consistent, finite and sequential. Then T does
not prove full induction.

Proof. If T proves full induction then for each T-cut /, T proves (Vx)J(x),
i.e. there are no proper T-cuts. On the other hand, if T is as above, then
T h HConmI(Tm) for some T-cut /, thus T h HConm(Tm). But since T D IΣχ,
T proves Herbrand's theorem and hence T h Conm{T%),which contradicts
Gδdel's second incompleteness theorem. D

The rest of the subsection elaborates 3.23.

3.25 Lemma. For each fc, the following can be constructed in IΣ\: a definable
cut I*, and a satisfaction for Qj.-formulas from ij..
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Proof. We know that there is a A\ satisfaction for ^-formulas (see 1.1.75);
thus let Jo be an improper cut. Assume Satqk is a satisfaction for Qk-
formulas from /& (i.e. Tarski's conditions are provable and, consequently,
"it's-snowing"-it's-snowing lemma is provable). In the-usual way we get the
satisfaction Sat!(z, e) for 3Q&-formulas from Ijg. It remains to extend the sat-
isfaction to boolean combinations of such formulas, but this is easy. Define
Satq^+ii*, e), where z is a boolean combination of 3Qk-formulas, iff there
exists a "constructing sequence" c of z from 3Qk-formulas (each member is
either a 3 Qk -formula or results from some preceding members using connec-
tives; the last member is z) and a corresponding "evaluating sequence" s of
zeros and ones such that, if (c){ is 3Qk then (s), = 1 iff Sat\z,e), s obeys
truth tables and the last member of c is 1. Define ijfe.fi (z) iff /jfe(x) and for
each Qk+ι-formula z < y there exists a constructing sequence c with a unique
evaluating sequence s. Clearly, Ik+i is an JΣΊ-cut. D

3.26 Lemma. For each fc, there is an IΣΊ-cut I(x) that is a shortening of I&
and such that IΣ\ proves the following: If T is a finite theory in the language
of arithmetic whose axioms are true Qk -formulas*, if s is a Q^-proof* from
T and I(d) then each member of d is true.

Proof. This is trivial: let I(x) say that Ik(x) and each Q^-proof from true Qk~
formulas is truth-preserving. This is an inductive property since deduction
rules are truth preserving and logical axioms are true. D

3.27 Remark. If T D IΣ\ is a finite theory in the language of arithmetic
then for some &, all axioms of T are Qk and T proves all its axioms true (by
"it's-snowing"-it's-snowing). Thus it follows that in the cut / from 3.26 there
is no Qfc-proof of -i f\ T. More than that: if u is Σ* and true then it is a true
Qk formula (since Σ\ C. Qι and thus / does not contain any Qk-pτoof of
-»f\ T V u). To complete the proof of 3.20 it suffices to clarify the relation of
if-proofs to Qfc-proofs. Before doing that let us introduce a technical device,
analogous to a Henkin extension.

3.28 Definition (IΣi). Take the predicate calculus with the language of arith-
metic; using the method of 1.4, add infinitely many constants in such a way
that for each formula φ(x) of the enriched langauge with just one variable we
have a constant V̂a ) ^ ) (associated to φ by a total Δι function) and call
the formula

the special axiom for φ(x).

3.29 Remark. (1) Analogously to 1.4.9 one shows that this is a conservative
extension of the predicate calculus, see also below.
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(2) The following theorem is in fact a strengthening of one implication
from Herbrand's theorem; namely, it shows that Herbrand provability implies
provability. But we need more: Qk-provability and multi-exponential growth.

3.30 Theorem. For each fc > 1, there is a q such that IΣ\ proves the following-
There is a Δ\ function F(d), majorized by 2jJ, such that if d is a ff-proof* of
a Qfc-formula* φ then F(d) is a Qk+2"Pτo°f* °f Ψ-

The rest of this subsection contains a proof. We shall carefully describe
the construction of the proof F(d) and check that it is a Qjb-f-2~Pro°i* 5 ^ e

tiresome task of checking that F is m.e.b. is largely left to the reader. The
proof is an inspection and elaboration of a proof from Shoenfield's book.
(Alternatively, the reader may apply Theorem V.5.14)

3.31. First, let us analyse a little bit the construction of a prenex normal form
of a given formula (such a construction is the initial part of the construction of
the Herbrand variant, cf. 0.18). Let Φ be given; we may assume that negation
occurs only before atomic formulas, distinct quantifiers bind distinct variables
and no variable is both free and bound in Φ. (If not then the corresponding
changes as well as the proof of equivalence of both forms are given by a
m.e.b. A\ function.) Call, for a moment, a formula clean if it satisfies our
assumptions. A clean formula is a boolean combination (using &, V, —•)
of atoms, negated atoms and quantifies formulas, say /?(y>i,... yψn)- If ψ\
is (ΏX)OL (where D is V or 3) then β(φι,... ,φn) is provably equivalent to
(Ofx)β(a, ψ2,..., ψn) where D; is V or 3; there is a m.e.b. function finding D'
and giving a proof of the equivalence. Call the transition from β(φι, ...,φn)
to (Ώfx)β(a,... ,φn) the extraction of D from (Ώx)a in β(φi,... ,y>n), the
inverse transition is the insertion of O' into /?(α,..., φn) by quantifying a. A
prenex normal form (PNF) of Φ is constructed by a sequence of extractions
of quantifiers:

Φ = ΦQ = (Do .. .)ί*b (where Do is an empty block of quantifiers)

Φh = (Dft .. ,)\Ph (D/j is a block of quantifiers and Φ^ is open)

here for each i < fc, (D, + i . . . ) is either of the form (D, .. .)(\te) or of the
form (D, .. .)(βx) and the formula (Vz)Φj+i (or (3x)&i+ι) results from Φ{ by
an extraction of a quantifier. Φ^ is a PNF of Φ; write (D. . ,)K instead of
()

3.32. The Herbrand normal form He(Φ) can be written as ( 3 . . .)K* where
(3...) is the block of existential quantifiers resulting from (D...) in (D. . .)AΓ
by deleting universal quantifiers and K* results from K by substitution
of certain terms (containing new function symbols) for variables that were
universally quantified in (D. . .)K (call these variables V-variables and the
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others 3-variables). Now, by 3.17, a Herbrand proof of Φ is a propositional
proof of a disjunction Vi -^(*i)? where each t t is a tuple of terms and ΛΓ(t, )
is in fact an instance of K*. We may assume that the disjunction \/iK(ii)
contains no variables.

3.33. We shall successively eliminate new function symbols, replacing them
by special constants. Write t? for t, ; we shall construct a sequence of propo-
sitional tautologies

each Kζtl) will be an instance of K (but not necessarily of if*). The transi-
tion from j to j + 1 proceeds as follows:

Take a term /(a) occuring in Vi K{i^) where / is a Herbrand function (not

occuring in Φ) and the terms a contain no Herbrand functions. Replace /(a)

(in all occurrences in Vi K(S\)) by the special constant c defined as follows:
The function / corresponds to a quantifier (Vx) in PNF(Φ) that was

extracted when going from (Πu .. .)ΨU to (Du .. .)(Vx)lPiι4.i(x,y); c is the
special constant for (Vx)Ψu+ι(x,a), i.e. the corresponding special axiom is

This change clearly preserves the property of being a tautology (since it
commutes with all connectives). We finally arrive at a tautology V^ K(t?)
which does not contain any new function. Its propositional proof is obtained
from the original propositional proof by a m.e.b. function.

3.34. We want to show that each disjunct K(t?) implies our original formula
Φ by a Qfc+2-Pro°f using possibly special axioms for constants used in the
construction. Write K[%) for ϋf(t?). Recall that K(s) is in fact ί^(s) (see the
construction of PNF(Φ)). Now Φ^ is (D/j.. .)Ψh and

L(z,y) (Case 1)

L(*,y) (Case 2)

where Φ)j_i(y) results from (Drc)Φ/ι(a;,y) by inserting (Πx) in its place.
Case 1. The variable x corresponds in s to a special constant c belonging

to the special axiom SP/̂ Cjs') —> (Vx)y?)ι(a:,s/) (where s' is the rest of s, i.e. s
is (c,s7)). Denote this axiom by Sp(c). Thus we have a proof of
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and the proof is a Qj.+i-proof (since each ϊP, is a Qj.-formula; Sp ^ιas o n e

more unbounded quantifier and a proof of the equivalence of (Vx)Φ/ι(a:,s')
and #/ι-l(s/) uses only Qfc+l-formulas).

Case 2. Here let s be (d,s') where d is some term corresponding to x;
clearly, the formula Φ/ι(d, s') -• (3x)Ψh(x, s 0 n a s a Qfc+l-PΓO°f ^ d the same
holds for #Λ(d,β') -> fffc-i(s').

3.35. Iterating this we finally construct a QA?+1 -proof of

(since Φ is S?o). Since K(s) was an arbitrary disjunct of the tautology
\/i UΓ(t?), we have a Qfc+1-proof of

(The reader should to check the fact that the construction is a m.e.b. func-
tion of the original Herbrand proof.) It remains to eliminate of the special
constants.

3.36. Assume that the constants CJ are ordered according to decreasing com-
plexity, i.e. c\ does not occur in axioms Sp(c2),... etc. Let the special axiom
for c\ be ψ{c\) —* (Vz)y>(z) and replace c\ in the formula

by a new variable y; we get a Qfc+2-Pro°f of each of the following:

(ψ(y) - » ( V « M « ) ) - » ( 5 p ( c 2 ) - • • • # ) ,

»(V*V(x))

the last formula is Qfc+i. By iterating this we get a Qjfe+2-PΓO°f of Φ, q.e.d.

3.37 Remark. Note that our main trick (not necessary in Shoenfield's original
proof) was to keep the complexity of the formulas involved low; PNF(Φ)
need not be Qj., but we avoid reaching PNF(Φ) by carefully inserting each
quantifier in its place immediately after it has been introduced. This makes
the quantifier bounded as soon as possible.

3.38 Remark. Now our proof of 3.20 has been completed (cf. 3.23). Let us
indicate how to modify the whole proof in order to get a proof of Theorem
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3.21. The problem is that our fixed interpretation oiIΣ\ in T may be relative,
i.e. there may be object being non-numbers. But thanks to sequentiality, we
can code sequences of arbitrary objects.

We shall sketch the general proof, the reader may elaborate details.
(1) First assume that the language of T is rich enough and contains a unary

predicate N(x) ranging over number (in the sense of the fixed interpretation
of IΣ\ in T), a constant 0, function symbols 5, +, * and a predicate < having
the obvions meaning in the sense of the interpretation. (If this is not the case,
replace T by a conservative extension T1 using the respective definitions; show
that each Γ-cut / has a shortening J such that

T h HCon\T') -> HConJ{T).)

(2) Define Qo-formulas as boolean combinations of arithmetical ΣΌ-formu-
las and arbitrary atomic formulas; then define Qk+\ formulas from Qk for-
mulas as above.

(3) We have two notions of sequences: the arithmetical notion for sequences
of numbers and the notions of sequences of arbitrary objects given by the fact
that T is sequential. Observe that there is a T-cut Io such that, roughly, T
proves that for lengths from Jo, the two notions of sequences of numbers
coincide; in more detail, let Seq(x), (x)y have its usual meaning and let
SEQ(z), β{u,υ,z) be as in 1.12.

Put

I0{v) = N(v)b[((Vx)Seq(x) ^ (3z)(SEQ(z)

&(Vt* < v)(Vu)((x)w =u = β(u,w,z))

& (Vz)(SEQ(z) & (Vυ < iϋ)(Vu)(/?(u, w, z) -• N(u))

-+ (3x)(Seq(x)k(Vw < v)(yu)((x)w =u = β(u,w,z))].

Then Io is the desired cut.
(4) We can shorten Io to get a cut I\ such that, for T-terms* from /i,

their value is uniquely determined.
Define evaluation* of variables of a term* as a particular SEQnence of

objects (somehow assigning meaning to the variables* of the term*) and
define a corresponding evaluating sequence for the derivation of our term*;
Iχ is the collection of all u G Io such that, for each term* t < u and each
evaluation* of its variables, each derivation* of t has a unique evaluating
sequence. I\ is a cut.

(5) By a possible further shortening we get a cut 1% such that T proves:
for terms* of the language of arithmetic and their evaluations by numbers,
the new notion of the value of a term coincides with the old one (cf. 1.1.64).

(6) We define satisfaction for atomic formulas z 6 I2 of the whole language
and for I7*-formulas* z ξ. 1% oi the language of arithmetic in the obvious
manner. There is a shortening Jo of 1*2 such that T proves that for Qo-
formulas z G Jo, satisfaction is uniquely determined and satisfies Tarski's
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truth conditions. This can be iterated: for each fc, there is a cut Jk and a
satisfaction for Qk-formulas* such that T proves its usual properties.

(7) Given Jb and Qk, Jk has a shortening Kk such that T proves that
Qk-proofs from true formulas are truth-preserving. Then we can continue as
in the proof 3.20: there is a m.e.b. function transforming each ίf-proof* of
a Qjfe-formula* into a Qk+2-P™of °f ^ a t formula. This completes our proof
sketch of 3.21.

(d) Cuts and Interpretations

This subsection contains a proof of the following theorem.

3.39 Theorem. Let 5, T be theories, finitely axiomatized and T D IΣ\ and
sequential. Then 5 is interpretable in T iff there is a T-cut I such that
T\- HConτ(S ).

Proof. First let us discuss the implication =>. The proof is a generalization
of the proof of 3.20, thus a modification of our proof of 2.21. We describe
the necessary changes. First, simplify the notion of Qj.-formulas: since we do
not assume that the language of 5 contains the language of arithmetic, let
Qo-fonnulas be all atomic 5-formulas; Qfc+i-formulas are boolean combina-
tions of 3Qk-formulas. Thus Qfc-formulas are particular S-formulas. Show by
induction on fc, using the given interpretation, that in T there is a cut 1^
and a satisfaction Satq^ for Qk-formulas such that T proves Tarski's truth
conditions and thus T proves the following "snowing"-snowing-lemma: for
each 5-formula φ(x,...) which is a Qjfe-formula,

(Here * is the interpretation).
There is a shortening Jj. of ij. such that T h (Qk-proofs z £ I preserve

SatQk'tTuth) and there is a shortening Kk of Jj. such that T proves that each
ίf-proof (from no special axioms) u £ -Kfc+2 °f a Qk' formula φ determines
a Qfc+2~Pro°f z € Jk+2 °f ψ' Consequently T proves the following: if (the
concatenation of all elements of) S9 is Qk then Kk+2 contains no ίf-proof*
of -iS* (recall that T h (5* is true) since T h 5*). Thus the proof of =^ is
complete. The rest of the subsection contains a proof of <=. D

3.40 Lemma. Let T D IΣ\. For each T-cut / there is a T-cut J such that
Γ h / C J and T h (J is closed under concatenation of sequences).

Proof. Let us work in T. Let s,t < x; then lh(s),lh(t) < \x\ and, for each
i, (θ), ,(t) t < \x\. If w is the concatenation of s,t, i.e. w = s ^ t, then
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lh{u) < 2\x\ and each member is < |z|, thus, by 3.13, w < 2(3(*)+ 1)2. An
elementary computation shows that

ω2(x) =

thus it suffices to assume that J is closed under u>2 (cf. 3.5). D

3.41 Corollary. Let L be a finite language, let T 3 IΣ\, let J be a T-cut. Then
there is a T-cut J such that T h J C / and T proves that for each function
symbol F and predicate symbol P of Z#, of arity n, whenever t i , . . . ,tn are
in J then so is JP(<I, ... ,tn) and

3.42 Proo/ o/ 3.39 <=. Our starting situation is: 5 is a finite theory (assume
S is a one-element set), T 3 JΣΊ is sequential, J is a T-cut such that
T h HConm(S*). Thus T h (in J, there is no propositional proof9 of any
disjunction of instantions of -«5fc(5#)), cf. the definition 1.4.11 of He*(-*S*)).

Define, in T, a function F described as follows: for each rr, first take the
conjunction κx of all closed instances of Sk(Sm) less than rr, then construct the
truth table for κx. If there is an evaluation of atoms making κx propositionally
true then F(x) is such an evaluation (e.g. the least one). Otherwise F(x) is
a propositional proof of -tκx. Check that F is A\ and m.e.b. in T. Let J be
a T-cut shorter than I and such that T h x G J -> F(x) € / . Then T proves
that, for each x G «/, the conjunction /cx (of all closed instances of Sk*(S*)
less than x) is propositionally satisfable.

(2) What follows resembles Kόnig's lemma; but since we do not have
enough induction we have to replace infinity in the sense of the universe by
infinity in the sense of a cut. Namely, let us work in T, let L\ be the language
of Sk(S) and let V(e) mean that, for some x E J, e is an evaluation of closed
L " a ^ o m s l e s s than x, (say, an x-evaluation) making κx propositionally true.
V is, in the obvious sense, a dyadic tree and is, so to speak, J-infinite: for
each x G J, some £-evaluation is in V. An evaluation e E V for κx is said
to have J-unboundedly many prolongations in V if, for each y G J, y > x,
there is an evaluation e1 G V for κy such that e C e'. Clearly, if e G V is
an z-evaluation and has J-unboundedly many prolongations in V then there
is a least (x + 1 Revaluation e' G V extending e and having J-unboundedly
many prolongations in V (since there are at most two (a; + ^-evaluations
prolonging e). Write, for a moment, LP(e) for e7. An x-evaluation e G V is
leftmost (i.e. leftmost having J-unboundedly many prolongations) if, for each
y < ar, e f (y + 1) = ίP(e f y). Clearly, if an ar-evaluation e G V is leftmost
(x + ^-evaluations prolonging e.

Put J\(x) =. J{x) & there is a unique leftmost x-evaluation e G V.
Clearly, J\ is a T-cut and T h Ji C J; we may define a function B on J\

assigning to each closed ii-atom in J\ its truth (0 or 1) in accordance with
the unique leftmost x-evaluation (for any x satisfactorily large).
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(3) Shorten J\ to J2 such that T h (J2 is closed under concatenation) and
restrict B to J2. Thus, T-provably, if *χ,..., tn are closeσUerms in J*ι and F,
is a function symbol from L\ (of arity n) then the term F(tχ,... , t n ) is also
in J2 Similarly for a predicate.

(4) We put
χ(x) = x is a closed L -term in J2

for each function symbol F of L, let

ΦF(XI>. . . , z n , y) = y is the term -P(a?i,... s n ) ,

(application* of F to xi, . . . ,# n ) and for each predicate P of L, let

φp(x\, . ., xn) = 5 assigns the value 1 to the closed atom P ( # i , . . . , x n )

This defines our interpretation; it suffices to verify that it is an interpretation
of Sk(S) in T. But this is now clear: each φp defines a total n-ary function on
the set of all closed terms (which is non-empty). Verify (by induction outside
T) that, for each ii-term t(x0, . >£π)> T proves

χ(uo) k . . . & χ{un) -> [t*(uo,..., un) = t(no/xo, .,

(cf. 1.1.67), and, for each open Li-formula φ(x0,. , £n)? T proves

(iίo) & ... & χ(wn) -> [^*(wo,..., wn) = with respect to S,

φ(uo/xe,... 5 Un/xn) has truth value 1].

(Note that you always need a piece of B which is a finite set.) Since T
proves that each closed instance of Sk(Sm) has truth value 1 under B, we get
T h [(V.. .)5Jb(5)] this completes the proof of 3.39. D

3.43 Remark. If 5 contains an equality predicate we may be interested in an
interpretation with absolute equality, i.e. such that T h χ(x) & χ(y) —> {x =
y Ξ a; =* y). The above construction is easily refined to get an interpretation
with absolute equality: in T, call a closed term u S-minimal if for each υ! < u
such that χ(iί'), B gives value 0 to the formula* u =• uf. Note that with each
u such that χ(tx) we may associate an υ! = AfΓ(u) such that iί; is minimal
and B(u =• i/) = 1. (Again, this because to decide u =• tx' for all u < u'
we need to know only a set-piece of B*). Thus replace χ(u) by (χ(u) & w is
5-minimal) and make appropriate changes - details left to the reader.

3.44 Remark. For PA, we get the following as a corollary: A finite theory
5 is interpretable in PA iff PA h Con*(Sm). Clearly, this could be obtained
directly from other previous results.
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However, we can now generalize investigations of Sect. 2 (e), concerning
pure extensions of PA, i.e. extensions of PA in the language of PA to arbitrary
sequential theories T containing PA (i.e. PA is interpreted in T, the interpre-
tation being fixed) and having full induction, i.e. if N(x) in the predicate "x
is a number" and φ(x) is any formula of the language of T then T proves

φQS) & (\fx)(N(x) & φ(x). -+ φ(x + 1). -> (V*)(ΛΓ(*) -> y>(*)) .

Note that if T is sequential and has full induction (with respect to the given
interpretation of Q in N) then T contains PA.

3.45 Theorem. Let T G Δ\ be a sequential theory having full induction, let
S £ AL be another theory. Then the following are equivalent:

(i) S is interpret able in T.
(ii) 5 is locally interpretable in T.
(iii) For each Jb, T h (7<m#((S f *)•).
(iv) There is a binumeration σ of S such that T h Con*(σ).

3.46 Theorem. If T and S are as above and 5 is sequential and has full
induction then 5 is interpretable in T iff 5 is Π\ -conservative for T.

To prove 3.46, just check proofs of 2.39 and 2.40. You have to use the
following two facts:

3.47 Lemma. If Γ is sequential and has full induction then T is reflexive.

Proof. By 3.21, for each finite To D T we have T h HConm(T^) (since there
are no proper T-cuts); but T contains IΣ\ and therefore T h Co7i#(T*) =
HCon\T ). D

3.48 Remark. In the proof of (iv) =£• (i) observe that we get an interpretation
of 5 in T such that all 5-objects are interpreted as some numbers in T, thus
we may apply the least number principle and get an interpretation absolute
with respect to equality.

4. Partial Conservativity and Interpretability

4.1. In the present section we shall investigate the notion of P-conservativity
(Γ being a class of formulas) and interpretability as means of comparing
thesies. Both notions were defined in the present chapter, Sect. 1 (a); and
for pure extensions of PA (more generally, for sequential theories with full
induction) we already have a result saying that 5 is interpretable in T iff
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5 is Π\-conservative for T (see 2.40 and 3.46). Now we want to remove
the assumption of full induction and, in particular, get results for finitely
axiomatized theories. Recall that we have the .characterization 3.39 of inter-
pretability of a finite S in a sequential T D IΣ\ (Γ h HConmI{Sm) for some
T-cut /; this will be used repeatedly.) We shall see that results concerning
partial conservativity do not depend on any assumption of finite axiomatiza-
tion, but properties of interpretability in finite theories differ drastically from
properties of interpretability in theories with full induction.

We shall particularly focus our attention on pairs 5, T of theories (con-
taining IΣiy say) such that S results from T by adding one axiom, thus S is
(T+φ) for some φ. If φ is independent of T, i.e. neither provable nor refutable
in T, it is natural to ask whether S is interpretable in T and how conserva-
tive S is over T. Instead of saying that (T + φ) is Γ-conservative over T we
say that ψ is Γ-conservative over T; similarly for interpretability. In subsec-
tion (a) we shall ask these questions for some prominent formulas (Gδdel's
and Rosser's formula); subsection (b) contains some general theorems on
partial conservativity and in subsection (c) these theorems are applied and
related to interpretability. All this is a possible answer to the question what
more we can say concerning axiomatic systems of arithmetic than that they
are all incomplete.

(a) Some Prominent Examples

4.2. In the whole subsection, T denotes a theory containing IΣ\ and r is
a formula Λ\ in IΣ\ defining T (thus r binumerates T in T). We shall
often write Conίp instead of Con\. Conj* is called Gδdel's formula; recall
that, by 2.22, Conΐp is equivalent to the self-referential formula v such that
Γ h i / Ξ ->Prτ(v) i.e. to GδdeΓs fixed point. Clearly, Con^ is a JTi-sentence.
Rosser's formula p is the self-referential formula such that (cf. 2.9).

T h p = (3y)(Proof τ(y,=φ)k(yz < y)^Proofτ(z,p)),

i.e. p says "there is a proof y of my negation such that there is no proof of me
beneath y". Thus p is a Σ\ -sentence. These formulas played a prominent role
in GδdeΓs incompleteness theorems (cf. 2.8, 2.10, 2.22); now we shall discuss
their properties concerning partial conservativity and interpretability.

4.3. Recall the notion of fT-provability and H-proofs {H for Herbrand) in
a finite theory T and the sentence HCon*(T) expressing consistency with
respect to Herbrand proofs.

4.4 Definition. Let Γ be a finite theory. An H-Rosser formula for T is a
self-referential formula p such that

T h p = (3y)(HProof τ(y^)k(Vz < y)(->HProof(z,p)).



4. Partial Conservativity and Interpretability 191

This is like the Rosser formula but with Herbrand proofs instead of (Hubert)
proofs.

Our results are summarized in the following

4.5 Theorem. Let T € A\ be a consistent theory, T D IΣ\.
(1) GόdeFs formula ConTp is not interpretable in T; its negation -^Conΐp is

interpretable in T.
(2) -i Conίp is U\ -conservative over T; Conίp is Σ\-conservative over T iff T

is ΣΊ-sound (i.e. each provable ΣΊ-sentence is true).
(3) Rosser's formula is Π\-conservative; -*p is Σ\-conservative iff T is ΣΊ-

sound. (The same for iϊ-Rosser's formula assuming T finite.)
(4) If Γ is sequential and has induction for all formulas then neither the

Rosser's formula p nor -*p is interpretable in T.
(5) But if T is sequential and finite and Hp is fΓ-Rosser's formula then both

Hp and -^Hp are interpretable in T.

4.6 Remark. (1) There is an open problem if for T as in (5) the usual Rosser's
formula p and/or its negation is interpretable in T.

(2) The rest of the subsection contains a proof of 4.5.

4.7 Lemma. Let 5, Γ G Δι, 5, Γ D 7ΣΊ, let 5 have a finite language and let
5 be interpretable in T. Then, for each Σ\ definition r of T there is a Σ\
definition σ of 5 such that

T h CW^ -> Con* .

Proof. Let i be the mapping of 5-formulas into T-formula induced by the
interpretation; i is Δ\. Copy the definition in T: we get a function i#, 4χ in
T, such that, for each φ G 5, Γ proves i(^) and hence T h Pr*(iφ(φ)). Let
σ be a i7χ definition of 5. We cannot claim

but take σ(x) to be σo(a;) & Pr^(iφ(x)). It is easy to check that σ is the
desired definition of 5. (Note that if r is a Σ\ binumeration of T in Γ then
σ is a Σ\ binumeration of S in T.) D

4.8 Lemma. Let T be as above and consistent; then the formula Coriji is not
interpretable in T.

Proof. Assume that the theory (Γ h Coπj) is interpretable in T; then, by
the preceding lemma, there is a Σ\ -definition σ of T + Con^ such that



192 III. Self-Reference

T h ConJI -> Con*σ, i.e. (T + Coπj) h Con*, which contradicts GόdePs
second incompleteness theorem (see 2.22). •

4,9 Lemma. Let Γ be as above; then ->Co7iy is interpretable in T and is
Π\ -conservative over T.

Proof. We show that ( Γ + -*Conrp) is interpretable in, and Π\ conservative
for, (T + Coπjr). This gives interpretability in T by 1.8 and conservativity
over T using the rule of proof by cases.

By GδdeΓs second incompleteness theorem, 2.22, copied inside T, we get
T h Conm

τ -> ^Prτ(Con*τ), i.e.

T h Con (Γ) -

(or, more pedantically, if τ is a Σ\ definition of T and r'(x) is τ(x) V x =
-.(7<m£ then T h Con* -+ Con^,). Thus take (T + ConlJ.). By the low
arithmetized completeness theorem, in (T + ConTp) we may define a full low
model M of T 4- ->i7<m ;̂ seen from outside, we just get an interpretation
of T + -iConji in Γ + Conj.. This proves interpretability. Moreover, the
interpretation is very well behaved, since everything is low Σ%(Σι); thus
we may imitate the proof in 2.44 and construct inside T + Con^ a Σ*(ΣΊ)-
embedding F of the universe onto an initial segment of M. (Induction for
Σ*(Σχ) used!) Then conclude as in 2.44. D

4.10 Lemma. If T D IΣ\ is Σ\ -sound then each non-refutable Π\ -sentence is
Σ\-conservative over T.

Proof. Let π G ill, σ G X?i, -ιπ unprovable in T. If (T+π) h σ then T h
and -»π V σ is i7i in Γ. Prom the non-refutability of π we get iV 1= π by £Ί-
completeness; on the other hand, from T \—>π V σ we get iV t= - π V σ by
ΣΊ-soundness. This gives N N σ and Γ h σ . D

4.11 Corollary. If T G ̂ i contains JΣΊ and is ΣΊ-sound then Coriίp is ΣΊ-
conservative.

We shall prove the converse implication later. Now we turn to Rosser's
sentences.

4.12 Lemma. Let T G Δι, T D IΣχ, T consistent. Then Rosser's sentence pτ

is J7i-nonconservative.

Proof, p evidently implies the following Π\ -sentence

offcz) -> (3y < z)Pmo/ (=ip,z)).
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Denote it by π. If T h π then Γ h Pr%(p) -• p, since, by Lob's theorem 2.25,
Γh/9, which is impossible. Thus (T + p) proves π but T does not. D

4.13 Remark. The same holds for Jϊ-Rosser's formula (provided T is finite).

4.14 Corollary. If T is a consistent sequential theory with full induction then
neither p nor -»/o are interpretable (i.e. T interprets neither (T+p) nor T+-»/p).

This follows by 3.46,4.12 and the fact that -\p is an unprovable Π\ formula.
Similarly for .ff-Rosser. On the other hand, we have the following:

4.15 Lemma. If T D IΣ\ is consistent, finitely axiomatized and sequential
then both the fΓ-Rosser sentence and its negation are interpretable in T.

Proof. For simplicity assume T to be just a sentence. Let p be the Rosser
sentence. We use Theorem 3.39. It suffices to interpret (T + p) in (T + -i/o)
and conversely. We show that (T+p) is interpretable in (T+-•/)), the existence
of the converse interpretation is proved analogously.

Let J be a (T + -i/>)-cut such that (T + ^p) h HConmJ(T + -./>). Let us
work in (T + ~*p). In J there is no iΓ-proof* of -i(T + ^p)] and ->p says that
for each fΓ-proof of ^ in T (i.e. for each .ff-proof* -i(Γfc-i-i/>)) there is a
smaller if-proof* of ^ in T (i.e. a ff-proof* of -i(T&- /))). Consequently, J
does not contain any if-proof* of -»(T&->-»/9) and we get HCon(T + -'-•/o).

The provability of the last formula in (T + -•/>) gives an interpretation of
(T + -inp) in (T + -1/9), hence an interpretation of (T + />) in (T + "»/>) by
3.39. D

4.16 Corollary and Remark. If T D IΣ\ is consistent, finite and sequential
then there is a Π\ formula φ such that both φ and -up are interpretable in
T (once more, this means that the theory (T + φ) is interpretable in T and
so is (T + -*φ)).

Note that this is not true for sequential theories with full induction (like
PA and ZF) since in such a theory each interpretable Π\-sentence is provable
(cf. 2.40). But one can find a φ G A<ι such that both φ and -*φ is interpretable.

On the other hand, take ACA0 for T; assumptions of our corollary are
satisfied. The corresponding formula φ has the following properties: (ACAO +
φ) is interpretable in ACA0 but (PA+φ) is not interpretable in PA (since φ is
unprovable). Similarly for Gδdel-Bernays and Zermelo-Praenkel set theories
GB and ZF. In the next section we shall obtain a Σ\ sentence φ with converse
properties: (PA + φ) is interpretable in PA but (ACA0 + φ) is not in ACAO.

4.17 Lemma. Let T D IΣ\ be consistent.
(1) Corij, is ΣΊ-conservative over T iff T is ΣΊ-sound.
(2) Let p be the Rosser (or fί-Rosser) £i-sentence. Then ~*p is ΣΊ-conserva-

tive iff T is Σ\ -sound.
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Proof. We shall prove (1). The proof will be a preparation for generalized
Rosser sentences studied in the next subsection; there we also prove assertion
(2).

The implication <= is evident: if σ € £Ί, T is Σ\-sound and Γ h Con^ —> p
then N t= Conj, -> p, N N p and T \- p.

Now assume T not to be ΣΊ-sound and let φ(y) be a ΣΌ-foπnula such that
N t= ->(3y)y>(y) but T h (3y)φ(y). Take the following self-referential formula:

Γ h f = (3y)(Proof^ξ, y) V φ(y) & (Var < yhProof β, z)).

Note that T h -.</?(fc) for each Jfe.
(i) We show that T does not prove ξ. Assume T h f; we jhow that T is

inconsistent. Let d be a proof of ξ in T; then T h Proof (ξ,d) and for each

Prom T h ξ w e get

V Proof ft, k)
k<d

and since each formula Proof {^ξ, k) is decidable in T there is a k such that

Thus k is a proof of -•£ in T, thus T\—•£ and T is inconsistent. This shows
that ξ is unprovable in T provided Γ is consistent.

(ii) We now prove T + Conj* h £ or, equivalently, T + -if I—\Con^. Let
us work in (Γ + -if). Since (3y)y?(y), let yo be the least y such that ^>(y).
Prom -.f we get (3* < yo)Proof(ξ,z); let Proo/#(f,20). Then Proo/#(f,z0)
& (Vy < zo)"1^?/)? n e nce inside T we are in the same situation as we were in
(i) outside. Copy the reasoning from (i) into T; we get

Pr*(Proof '(£, i 0 ) ) & (Vy < zO)Prm(^φ(y)).

Prom Pr (£) we get

hence

thus we get Pr'(ξ) and Pr#(-.^), thus -.C7on#. •
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We have presented a rather detailed proof; similar proofs below will mostly
be less detailed.

(b) General Theorems on Partial Conservativity;
Some Fixed-Point Theorems

In this subsection we shall state and prove some basic facts on partially
conservative sentences. Our proofs will use self-reference as a very basic
means. Some methods of construction of self-referential sentences will be
isolated and properties of constructed formulas will be stated in general
theorems called usually fixed-point theorems. It is remarkable that most of
our constructions are some generalizations of Rosser's formula, i.e. are based
on witness comparisons. We first introduce some notations and formulate
a simple technical lemma, then we formulate our basic results (inclusive the
fixed-point theorems) and finally we elaborate proofs. In the whole subsection,
T is a consistent theory, T G Δi, T D IΣ\.

4.18 Definition Let α(tι), β{u) be T-formulas, let Δ be (3u)α(u) and let V
be (3u)β(u). In T, call each a satisfying a{u) a witness for Δ and similarly
for V (cf 2.9). By Δ -< V w e denote the witness comparison formula

(there is a witness for Δ less than each witness for v)> similarly for Δ =$ V
(replace (Vv < u) by (Vυ < u)). The formula Δ is called the antecedent of
Δ -< V ^ d Δ its succedent Similarly for Δ ^ V Note that Δ and V m a v

contain free variables as parameters. (Thus, for example, Rosser's formula is
a formula p such that

4.19 Remark. Rosser's formula is Σ\ in T, since we assume T D IΣ\. Recall
that in BΣn, Σn formulas are closed under bounded universal quant ifers.
We shall deal with formulas comparing witnesses of i7n-formulas but con-
tinue to assume only IΣ\. Therefore we shall have to pay some attention to
the arithmetical complexity of the resulting formulas. The following simple
lemma will be extremely useful.

4.20 Lemma. Let φ{x) be a JCn-formula. There is a i7n-formula ψ(y) such
that

(1) 0/k)IΣ1 h φ(k) = (V* < k)φ(x) ,

(2)
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Proof. For n = 0 the assertion is trivial. For n > 1 and φ(x) of the form
(3tι)α(x,tt), where α is i7 n _i let ^(y) be

) k (Va < y)α(z, (*)«).

4 21 Definition. (1) If φ(x) and V>(y) are as above then we denote φ(y) by
[(Va? < y )^(^) ) ] # > i 7 ' n or [(Va? < y M s ) ] # ( i f Σ and n is clear from the
context). Dually we define [(3a? < y)φ{x))#'Π'n for φ being Πn (or, briefly,
[(3x<y)φ(x)]*).

(2) Let α and β be as by 4.18 and assume that β is Πn. Let /?' be the
natural ΣΉ-form of -•/?. Then Δ -<* V ίs ^ ^ formula

(3tι)(α(tι) & [(Vv < u)β'(v)]*>Σ>n)

the notation Δ -<# V w iU be used only in situations where n is clear from
the context. Similarly for Δ =3ί# V> the words "antecedent" and "succedent"
have the obvious meaning.

4.22 Remark. We shall deal with self-referential formulas ξ such that

more generally, there may be another parameter:

(fc natural number). Such formulas will be extremely useful; almost always
the antecedent and/or the succedent will contain some proof predicate. Let
us mention Pr^ and HPrΐp (Herband provability, assuming T finite.) Our
general theorems will be obtained by combining self-reference and witness
comparison with definable cuts and partial truth definitions. Recall that
satisfaction for Σ" -formulas# and JT^-formulas {SatΣtm SaiWtn) were defined
in IΣ\ already in 1.1.75-76; in Chap. I, Sect. 2 we used them to prove finite
axiomatizability of IΣn and BΣn+\ and studied satisfaction for relativized
hierarchies. In Chap. I, Sect. 4 we showed that these satisfaction relations
are just a particular case of the general notion of partial satisfaction, namely,
satisfaction for the standard model (defined inside IΣ\). In the present
chapter we already met Σ\-satisfaction in Sect. 3 (Theorem 3.21 saying
that for suitable (finite) theories T, there is a T-cut J such that T proves
(Vw e Tr(Σi))HConmJ(T + u)) (for any true £f-sentence, in J there is
no Herhand-proof of -y(/\Tku)). We shall now make systematic use of
provability (fΓ-provability) in extensions of T resulting by adding a true Γ-
formula* where Γ is a class of formulas*, say 17* or 77*. This leads us to the
following.
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4.23 Definition and Convention. Let n G N, let Γ be Σn or Πn. We make

the following definition in IΣ\\ Prj* Γ(X) (X is provable in T from a true

Γ-sentence) if

If T is finite we define HPr j . Γ(x) in the obvious way.

Convention. (1) To simplify notation, in the rest of this section we drop the
index T and the dot; thus we shall write Pr(x), Prp(x) instead of Pr?p(x),
Prΐp Γ(x) etc.

(2) If Δ t is (3tι)α, (u) and Vi is (3v)ft(v) (i = 1,2) then (Δi V V2) •«
(Δi V V2) means the formula saying "there is a witness for a\ V c*2 less than
each witness for β\ V /V\ similarly for -<# instead of -<.

4.24 Definition. (1) φ is hereditarily Γ-conservative over T if, for each To such
that IΣi C To C T, y> is Γ-conservative over To.

(2) y? is doubly Γ-conservative over T if φ is P-conservative over T and -1^
is /"-conservative over T (where Γ1 is the dual class or Γ).

We shall now formulate three general theorems on partial conservativity.
Note that we continue to assume that T is consistent, T £ Δ\ and T D IΣ\.

4.25 Theorem. For each n > 1 there is (1) a hereditarily Πn-conservative
i7n-sentence, (2) a hereditarily i7n-conservative i7n-sentence, (3) a doubly
JTn-conservative JCn-sentence (its negation is thus a doubly Σn conservative
JTn-sentence).

Examples (Γ is £ n , A is Πn):

(1) ξ such that IΣχ \-ξ = PrΓ(-ξ)j<* Pr(ξ),__

(2) (-if) such that IΓi I- ξ h Pr(2θ ^ # PrΛ(O»
(3) { such that IΣtbξC PrΓ(^ξ) -<* PrΛ(ξ).

If T is 27n-sound we may take in (1) a ξ such that IΣ\ h ξ = Prr(-»f).

4.26 Theorem (on non-separability). Let Γ be i7n or 77n (n > 1), let TA
be the set of all theorems of T, Consv(Γ) and hConsv(Γ) the set of all JΓ-
conservative and hereditarily /""-conservative sentences respectively, NRef the
set of all the sentences non-refutable in T. Then obviously

Th C hConsv(Γ) C C o n ^ Γ i ) Π COTW^JJX) C NRef

and there is no set X such that

(1) XisΔ1andThCXC NRef, or
(2) X is 77χ and ΓA C X C Conθt (Γ), or
(3) X is ΣΊ and hConsv(Γ) C X C ΛΓΛe/, or
(4) X is 272, Γ D Σι and hConsv(Γ) C X C Co?wί;(i7i), or
(4;) X is Σ 2 , Γ D Πι and AC7onθt;(Γ) C X C Coτwv(17i).
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4.27 Theorem (^-completeness). For each n > 1 and Γ = Σn or Πn, both
Consv(Γ) and hConsv(Γ) is Incomplete.

4.28 Remark. (1) Concerning 4.26, observe that Th is Σ\, NRef is Π\ and
Consv(Γ) is U2 Thus the result is optimal: in 4.26 (1) Δ\ can be replaced
by neither Σ\ nor i7χ, in 4.26 (2) Π\ cannot be replaced by ΣΊ, in 4.26 (3)
Σ\ cannot be replaced by JTi, and in 4.26 (4,4') Σ*ι cannot be replaced by

π2.
(2) Recall from recursion theory that a set X C N is Incomplete if

X E Π2 and each 11% set Y is ^-reducible to X, i.e. for some A\ total
function F, Y = {n \ F(n) G X}.

(3) We shall present two general fixed point theorems that form the main
means of proofs of the preceding theorems.

4.29 Sheperdson-Smoryήski's Fixed Point Theorem. Let Φ, Ψ be Σ\ formulas.
(1) Let IΣι\-t = [(Pr(-if) V *) -< (Pr(ξ) V if)]. Then

(i) Th£ifFJVI=Φx3MffiVI=f;
(ii) T h-•£ iff JV (=#=«<?.

(2) More generally, let for i = 1,2, Tt D /ΣΊ, let Pr, be the proof predicate
based on a fixed A\ definition of Tj. Let

IΣχ h ξ = [(Pri(- O V Pr2(-π0 VΦ)X ( P π ( O V Pr2(O V *)}.

Then
(i) Γ i h f iffT2hίiffΛΓNΦ-<S?iffΛΓNf;
(ii) Γi h -if iff T2 h -if iff JV 1= Ψ ^ Φ.

4.30 Lindstrδm's Fixed Point Theorem. (Let T_be as above.)
(1) Let χ(y) be Σn and let IΣλ h f = P r ^ ( ^ f ) ^ # (3y)-iχ(y). Then

(i) for each m, (T + f) h χ(m),
(ii) for each IΣ\ C To C T and each J7n-sentence TΓ, (To+f) h π implies

To + {χ(m) I m} h π.
(2) Let χ(y) be Πn and let II7i h f = (Ξy)-iχ(y) ^ # Prji^f). Then

(i) for each m, (T + -if) h χ(m),
(ii) for each IΣχ C To C T and each 27n-sentence ^, (To + -if) h β

implies To + {χ(m) \m}\- β.

4.31 Remark. Prom these fixed point theorems we derive our three main re-
sults (4.25-4.27) as well as other results of independent interest (in particular,
Theorem 4.34 claiming that each Σ\ set has a sound Σ\ numeration in T;
this was promised in 1.24). An elaboration follows.

4.32 {Proof of SmoryήskVs Fixed Point Theorem 4.29). We are going to prove
part (2) of the theorem, (1) being a particular case. Recall that we have
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two consistent theories Tt C IΣ\ (i = 1,2) and for both IJ we have a fixed
definition of T{ which is Λ\ in IΣ\ (i.e. binumerates Γj in IΣ\). Our diagonal
formula f satisfies

IΣ1\-ξ = [(Λ i R ) V Pr2(^ξ) V Φ) X ( P r x ® V Pr2(ξ) V *)]

where Φ, Φ are fixed -Σ7χ formulas. Thus f is ΣΊ in IΣ\._
(l)_First observe that if any of the formulas f, Pri(f), Pr 2(f), P ^ i ^ ) ,

P ^ ^ f ), Φ> ̂  *s true m N 0 e ' i a s a standard witness d) then f becomes
A\ in JΣi since the existential quantitier in the witness comparison formula
can be bounded by d.

(2) Thus we get

T{ h -if =• (TV t= -if and T, h -if)

(i = 1,2) - note that Tt h f iff JV N Pr t (f).
(3) Furthermore, Γ< h f implies JV 1= Φ X Φ and similarly, Tt h -if implies

iV t= Ψ ^ Φ. We prove the former claim: Let d be a Tt -proof of f thus
it is both true and Tj-provable that there is an y < d which witnesses the
antecedent (-Pri(-ιf) V P ^ ^ f ) V Φ) and (Vz < y)(z does not witness the
succedent). Let e € N be such a y. But e cannot witness Pr^(-if) since this
would make T\ or T2 contradictory; thus e witnesses Φ and hence Φ -<Φ. We
have JVI= Φ =$ Ψ.

(4) Conversely, iV t= Φ ̂  ϊ? implies T, h f since if N 1= Φ =<: ίP then N t= Φ,
which makes fZ\χ in /ΣΊ and hence decidable (provable or refutable) in T, .
But Tj cannot refute f since, by (3), this would imply N f= Φ =̂  Φ. Similarly,
JV N IP =̂  Φ implies T, h -if. This gives all we need. D

The theorem can be parametrized (and again called Sheperdson-Smoryή-
ski's fixed point theorem):

4.33 Theorem. Let y>(x,2/), φ{x^y) be I7o-formulas (or: formulas Δ\ in
put Φ(x) = (3y)φ(x,y),Φ(x) = (3y)^(a?,y).

(1) Let T be as in 4.29 (1). Assume that for each A; the formula f (x) satisfies
the following:

T h f (k) = PrK(Jfc)) V Φ(k) X Pr(ξ(*)) V #(*) .

Then

T h f (I) iff JV N Φ(lk) -< Φ(k) iff JV N f (ϊ)

T h -if (jfc) iff iV N ̂ (Jb) 4 Φ(k).
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(2) More generally, let Γ<, Pr{ be as in 4.29 (2) (i.e. as in 4.32) and let for
each fc, IΣ\ prove the following:

{(I) = (PriR(fc)) V P r 2 R ( * ) ) V #) -< (Pri(f(*)) V Pr2(?(*)) V !?).

Then

h £(Jb) iff T2 h £(Jb) iff N N £(fc) iff ΛΠ= Φ(ϊ) •«

Ti h -•£(*) iff T2 h -i£(Jb) iff N N #(E) =$ tf (Jb).

The proof is fully analogous to 4.32; the existence of ξ is obvious. Part
(1) of the parametric version will now be used to get several important
consequences.

4.34 Theorem. If X, Y are disjoint Σ\ sets then there is a Σ\-formula ξ(x)
such that, for each fc,

JbG-YiffΓhί(t)iff

k e Y iff T h

Proo/. Take ΣΊ-definitions of X and Y for Φ(a?) and ϊP(a?). D

4.35 Corollary. (1) Each Σ\ set X has a sound numeration in T, i.e. a formula
which both defines X and numerates X in T.

(2) Each Σ"i set has a i7χ numeration in Γ.

4.36 Theorem (= 4.26 (1)). There is no Δ\ set X such that Γ K I C NRef.

Proof. By 4.34, let ζ be such that ib € X iff T h ξ(k) and ib ̂  X iff T h -.̂ (Jb);
let T h v? = ->ί(^). Clearly, <^G-X"iίFv?^-X",a contradiction. D

4.37 Theorem. For each Π\ set X there is a formula ξ(x) such that, for each
fc,
(1) fc G X iff £(fc) isjieither ΣΊ-conservative nor Π\-conservative over T,
(2) fc^XifFΓ

Proo/. Observe that the formula ζ(x) constructed for the ΣΊ-set -X as in 4.29
is Σiy thus XΊ-nonconservative whenever unprovable. Its J7i-nonconservative-
ness is proved similarly as the iTi-nonconservativeness of Rosser's formula.

D

4.38 Corollary (= 4.26 (2)). There is no ϋi-set X that Th C X C
Consv(Σι) U Consv(Πι).
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Proof. Assume we have such an X and take the corresponding formula ζ(x)
from 4.37. Let T h φ = ξ(ψ); ιίφ£X then T h ζ(Jp)9 thus T h φ and y> G X,
a contradiction. On the other hand, if φ G -X" then f (^) (and hence <p) is Σ\-
nonconservative as well as JTi-nonconservative, i.e. φ (£ X, a contradiction.

D

We shall need the following corollary of Sheperdson-Smorynski's fixed
point theorem.

4.39 Theorem. Let Ti,T2 Ξ> IΣ\ be Δ\ and consistent, let X,Y be disjoint
ΣΊ-sets. Then there is a Σ\-formula ξ(x) such that, for each fc,

k G X iff Ti h £(ΐ) iff T2 h f (ϊ) iff ΛΠ= ξ(k),

Jfc G F iff Ti h -ι((t) iff T2 h -if ( ϊ ) .

In particular, ξ(x) is a sound numeration of X both in T\ and in T2.

Proo/ evident. D

We now turn to proofs from true .Γ-formulas (cf. 4.23). We write Proof ̂ (z^ x)
instead of Proof ΐp Γ (z, x).

4.40 Lemma. For each φ and d,

consequently if for some d, T proves that d is a T-proof* of φ from true
Γ-formulas then T proves φ.

Proof Let d and φ be given: assume that d is a sequence φι,... ,<pn of T-
foπnulas which is a (T + ^)-proof of φ for some φ G Γ, φ < d. (If this is not
the case then T I—* Proof m

Γ(d,ψ) and we are done). Let us work in T.
Assume Proof %

Γ(d,φ). Then for some y G Γ; y < d, we have Pf

(dyφ) and 7Vr(y), i.e. for some φ < dwe have Trr(Φ) and Proof?Γ

Thus we get ^. Having this we successively prove v?i, y?2) > ^ΠJ hence φ. D

4.41. We now prove Lindstrόm's fixed point theorem (4.30).

(1) Let IΣX h ξ = P r ^ ί - O -<# (3y)-.χ(y)f X G Γ n ;
recall the convention 4.23. Let IΣ\ C To C T. We shall prove the
following:
(a) T + ίHX(m),
(b) To + ξ is i7n-conservative for To + {χ(m) | m}.

Let us work in T+ξ+"»χ(m); then m is a witness for the succedent of f, thus
(3y < m)Proo/5;n (y, -.£); this gives -.f by 4.40. We see that (T + ξ + ̂ χ(m))
is contradictory. This proves (a).
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Now assume IΣχ C To C T and let π be a 77n-formula such that (T o +f) h
π, thus (To + -ιτr) h -»£; let d be a proof of -•£ from the natural £"„ equivalent
δ of -i7r. Let us work in ΓQ + {χ(m) \ m} + -i^ we_want to prove π. Assume
the contrary, i.e. ί; then ΪV(£), i.e. Proof m

Σn(d^ξ), hence d is a witness of
the antecedent of ξ. This gives (3y < d)- χ(y), i.e. Vfc<3 """Xί™)' which is a
contradiction in our theory. This proves (1).

(2) Now assume IΣλ h ξ = (3y)->χ(y) ^ # P r n ^ f ) , X € Un-
Let To be as above. We shall prove
(a) (Vm)(T + -.fhχ(OT)),
(b) (To + -if) is I7n-conservative for To + {χ(m) | m}.

Let us work in To + -«f + χ(m). Then m witnesses the antecedent of £, and
-»£ implies (3y < rn)Proofm

Πn{^y)^ hence f by 4.40, a contradiction. This
proves (a).

Now assume IΣ\ C T 0 C T and let π be a i7n-formula such that (To + 0 H
7Γ, thus (To + -»τr) I—1£; let d be a proof -»£ from the natural Σn equivalent
δ of -iπ. Let us work in To + {χ(m) | m) + -if, we want to prove π. Assume
the contrary, i.e. δ] then 2V(£), i.e. Proofm

Σn(d,-*ζ), hence d is a witness of
the antecedent of ξ. This gives (3y < d)-»χ(y), i.e. Vib<d "nx('^)> which is a
contradiction in our theory. This proves (1).

(2) Now assume IΣλ h ξ = (3y)-iχ(y) •«# PrΠn(ξ), X G iTn. Let To be as
above. We shall prove
(a) (Vm)(T + -.ehχ(ro)),
(b) (To + - ί) is ΣΉ-conservative for To + {χ(m) | m}.

Let us work in To + ~*ζ + χ(m). Then m witnesses the antecedent of £, and
-«ξ implies (3y < rή)ProofΠn(ξ,y), hence f by 4.40, a contradiction. This
proves (a).

Now let δ e Σn be such that (To + -i£) h ί, hence (To + -itf) h ξ; let
d be a corresponding proof. Work in To + {χ(m) | m} + ξ; it suffices to
prove δ. Assume the contrary, i.e. Tr(-i£); then Proof%

Πn(d,ξ), i.e. ξ gives
(3y < d)-»χ(y), a contradiction. This completes our proof. D

4.42 Generalizing Lindstrδm's Fixed Point Theorem. There are two ways
of generalization: first, we may let both the antecedent and the succedent
depend on f second, we may parametrize the whole formula. We obtain the
following four cases (T, PrΣn, PrΠn as above, IΣχ C To C T, χ(x,y) is Σn

in (1), (2) and is Πn in (3), (4).

(1) IΣX h ί = Pr Σn (-,J) X# (3y)-iχ(ξ, y).

Properties: £ is Σn in JΣΊ; (T + ζ) h χ(f ,m) for all m; (To + {) is IΓn-
conservative for TQ + {χ(£,m) | m}.

(2) IΣλ h ί(4) = Pr^n(^(fc)) -<* (3y)-.χ(ϊ,y).
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Properties: f(s) is Σn in IΣλ\ for all k^m, (T + f(ίfe))χ(Jb,m); for all jfc,
(To + ξ(k) is i7n-conservative for T + {χ(Jfc,m) | m}.

(3) / A h f = ( 3 y h χ R , y) ^ # Pr^ n (£) .

Properties: -if is Πn in IΣΊ Jor all m, (T + -if) h χ(^f ,m);. (Γo + -»f) is
Σn-conservative for To + {χ(~~*ζ,rn) \m}-

(4) IΣX

Properties: -if(a?) is 77n in J27i; for 81̂ ,̂772, (T + if(*)) h x(*,m); (To +
is J7n-conservative for To + {χ(fc,m) | m}.

Proofs are obvious modifications of 4.41. D

4.43 Theorem. Let Γ be Σn or i7n, n > 1. For each J G £ i there is a
Γ-formula f such that, for each fc,

fc G X iff T h -.f (E),

A: £ AT iff f (fc) is hereditarily /'-conservative over T. (Γ is the dual of JΓ).

Proof. In the preceding theorem, let (3y)-*χ(x, y) define X. For Γ = Σn use
(2). Then: if A: G X and m is a witness for (3y)-«χ(fc,y) then

if AT fέ X, i.e. for each m IΣ\ h χ(fc,m), then T + f(λ) is hereditarily i7n-
conservative over T.

Similarly for Γ = Πn use 4.42 (4). D

4.44 Corollary (= 4.26 (3)). There is no X G Σ\ such that

hConsv(Γ) C X C NRef.

Proof Assume we have such an X and in the preceding theorem (with Γ and
Γ interchanged) let φ be such that IΣ\ h φ = f(^). We show φ £ X\ but
then 4.43 gives y> G hConaυ(Γ)y in contradiction to the inclusion assumed.

Thus let φ £ X] then p G iVΛe/ (since X C JVJlβ/), but T h -if (^), thus
T I—•</? (since y> G -X"). A contradiction. D

4.45. We prove theorem 4.25 by inspecting the respective self-referential
formulas.
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(1) In 4.42 (1) let (3y)iχ(s,_y) define the empty set, i.e. IΣχ h χ(x,y) =
0 = 0. Then IΣ\ h f = Pr,£n (-if) (thus f says: my negation is provable in
T from a J rue £"n-formula; in other words: I imply in T a false J7n-formula),
IΣ\ h χ(f, k) for each fc, thus f is hereditarily Un-conservative over T and
clearly f is unprovable in T provided T is Σ"n-sound.

Lemma. Assume T h Pr (&)__-• Δ(x) -> Pr Γ (x), and T h Pr(z) ->
V(») -+ PτA{x)> T \- ζ = Δ(- f) •<* v ( 0 T h e n neither £ nor -.f is T-
provable.

A standard proof (using 4.40) is left to the reader as an exercise.
(2) In 4.42 (1) put χ{x,y) = -*Proof(y,x\ i.e. (3y)-iχ(x,y) is equivalent

to Pr (x) and
#

Then /ΣΊ h χ(£,ra) for each 7π, -if is unprovable and hereditarily Σn~
conservative over T.

(3) In 4.42 (3) let χ(x, y) be as above, thus

Then IΣ\ h χ{-^i,rn) for each m, -if is unprovable and hereditarily Σ"n-
conservative over T.

(4) In 4.42(1) take -»Proof ^jn(y,x) for χ(ar,y) and, at the same time, in
4.42 (3) take -»Proof ^jn(y,x) for χ(x,y). In either case we get

IΣ^ ζ = PrΣn(^ξ) ^* PrΠn(ξ).

Thus T + f h -*PτoofΠn(m,ξ) by 4.42 (1), Γ + -if h -^Proof9

Πn(rή,0 by
4.40, thus 4.42 (1) gives /Tn-conservativity of f over T. (Nothing is claimed
on hereditary conservativity: for a general To between IΣ\ and T we cannot
guarantee To I—* Proof m

Πn(m,ξ).)

Similarly, 4.42 (3) and 4.40 gives T I *Proofm

Σn(m,~ξ) for each m and
consequently -if is ^-conservative over T.

4.46 Theorem. Let T be Σn or 77n, n > 2. Let X be i72. Then there is a
/"-formula f (x) such that, for each fc,

fc € -X" Ξ f(fc) is hereditarily /"-conservative,

A: ̂  JY" = f (fc) is Z"i-nonconservative.

The same is true for Σ\ replaced by Π\ (with another f).

Proof. Let X be {k \ (Vm)Λ(ib,m)} where Λ is Σλ. By 4.39, let /9(x,y) be a
Σι-numeration (iTi-numeration) of R both in IΣχ and in T. In 4.42 (2), (4)
let χ(x,y) be ρ(x,y).
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If / = Σn let ξ(x) be the formula ξ(x) from 4.42 (2); if / = Πn let ξ(x) be
the formula ^ξ(x) from 4.42 (4). Then ^(x) is / ; if k e X then IΣΊ h /&(fc, m)
for all 77i, hence £(fc) is hereditarily /"-conservative over T. If k £ X then,
for some mo, T does not prove /)(fc,rao); thus ξ(k) is not Σ"i-conservative
(Πι -conservative) over T. D

4.47 Theorem (= 4.26). Let / = Σn or i7n, n > 2. There is no F G Σ*2 such
that hConsv(Γ) C F C Conθυ(ΣΊ) or hConsv(Γ) CY C Consv(Πι).

Proofs Assume that Γ is such set. Then 4.46 (with X = N -Y) gives (k£Y
iff £(&) is hereditarily .Γ-conservative). Let IΣ\ )r φ = ζ(ψ)) then φ £ Y
implies that φ is not Σ\-conservative but Y C Consv(Σι) a contradiction.
On the other hand, φ £ Y implies that φ is hereditarily /"-conservative but
hConsυ(Γ) C K, a contradiction. D

4.48 Theorem (= 4.27). For each Γ = £"„, Πn (n > 1), both Consv(Γ) and
hConsv(Γ) is /^-complete.

Proof. Clearly, Consv(Γ) is JT2; to see that hConsv(Γ) is U2, observe that
φ is hereditarily Γ-conservative over Γ iff for each yίm'te To C T containing
/ΣΊ, φ is /-conservative over To- For each Γ (including Σ\ and 77i), 4.46
gives a formula ξ(x) such that

fc € X =Φ- ί(fc) is hereditarily /-conservative,

k $. X =Φ- ί(fc) is not /-conservative. D

4.49. Now we present Svejdar's proof of the fact (claimed in 4.5 (3)) that for
a T not Σ\ -sound, the negation of Rosser's formula is ΣΊ-nonconservative
over T.

Let δ(x) be a Σo formula such that T h (3x)δ(x) but N 1= (Vx)-^δ(x)]
let p be Rosser's formula, thus Γ h / ) = ( P r * ( ^ ) -< PrΦ(p)). We know the
following: both p and -«/9 are unprovable in T;

T + Con* h -tPr (p)k-*Prm(=φ)

(this is just a formalized version of the preceding assertion). Let

(a) p —* φ is Γ-unprovable. Indeed, if d is a Γ-proof of p —> φ then T h
\fk<dδ(k)] but for each Jfc, Γ h ^ί(fc).

(b) T + Con9 h y>. Indeed, T h (3x)ί(x), thus ( T + - ^) proves Pr*(/T=n^) =$
(3x)ί(x). (This is a ΣΊ-formula, call it σ), thus T + -*φ h Pr#(σ).
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But T h Pr*(σ -> ~v), thus T + -yψ V Pr%{pφ) h Prm(p -> φ), hence
T + ->φh PrΦ("=φ), which implies T + -yφ h -i£7<m*.

(c) T + -y> h <p V(Pr#(/5) ^ Pr (=ϊ^)). This because (T + -»/>+ Con*) proves
p and (T + -ip + -*Con9) proves (Pr#(p) =$ Pr*(=φ)).

(d) But y> V (iV#(p) =<: Pr#(:=ϊp)) is unprovable in T. Assume T proves this
disjunction; then T + p would prove φ (since T + p disproves the second
disjunct); this contradicts (a). Thus y?V(Pr*(p) =$ Pr (=ϊp)) is the desired
Σι formula.

(c) Applications, Mainly to Interpretability

The subsection has the following structure: main results are formulated in
4.50-4.59 and compare (or, better, contrast) (i) interpretability in PA with
interpretability in its conservative second order extension ACAQ (4.55) and
(ii) interpretability with partial conservativity for finitely axiomatized theo-
ries T D IΣ\ (4.56-4.57). Proofs are elaborated in 4.50-4.65; this part starts
with Lindstrδm's second fixed point theorem, which is rather technical but of
independent interest. The proofs combine tricky self-reference, partial truth
definitions and use of definable cuts. The rest of the subsection (4.66-4.69)
contains some additional results on partial conservativity.

4.50 Definition. Put Intpτ = {φ | (T + φ) is interpretable in T}. Recall that
we say "φ is interpretable in T" instead of U(T + φ) is interpretable in T".
Further recall Theorem 3.46 telling us that, for T sequential and with full
induction, Intpχ = Consvχ{Π\)\ thus Theorem 4.27 gives inmediately the
following

4.51 Corollary. If T is sequential and with full induction, then Inipj* is i n -
complete.

4.52 Lemma. If T D IΣ\ is finitely axiomatized then Intpτ is Σ\.

Proof. This is more or less evident; φ is interpretable in T iff there are defini-
tions of all (finitely many) symbols of T (in the sense of the interpretation)
in T and T-proofs of translations of all (finitely many) axioms of the theory
(T+φ). Using finite sequences we may write down a formula Interpγ(xy y)Δ\
in IΣ\ such that

φ € Intpτ iff N N (3y)Inierpj>(φ, y)

Interpp just says that y is a sequence consisting of all those finitely many
definitions and proofs, (cf. 2.42). Π
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4.53 Theorem. If T D IΣ\ is finitely axiomatized, n > 1 and Γ is Σn or Πn

then Consvχ(Γ) — Intpχ φ 0; there is a Γ-sentence φ which is (hereditarily)
Γ-conservative but is not interpretable in T.

Proof. This follows directly by 4.26, since clearly Intpγ C NRefj* and Intpχ €
Σ\, i.e. hConsvχ(Γ) is not a subset of Intpγ. Checking the proof of 4.26 (3)
(i.e. 4.44) we can see that the sentence constructed there is f. D

4.54 Discussion. Take ACA0 for T and i l l for Γ. We get a Σ\ formula φ
that is Π\-conservative over ACAQ but (ACAQ + φ) is not interpretable in
ACAQ. Since φ is Π\-conservative over ACAQ and is Σ\, i.e. a formula in
the language of PA, φ is Π\-conservative over PA and hence, by 2.40, is
interpretable in PA. (Similarly for Γ = GB, i.e. Gδdel-Bernays set theory
and Zf-Zermels-Prankel set theory, using 3.46). Note that we can take the
following self-referential formula for φ:

T\-φ = Prm

Σι (~φ) ^ (3y)Interp (φ, y) .

This is slightly simpler than the formula obtained directly from 4.53, i.e. from
4.26.

Compare the present result with 4.16 and summarize:

4.55 Corollary. (1) There is a Σ\-formula ψ such that (PA+φ) is interpretable
in PA but (ACAQ + φ) is not interpretable in ACAQ.

(2) There is a J7i-formula φ such that (A CAQ +φ) is interpretable in A CAQ
but (PA + φ) is not interpretable in PA.

(Similarly for ZF and GB instead of PA and ACAQ.)

4.56 Remark. We shall analyze the present situation more deeply; we shall
present a classification of independent Σ\ -sentences φ (over an arbitrary
consistent finitely axiomatized sequential theory T D IΣ\) - with respect
to the following questions, (i) is φ interpretable in T? (ii) is -up interpretable
in T? (iii) is φ Π\-conservative over T? We shall again get corollaries for
T = A CAQ, GB and their relation to PA and ZF respectively.

Thus throughout the subsection, T is a consistent finitely axiomatized
sequential theory containing IΣ\. The question (i), (ii), (iii) admit eight
possible combinations of answers and give eight possible types of independent
ΣΊ-sentences. Till now, we have got some examples; e.g. for -^Con* the
answers are (yes, yes, no) and for the ff-Rosser formula Hp (Rosser with
respect to Herbrand proofs) the answers are (no, yes, yes). We are going to
prove the following.

4.57 Theorem. There are independent XΊ-sentences of all eight possible types.
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The theorem is an inmediate consequence of Theorem 4.64 below. We shall
construct examples of sentences of all eight types in a rather uniform way,
using substantially results from Sect. 3.

4.58 Corollary. Take again T = ACAo] recall that for each Pi4-sentence </?, φ
is Π\-conservative over PA iff φ is Hi-conservative over ACAo iff (PA + φ) is
interpretable in PA. Consequently, if σ is an independent ΣΊ-sentence then
(PA + -iσ) is never interpretable in PA. Hence we have eight possible types
of dependent ΣΊ-sentences according be the following questions:

T is (PA + σ) interpretable in PA?
- is (ACAo + σ) interpretable in ACAo?
- is (ACAo + -«σ) interpretable in ACAo?

Similarly for GB and ZF.

4.59 Remark. (1) We leave open the question which possibilities we have for
Σ\ (non)conservativity of -»σ in the case of T being I7i-ill; in combination
with the eight types above there at most 16 possible types. The reader may
investigate this as an exercise.

(2) This is the end of the statement of results of the present subsection.
The rest contains an elaboration, including Lindstrδm's second fixed point
theorem.

4.60 Lindstrδm's Second Fixed Point Theorem. Let T D IΣ\ and let m,n>
0. Let φ(x,y) be a ΣΉ-formula and θ(x,y) a Πk-formula. Let ξ satisfy

T I" € = [Pr Σu&) V (3y) V R,y) ^ # Pτm

Πh(ξ) V (3y)θ(ly))

(where PrΦ

Σn, Pr*Πk are as in 4.23). Then

(1) (T + ξ)h (3y < m)θ(ξ,yl-+ (3y < m)φ(-ξ,y) for each m,
( ) (

) ( l ( ) ( )
(2) (Γ + -if) h (3y < m)φ(^ y) -* (By < m)θ(^ y) for each m,
(3) (T + ζ) is iln-conservative for T + {-*θ(ξ9m) | m},
(4) (T4- -if) is Γfc-conservative for T + {^φ(^ξ,m) \ m}.

Furthermore, ξ is Σmax(kynΛ) in T.

The assertion remains valid if Pr% is replaced by HPr* (Herbrand prov-
ability).

Proof. (1) Let us work in (T + ξ + (3y < m)θ(ξ, y)). The succedent of ξ has a

witness < m; this implies in the usual way that the antecedent of ξ has also

such a witness; thus (By < rn)(ProofΣn(->ξ) V φ(^ξ,y)). But this y is not a

witness for Pr^jn(-tξ) (otherwise we would get ξ by 4.40 or by the variant of

4.40 using HPrm). Thus we get (3y < rn)φ(-ξ,y).

(2) is proved analogously.
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(3) Assume (T+f )_h π where π is J7n, let d be a T-proof of (->π -> -if).- Let
us work in (T-f {~ 0(f,m) | πi) + -if); we want to prove TΓ. Assume -ιτr, thus
3V(^τr), i.e. Ϊ̂TΓ is a true I7n-sentence; but then Proof *Σn(d, -if) and, since we
assume -if, beneath d there is a witness for the succedent of f. But beneath
3 there is no witness for (3n)0(f,u) (since ^0(f,U),-i0(f,ϊ),... ,-.0(f,3)).
Neither is there a witness for Pτ^jk(0 beneath d since this would imply f by
4.40. This gives a contradiction.

(4) similarly. D

4.61 Remark. For n = 0 we may replace PT*ΣQ by Prm and/or allow φ to be
Z\χ (in JΣΊ, say) instead of being ΣQ. Similarly for k = 0.

4.62 Corollary. In 4.60, let m,n be arbitrary but let φ,θ be £Ί-in-I2?i. (By
4.61, this does not exclude the possibility m = 0 and /or n = 0). Let X,Y
be ΣΊ-sets defined by (Ξy)0(ar,y) and (3y)<^(a;,y) respectively and assume
-X",y C NRef (non-refutable formulas). Then the sentence f from 4.60 is
Un-conservative, -if is ^-conservative (over T), ζ £ X and (~«f) ^ F.

Proof. Without loss of generality we may assume that, for each k, no m
witnesses both k G X and k £Y, i.e. iV t= (Vx,y)(-κ/?(x,y) V θ(x, y)) (assume
e.g. that all witnesses for X are even and all witnesses for Y are odd). Take
f from 4.60, i.e.

IΣι h f = Pr Σn (-*) V (ΞyM-nf, y) <* Pr*Πk (f) V (Ξy)0(f, y).

First show ζ fi X and (-if) ^ Y. Assume the contrary and let m be the least
witness for f G X V (-if) G Y\ Thus either N satisfies (and T proves)

θ(ξ, m) & (Va? < m)-iβ(f, a?) & (Vz < m)-«V9(-if, a?),

or N satisfies and T provesjfche formula resulting from the last one by
interchanging 0, f with φ, -if respectively. In the former case we get a
contradiction in (Γ + f) using 4.60 (1), which contradicts our assumption
X C NRef] in the latter case 4.60 (2) gives a contradiction in (T + -if),
which contradicts Y C NRef. Thus we have f £ X and f £ Y. This
implies T I—^(f,^) for each m and therefore 4.60 (3), (4) give the desired
conservation. D

4.63 Discussion and Definition. Now we shall formulate and prove a the-
orem implying immediately our Theorem 4.57. We shall deal with formu-
las HPrm(x), HPr%

Σχ{x) (Herbrand provability in T; Herbrand provability
in T* from a true Σ\-sentence) as well as with the formula Intp*(x) =
(3y)Interp*(x,y) from 4.52 (interpretability of (T# + x) in Tm). We shall
investigate self-referential Σ\ -sentences f such that
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where the antecedent Δ(a ) has one of the forms

JΓPr (rr), HPτm

Σχ{x\ HPr9{x)Vlntpm(x), HPrφ

Σι(x)V Intp\x),

and the succedent v ( x ) n a s one of the forms

HPτ\x\ HPr*(x) V Inip*(x).

This will give eight cases, which are examples of our eight types of inde-
pendent ΣΊ-sentences. For some of the following assertions it is immaterial
whether we use HPr* or Pr#, but for some (using Theorem 3.20) it is not.

Observe that all eight cases are particular cases of 4.62 (with the conven-
tion 4.61 applied) for n = 0 or 1, k = 0 and X,Y being either empty or

] we use Herbrand provability.

4.64 Theorem. (1) All cases give independent Σ\-sentences;
(2) f is interpretable iff X = 0 (the succedent does not contain Intp*);
(3) -if is interpretable iff Y = 0 (the antecedent does not contain Intp*)\
(4) f is Πι-conservative iff n = 1 (the antecedent contains HPr*Σγ).
Remark. This obviously implies Theorem 4.57.

Proof. 4.62 gives directly the following: f is independent (since f is ϋ n -
conservative and i f is Σjς-conservative); if the antecedent contains HPr*Σχ

then f is Π\-conservative; if X = Intpj* then f is not interpretable; if
Y = Intpx then i f is not interpretable. Thus it remains to prove the converse
implications in (2)-(4).

(2) Assume X = 0; we prove ξ E Intprp. (Here it is vital to work with
Herbrand provability.) We have T \- ξ = A ( ^ ) -< HPrm(ξ). It suffices to
interpret (T + ζ) in (T + -if). By 3.20 there is a (T + -•£)-cut J such that
(T + -iξ) h HConmJ(T* + -nξ). Let us work in (T + -if)• I n J t h e r e i s n o

if-prooF of f in T*. But -if implies that beneath each witness for Δ(-if),
in particular, beneath each ίΓ-proof* of -if in T* there is a /Γ-proof* of f in
Γ , thus in J there is no fί-proof* of τf in T # and hence HCon*J(T* + f).
By 3.39, (T + f) is interpretable (T + -if).

(3) Assume Y = 0; we prove ( i f ) 6 JhtyΓ. We have Γ h f = JTPr^1^) -<
V(f) where Γ = Σo or Σ\. It suffices to interpret (T + i f ) in (T +
f). Let us work in (T + f). By 3.30 we have a cut J such that (Vti €
Tτ(Σι))HConmJ(T% + f + tι), i.e. J does not contain any fl-proof* of
(-iT V -if V ti). But f implies that there is a ίf-proof* y of ^ from T
and from a true Σ\-formula UQ (i.e. a fΓ-proof of i T * V -IUQ V ̂ ) such that
beneath y there is no witness for v£f), in particular, no if-proof* of f from
T#, hence we have HConmJ(T' + i f ) ; by 3.39, (T + -if) is interpretable in
( )

(4) Assume n = 0, i.e. JΓPr^ does not occur in V We prove that f is
iTi-nonconservative. Clearly, f implies (in T) the formula saying "beneath
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each witness for v(f) there is a witness for v ( " Ό " ( c a ^ ^ π ) a n c ^ under our
assumptions TΓ is Π\. It suffices to show that π is unprovable in T. This is
done analogously to the corresponding proof concerning Rosser's formula. If
π were Γ-provable we would have

T h (there exists a witness for v(f) ~~+ 0

(consider the least witness for Vί^O? which exists by IΣ\). Thus we would
have _

T h -*ξ —> (v(£) has no witness),

(due to the provability of Herbrand's theorem in IΣ\)y which contradicts
Gδdels's second incompleteness theorem. This completes the proof of 4.66
and of 4.57. D

To close the present section we add some few other applications of partial
conservativity. T € Δ\ is a consistent theory containing IΣ\.

4.66 Theorem (speed up). Let / be a Λ\ function mapping N into iV, let
Γ = Σk or Πk (k > 1). There is a φ /"-conservative over T and such that,
for each n, there is a proof d > n of a Γ-sentence 7 in (T + φ) such that each
T-proof of 7 is bigger than f(d).

Proof. Otherwise Consv(Γ) would be Σ*2, which contradicts 4.27. (Since a
Incomplete set is not Σ2) Π

4.67 Definition and discussion. A sentence φ is a self-proυer if T h φ -*
Prm(φ). Clearly, each ΣΊ-sentence is a seh°-prover. We show that there are
other self-provers as well. It is easily seen that for each sentence Φ, the formula
φ & Pr*(φ) is a self-prover; it φ is a self-prover then T h φ = (φ & Pr*(φ)).

4.68 Theorem. For each Γ = Σn (n > 1) or Γ = i7 m (m > 2) there is a
self-prover which is exactly of complexity Γ.

Proof. By 4.26 (3), let φ be such that -*φ is /"-conservative over T and not
provable in_(T + ->Conm) (i.e. take X = {a \ (T + -iC<m) h α}). Let φ be
^ & Pr*(φ). By our assumption on JΓ, ψ is Γ" in T. We prove that y> is
not Γ (dual class). Assume T \- φ = σ, σ £ Γ. Then T h ^ - > -ισ, hence
7 1—,̂ > —> -,σ ί and since -*φ is JΓ-conservative we get T I—«σ, thus T I—«<p,
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T h - . (^ & Pr (^)), T h Pr (^) -> -ψ, T h ^Conm -* -«^, which contradicts
our assumption. •

4.69 Remark. Let Γ be Σn or Πn, let Λ be Σ*m or ϋ m , assume that A does not
include Γ. Then there is a formula φ exactly Γ (not Γ in T) and hereditarily
exactly yl-conservative (not ^-conservative). For example, let Γ = Σ$, let A
be Σ*5; let π be ZΓ5, independent and hereditarily Σk-conservative over T and
let σ be Σ%, independent, hereditarily ϋs-conservative over (T + TΓ). Then
take φ = π & σ.




