
Preliminaries

In this preliminary section, we first survey some basic facts from logic (and
recursion theory) that are assumed to be known to the reader. Furthermore,
we shall introduce the language of first order arithmetic and investigate first
order definable sets of natural numbers. Finally, we shall present the begin-
nings of arithmetization of metamathematics by showing (or announcing)
that various syntactic and some semantic logical notions can be understood
as first order definable sets of natural numbers. To show that metamathemat-
ically interesting sets (like the set of all formulas, proofs, etc.) axe (or can be
understood as) first order definable sets of natural numbers is only the first
step; the second step, more important and postponed until Chap. I, consists
in investigating which first-order properties of these sets are provable in var-
ious systems of first order arithmetic. The fact that arithmetic can express
its own syntax and partially its own semantics is of basic importance for the
investigation of its metamathematics.

(a) Some Logic

0.1. Throughout the book, N is the set of all natural numbers (including
zero). We shall denote natural numbers mainly by letters m, n, fc, /, possibly
indexed. The least number principle assures that each non-empty set of nat-
ural numbers has a least element. The induction principle says that if X is
a set such that 0 G X and X contains with each natural number n also its
successor n + 1 , then N C X.

0.2. Our survey of logic will have a double purpose: on the one hand, we
shall investigate axiomatic systems of arithmetic as first-order theories and
therefore first order logic will be our main device, and, on the other hand,
we shall develop our axiomatic systems as meaningful mathematical theories
and shall, among other things, formalize parts of first order logic in these
systems. The fact that reasonable parts of logic can be developed in first-
order arithmetic is of basic importance, as we shall see in the future.
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0.3. A first-order language consists of predicates and function symbols (each
predicate and function symbol has its non-zero natural arity), constants,
and variables. A particular predicate = of equality (binary, i.e. of arity 2)
is assumed to belong to each language. There are infinitely many variables.
Constants and variables are atomic terms; if F is a fc-ary function symbol
and tO7...9tfe are terms then jF(£0,...,tfj.) is a term. An atomic formula
is P(t o , ...,fy.) where P is a fc-ary predicate and t o ,...,£& are terms. If
φ,φ are formulas and a: is a variable, then ^φyψ —* ψ,(yx)φ are formulas.
The symbols -», —> are connectives (negation and implication); other usual
connectives (&, V, =, tic.) are understood as abbreviations. V is the universal
quantifier, the existential quantifier 3 is understood as an abbreviation. The
notion of a free and bound variable in a formula is assumed to be known;
e.g. x is free and y is bound in P(x) —» (Vy)Q(a:,y). Subst(φ,x,t) denotes
the result of substitution of the term t for all free occurences of the variable
x in the formula φ. We often write φ(x) instead of φ and φ(t) instead of
Subst(<p, x,t) if there is no danger of misunderstanding.

0.4. A model for a language L consists of a non-empty domain M together
with the following: for each fc-ary predicate P of L, a fc-ary relation PM Q
M , for each fc-ary function symbol JFΌf L, a fc-ary mapping Fjβ : M —> M,
for each constant c an element CM G M. We use the same symbol M to denote
both the model and its domain if there is no danger of misunderstanding. M
has absolute equality if the equality predicate is interpreted by the identity
relation {(α, a)\a G M}. An evaluation of a term in M is a finite mapping e
whose domain consists of some variables, among them all variables occuring
in t, and whose range is included in M. Similarly for an evaluation of a
formula (dom(e) contains all variables free in φ).

0.5. The value of a term t in a model M given by an evaluation e is defined
as follows:

e] is ίjif if t is a constant,

e(t) if t is a variable,

0.6. The following are Tarski's conditions for satisfaction (M f= φ[e] is to be
read "e satisfies y> in M").

(i) If v? is atomic, say P(tu..., tΛ), then M N p[e] if ( t 1 A f [ e ] 9 . . . , tkM[e\) G
PΛ/ (the tuple of values of t\,..., tk is in the relation that is the meaning
of P).

(ii) M t-«p[e] HE Af P φ[e];

(iii) M l = ( ^ ^ ψ)[e] iff M * y>[e] or M 1= ̂ [e];
(iv) Λf t= (yx)φ[e] iff M N φ[e'] for each e; coinciding with e on all arguments

except x and defined for x.
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0.7. Let Γ be a class of formulas of a language L, assume that Γ contains
with each formula all its subformulas, let M be a model for L. A ternary
relation Satis a satisfaction relation for Γ in M if the following conditions
hold:

(1) Sat consists of some pairs (y>, e), where φ GΓ and e is an evaluation of

(2) Let M 1= φ[e] mean (<£>, e) G Sat; then, for each φ G Γ and each evaluation
e of </?, Tarski's conditions (i)-(iv) hold.

(Clearly, for each Γ and M, the satisfaction relation Sat for Γ in M is
uniquely determined. But this is a rather strong fact; we shall investigate the
provability of existence of various satisfaction classes in various axiomatic
systems.)

0.8. φ is true in M (M f= φ) iff M t= φ[e] for each e. We shall use various
usual conventions in using the symbol t=; for example, if φ has the only free
variable x and a G M, we shall write M 1= </?[α] or M t= y>(α) instead of
M N y>[e] where e is the mapping defined only for x and giving x the value α.

0.9. A set x G Λί is Γ- definable in M (where M i s a model for L and Γ is
a class of L-formulas) if there is a φ G Γ having exactly one free variable,
such that X = {a G M\M f= <^(α)} (This is non-parametrical definability;
we shall deal with parametrical definability later on.) Occasionally, we shall
denote by ψM the set defined by φ, thus: a G ΨM iff M 1= φ(a).

0.10. We shall fix any usual set of (Hilbert-style) logical axioms and deduction
rules, for example the following ones:

Axioms:

hΦ -»-v) ->(<p-*Ψ)
(Vx)φ(x) -* φ{t) (t free for x in φ)

Rules: From φ and φ —+ ψ infer ^ (modus ponens).
Prom v —*• ¥>(#) infer ι/ —> (Va;)y?(a:) if x is not free in v.

0.11. An axiomatic theory in a language L is given by a set T of L-formulas
called special axioms of the theory. Axioms for equality (saying that equality
is reflexive, symmetric, transitive and is a congruence with respect to all
predicates and function symbols) are assumed to belong to special axioms of
each axiomatic theory; they will not be explicitly mentioned. T h φ means
that φ is provable in T, i.e. there is a T-proof of φ (a sequence φo,..., φn of
i-formulas such that φn is φ and for each i < n, either ψ{ is an axiom (logical
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or special) or ψi follows from some preceding members of the sequence using
a rule of inference).

T is consistent if it does not prove any contradiction, i.e. for each φ,T\/ φ
ovTψ-iφ (or both).

M is a model of T if M is a model for the language L and each special
axiom of T is true in M.

0.12 GδdePs Completeness Theorem. T h φ is true in each model of T iff φ
is true in each countable model of T. Thus: T is consistent iff T has a model.

Convention. All models investigated in this book are countable (or finite).

Next we shall deal with Skolemizations. The reader is assumed to know
how to convert each formula in a logically equivalent formula in the prenex
normal form, i.e. a formula consisting of a block of quantifiers followed by an
open (quantifier-free) formula.

0.13. Let T be a theory in a language L, let φ(xι,..., £fc, y) be an L-formula
and let F be a fc-ary function symbol not in L; put l! = Lϋ{F}. The formula

φ{x\,..., X*, y) -> φ(x\,..., xk, F(xu , zjfe))

is the Skolem axiom for φ and y.

0.14 Lemma. If T is a theory in a language L and T results from T by adding
a Skolem axiom, then Γ is a conservative extension of Γ, i.e. each L-formula
provable in T is provable in T.

(A model-theoretic proof is trivial: each (countable) model of T has an
expansion to a model of T. Indeed, let M 1= T, and assume that the domain
of M is N. For each a € JV, let /(α) be the least 6 6 JV such that M N y>(α, 6),
if such a 6 exists; otherwise put f(a) = 0. Clearly, (M, /) h T.)

0.15. Let Φ be the formula

where Qi is V or 3 (= 1, ...,fc). Let x mean zi,...,Zfc; let <— x, mean
£l,...,z, ' let Xi —• mean xt , . . . , xj Define a sequence of terms as follows:

ti = a;,- if Qi is V ,

*, = #(«-*,•_!) if Q< is 3 ,

F * being a new function symbol. Finally, put

= ¥>(*!,•.. ,**,y)
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(Example: sk(yx)(3y)(Vu)(3v)φ(x,y,u,v) is φ(x,F1(x),UyF2(x,F1(x),u)).)
If T is a theory, then sk(T) = {sk(Φ)\Φ e T}.

0.16 Corollary. sk(T) is an open conservative extension of T, i.e. all axioms
of sk(T) are quantifier-free and each ̂ -formula provable in sk(T) is provable
inT.

Proof. For i = 0,..., k let φM result from Φ by deleting the first i quantifiers,
thus φW is (Qt + i£j+i) . . . φ(x, y). First extend T by adding, for i = 0,..., fc,
the following Skolem axioms:

Do this for each axiom Φ of T. The new theory T1 is a conservative extension
ofT. D

Claim 1. T' h sk(T).
Take a Φ £ T and prove by induction φ(*)(<— ί,-,y) in T;. φ(f) is #;

and T'jΦ^*— tt ,y) h φ(l+1)(<— t(t +i),y) either by predicate calculus (if
) or by the above Skolem axiom (if Qi+\ is 3). And obviously

C/αim 2. θfc(T) h T.
Prove by induction sk(Φ) h φί1^^- t, , y) for i = Jfc,..., 0. #(*)(<- tt , y) is

θfc(Φ); and φ(t+1)(<— t/, +1\,y) h φ( )(4— tt ,y) either by generalization (if Q{
is V) or by the logical schema a(t) h (3x)α(a;) (if Qt is 3).

0.17 Lemma. Each theory T has an open conservative extension T in which
each formula is equivalent to an open formula.

Proof. Put To = T, Tn+i is the extension of Tn by Skolem axioms for all
open formulas of Tn, let T^ = IJnTn and T* = T^ - To. Clearly, Too is
a conservative extension of T. We shall show that each formula φ of Tr is
equivalent in T1 to an open formula. For this purpose it suffices to assume φ
to have the form (3y)<p(x,y),y> open. But then the Skolem axiom for φ and
y guarantees that, for an appropriate F, T1 h (3y)y>(x,y) = <p(x, F(x)). Now
it suffices to replace in Too each element of To by its open equivalent; the
resulting theory is T. D

0.18. For any Φ, let the Herbrand variant of Φ, He(Φ) be the existential
closure of -tsk(->Φ): e.g. if Φ is (Vx)(3y)(Vi/)(3v)y?(:r,y,u, v), then He(Φ) is
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0.19 Theorem. Φ is provable (in logic, i.e. in the theory with no special axiom)
iff He(Φ) is provable.

(Immediate from 0.16.)

0.20 Lemma. Let φ(x) be an open L-formula (x is a tuple of variables). The
formula (3x)φ(x) is provable (in logic) iff there are tuples 11,...,tn of i-terms
such that the disjunction

is a propositional tautology. (Each φ(t{) is called an instance of <p(x).
Note that this also has an easy model-theoretic proof using Kδnigs lemma;

Kδnig's lemma will be studied in Chap. I, Sect. 3.

0.21 Herbrand's Theorem. A formula Φ is provable in logic iff there is a
disjunction D of finitely many instances of the quantifier-free matrix of He(Φ)
such that D is a propositional tautology.

This follows from the preceding. An elementary proof (not using model
theory) can be found in Shoenfield's book. In 1.4.15 we shall claim that
Herbrand's theorem is (meaningful and) provable in a theory called IΣ\
(defined in Chap. I, Sect. 1), again with the help of Shoenfield's book, and
in III.3.30 we shall prove in IΣ\ a theorem that has the implication -<= of
Herbrand's theorem as its corollary. (In fact, we shall elaborate Shoenfield's
proof of that implication.) Finally, in Chap. V we prove Herbrand's theorem
in a rather weak system of arithmetic.

We now turn to some basic notions and facts of recursion theory. Recall
that N denotes the set of natural numbers.

0.22. Primitive recursive functions and general recursive functions are usually
defined as follows:

Basic PRF's: Zero(n) = 0, Succ(n) = n + 1 ,

iίniriQ,..., n m ) = n t (where 0 < i < m) .

A function F : Nn -* N results from G : Nm -> N and # i , . . . , ffm : Nn ->
N by composition if

F(h,...,kn) = G(H1(k1,...,kn),...Hm(k1,...,kn))

for each * i , . . . , kn G N. An F : Nn+1 -> N results from G : Nn -* N and
H : Nn+2 —> N by primitive recursion if, for each k = (k\,..., Jfcn), and each
m,

F(0,k) = G ( k ) ,
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The class of all primitive recursive functions (PRF's) is the smallest class
containing basic PRF's and closed under composition and primitive recursion.

An F : Nm+ι —* N results from G : JVm+2 —> TV by regular minimization
if for each m, k = (fci,..., kn),

F{m,k) = (mmq)(G(m,k,q) = 0)

and for each m, k there exists a q such that G(m, k, q) = 0 (so that F is total,
i.e. defined for each m,k).

The class of all general recursive functions is the smallest class contain-
ing the basic PRF's and closed under composition, primitive recursion and
minimization.

0.23 Examples of PRF's: addition Add, multiplication Mult, exponentiation
Exp, factorial Fact, difference Diff. We freely write n + m,n*m,nm,n\,n —
m instead of Add(n,m), Mult(n,m),Exp(n,rn), Fact(n), Diff(n,m), respec-
tively. (A word on difference: n — m for natural numbers means max(n — m, 0)
as meaningful for integers; thus 5 — 3 = 2 and 3 — 5 = 0.)

0.24. A set X C Nn is primitive recursive (PR) [general recursive (GR)] if its
characteristic function

xx(h,...,kn) = < .
^ 0 otherwise .

is PR [GR, respectively].

0.25 Examples. The equality relation as well as the less-than relation are
both primitive recursive; both PR and GR sets are closed under Boolean
operations. The set of all primes is a PR set; the increasing enumeration pn

of primes (po = 2,pi = 3,p2 = 5,p3 = 7,p4 = 11 etc.) is a PRF.

0.26. Let Γ be a class of functions such that each F e Γ, F : Nn -> N
for some n. (We say that Γ is a class of total number theoretic functions.
It is obvious what we mean by saying that Γ is closed under substitution,
primitive recursion, regular minimization, etc. A Γ set (relation) is a set
(relation) whose characteristic function is in Γ. If Γ contains basic PRF's and
is closed under composition and primitive recursion (or: under composition
and regular minimization) then it is closed under definitions of functions
by cases (with a condition in Γ) and under bounded minimization. In more
detail:

Let A be a Γ set, let Fλ,F2 : N -> N be in Γ. Define

F(n) = F1(n) if n G A,

F(n) = F^iji) otherwise .
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Then F e Γ. (Generalize for JF\,..., F^ of n arguments and A\,..., Aj. a
partition of Nn.)

Let R C JV11*1, let R be a Γ-relation and put

, q) = (min m <h) R(m, q) if there is such an m,

F(k,q) = 0 otherwise

Then F € Γ and 5 is a Γ-relation.

0.27. For each class Γ of number-theoretic total functions, let Prim(Γ) (the
class of all functions primitive recursive in Γ) be the minimal class containing
all basic primitive recursive functions, all elements of Γ and closed under
composition and primitive recursion. Similarly for the class Rec(Γ) of all
functions general recursive in Γ.

(b) The Language of Arithmetic, the Standard Model

0.28. Recall that N is the set of natural numbers. N also denotes the set of
natural numbers together with the usual arithmetical structure:

the unary operation Succ of successor (adding one),
the binary operation Add of addition,
the binary operation Mult of multiplication,
the binary relation Ord of linear order,
the minimal element 0.

N is certainly a very natural and very mathematical structure, the ground
stone of mathematics. We introduce a first order language LQ such that N is
a model of this language. LQ has

a unary function symbol 5,
binary function symbols +, *,
the equality predicate =,
a binary predicate <,
a constant 0.

i o is the language of first-order arithmetic and N is its standard model. Note
that each natural number n is named by a variable-free term n of Lo*. we
can just take n to be S(S(... 5(0)...)) (n occurrences of 5). Thus 1 is 5(0),
4 is 5(5(5(5(0)))), etc. For some investigations (in Chap. V) we need more
economical names; this will be made explicit if the situation demands. The
term n is the nth numeral.

Notational Conventions. We shall freely use obvious conventions in writing
terms of LQ: first, we shall use the infix notation (we write x + y rather
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than +(x, y), the same for *), second, the multiplication sign may be omitted
if there is no danger of misunderstanding (xy means x * y), third, we omit
unnecessary parentheses, declaring * to be superordinated to + (x * y +
2 and xy + 2 both stand for (x * y) + 2 etc.).

0.29. Any model isomorphic to N is also called standard. It is easy to show
that there is a model M which is elementarily equivalent to N (i.e. has the
same true Lo-formulas) but is not standard: let Th(N) be the set of all
sentences true in N, let c be a new constant and let T = Th(N) U {n{c \ n G
N}. By compactness, T is consistent and hence has a model M. Show by
induction that if / is an isomorphism of N to M then for each n, f(n) = nj^
and therefore CM has no preimage. Thus M is not isomorphic to N.

0.30 Bounded Quantifiers and Arithmetical Hierarchy. (3x < y)φ is an
abbreviation for (3x)(x <y&εφ) and (Vx < y) is an abbreviation for (Vx)(x <
y —* φ). By convention, x and y must be distinct variables. An io-formula is
bounded if all quantifiers occuring in it are bounded, i.e. occur in a context as
above. Furthermore, (Va: < y)φ is an abbreviation for (Vx < y){x Φ y —> φ)
and similarly for (Vx < y); x φ y is the same as ->(x = y).

We introduce a hierarchy of formulas called the arithmetical hierarchy.
ΣQ-formulas = JTo-formulas = bounded formulas; Σn+\-formulas have the
form (3x)φ where φ is IΓn, i7n+i-formulas have the form {^x)φ where φ is
Σn. Thus a Σn-formula has a block of n alternating quantifiers, the first one
being existential, and this block is followed by a bounded formula. Similarly
for Πn.

0.31. A set X C N is Σn (or Πn) if it is defined by a I7n-formula ((Uπ-
formula) with exactly one free variable. Similarly for a relation R C JV . X
is Δn if it is both Σn and Πn. A function F : Nk —> N is i7n, etc., if it is
i7n as a relation C NM (the graph of F).

In particular, «XΓ is ΔQ iff it is Σ$; Πn relations are complements of Σn

relations and vice versa.

0.32 Pairing. There is a ΣQ pairing function, i.e. a one-one mapping OP of
N2 onto iV, increasing in both arguments.

Indeed, the usual "diagonal" enumeration of ordered pairs of natural num-
bers

0 1 2 3
0 0 1 3 6
1 2 4 7 . . .
2 5 8 . . .
3 9 . . .
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satifies the following:

OP(m, n) = -(m + n + l)(m + n)+m .

Clearly, this function is defined by the formula

we denote the last formula by OP(x,y,z). Furthermore, we expand N by
adding OP to its structure; and expand Lo by a new binary function symbol
(x, y) interpreted as OP. We keep the notation JV, Lo for the (inessentially)
expanded structure and language. Thus we have

N)F(yx,y)OP(x,y,(x,y))

and for each m, n 6 JV we have

OP(ra, n) = (m, n)#

If there is no danger of misunderstanding we omit the subscript N in (m, n ) ^ ;
thus we write also (m,n) for OP(m,n).

0.33 Notation Conventions Continued. We give a detailed notational explana-
tion on the pairing function since this exemplifies a general notational method
common in the metamathematics of arithmetic and also used in the present
book:

(1) The structure N and language Lo is notationally not distinguished from
its inessential expansions if not necessary.

(2) If we have a relation R C Nk and exhibit a concrete definition of ϋ in
N formulated in Lo then the defining formula is denoted by R* (dot
notation). Similarly for functions.

(3) Conversely, if we have a function symbol F and its interpretation F/y
in N we often omit the subscript N and write F(k1...) instead of
F/v(A,...). Similarly for relations.

Now that we have introduced the language of arithmetic we see that m + n
is shorthand for m +jγ n and that the formula x + y = z could be denoted
by Add*; similarly for Succ and Mult.

This convention will be used tacitly through the book; it will be generalized
(and made more precise) in connection with axiomatic theories having N as
one of their models.

Caution. Even if we expand the language we keep the notion of Σn and Πn

formulas unchanged, i.e. assume that they are formulated in Lo in its original
meaning. (A formula in the enriched language may or may not be equivalent
to a Σn or Πn formula; this needs further investigation).
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0.34 Theorem. For each natural n,

(1) Σ"n, 2In, Δn relations are closed under intersection and union;
(2) Δn relations are closed under complementation;
(3) if n > 0 then Σn relations are closed under existential projection and

Πn relations are closed under universal projection.

Proof. We prove (1) & (2) & (3) by induction on n. For n = 0 the assertion
is evident. Assume it for n and consider n + 1. The claim (2) is trivial; let
us prove (3) for i7n+l (the proof for Z7n+l is similar). Let R be denned by
(3z)φ(x, y, z) where φ is i l n , and let Rf be defined by (3y)(3z)φ(x, y, z).
Then B! is defined by

as well as by

(3«)(Vy < u)(Vz < u)(u = (y,z) - V(*,,y,z)) .

If n = 0 then the latter formula is clearly Σ\ if n > 0 then, by the induction
assumption, the former formula is equivalent (in N) to a I7n+i formula. (Once
and for all, let us elaborate details: φ is ϋ n , both u = (t/, z) and its negation
are Σ"o, hence 7Tn, and by (3), the formula in question is also Πn.)

To prove (1) let (3y)φ(x, y) and (3z)ψ(x, z) be Σn+\ and assume y,z to
be distinct variables. Then (3y)φ(x, y) & (3z)φ(x1 z) is logically equivalent
to (3y)(3z)(φ(x,y) Sz φ(x, z)) and similarly for V; thus (1) for n and (3) for
(n + 1) give the result. D

0.35 Theorem. Each ΣQ set is primitive recursive.

Proof. Since successor, addition and multiplication are PRF's, each term
defines a PRF; since equality and ordering are PR relations, each atomic
formula defines a PR relation. Dummy variables may be introduced using
J^j. And PR relations are closed under Boolean operations and bounded
projection. D

We shall now investigate the question whether each PRF, and moreover,
each GRF, is definable in N. The result will be that general recursive func-
tions coincide with Δ\ functions; this appears to show that the choice of our
language is natural. First note the following

0.36 Lemma. If a function F : Nn —* N is Σ\ then it is A\.

Proof. Let F be defined by a Σ\ formula y>(x,y), i.e. F(mi,. . .) = k iff
N f= y>(mi,..., k). Then the complement of F in Nn+1 is defined by (3z)(z φ
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ykφ(x, z)) which is again a Σ\ formula. Note that the lemma does not
generalize to partial functions, i.e. mappings from Nn into JV. D

0.37 Lemma. Basic PRF's are defined by open formulas.

Proof. Take y = 0, y = 5(x), y = x t . •

0.38 Lemma. A\ functions are closed under composition.

Proof. For simplicity, let F(k) = G(H(k)) for each &, and let φ(xy y), ψ(x, y)
define GyH respectively, φ,ψ G Σ\. Then JF is defined by the Σ formula

(3z)(φ(x,z)&φ(z,y)). Π

0.39 Lemma. Σ\ relations are closed under bounded universal projections.

Proof. Let R C JV2 be defined by a formula (3z)φ(x, y, z) where φ is Σo
and let 5 C JV be defined by (Vx < y)(3z)φ(x, y, z). We show that 5 is also
defined by (3tϋ)(Va; < y)(3z < w)(φ(x, y, z), which is Σ\. (Thus the quantifier
(3z) can be bounded.) Clearly the latter formula implies the former. Thus
assume k G 5; we find a q such that JV 1= (Vx < Έ)(3z < q)φ(xjz, z). To this
end we show by induction that for each i = 0,1,. . . k there is a q{ such that

N \= (Wx <ι)(3z <qi)φ(x,kyz) .

Since k G S we know JV f= (Vx < k)(3z)φ(x, fc, 2); thus the case i = 0 is
evident. Assume <# has been found and let r be such that JV N y?(i + 1, fc, r).
Put ft+i = max (g, ,r). D

0.40 Lemma. A\ functions are closed under regular minimization.

Proof. Let F(k) = (minq)(G(k,q) = 0), F : JV -+ JV, G be ΣΊ defined by
<p((x, y, 2r). Then F is 27χ defined by

φ(x, y, 0) & (W < y))(3z φ 0)^(x, y', z) .

This shows that F is ΣΊ, hence, by 0.36, it is Z\χ. D

The problem is to show that Λ\ functions are closed under primitive re-
cursion. If F results from G from G and H by primitive recursions then an ex-
plicit definition of F(k) is easily made using the sequence F(0), F ( l ) , . . . , F(k)
since we can describe F(0) and describe F(i + 1) from F(i). Thus some Δ\
definable coding of finite sequences of natural numbers by natural numbers
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is desirable. In fact, such a coding is a device used very often in arithmetic.
We shall state the existence of such a coding using the following

0.41 Definition. A coding of finite sequences (of natural numbers by natural
numbers) consists of a PR set Seq C N and PRF's

Ih (unary; lh(s) is called the length of s),
memb (binary; memb(s,ϊ) is the ith member of s),
prolong (binary; prolong(s,k) is the result of juxtaposing k with s)

such that the following holds for each s, sf E Seq:

(1) lh(s) < s and, for each i < lh(x), memb(s,i) < s\
(2) there is an empty sequence 0 with Z/ι(0) = 0;
(3) for each k € N if s' = prolong(s.k) then lh(s') = lh(s) + 1, for i <

lh(s) we have memb(s,i) = memb(s\i) and for i = lh(s) we have
memδ(s/,i) = fc.

(4) (monotonicity): if lh(s) < lh(sf) and, for each % < /Λ(θ), memb(s, i) <
memb(sr, i) then s < s'\

(5) the set N — Seq is infinite.

(Note that (4) implies extensionality; if 3, s1 have the same length and the
same corresponding members then they are equal.)

0.42 Theorem. There is a Δ\ coding of finite sequences; i.e. a coding such
that the set Seq and the functions Ih, memb, prolong are A\ (besides being
PR).

The proof of this theorem is put off until Chap. I, Sect. 1; we shall then
show more, namely that the properties of the coding are provable in a suitable
fragment of arithmetic.

For most investigations of Chaps. I-ΓV it is immaterial which concrete
coding of sequences is taken; but for some more subtle results, especially on
weak fragments, special care will be necessary. In fact, we prove in Chap. V
that there is a ΣQ coding of finite sequences.

Notation. The chosen Δ\ definitions of Seq, lh, memb and prolong will be
denoted by Seq*, Z/ι#, memb9 and prolong*] Ih* and prolong9 will also be used
as function symbols, thus we shall write y = lh*{x) instead of lh*(x,y).

We expand Lo by a new function (symbol (—)~ for the y-th member of x
(thus in formulas we write z = (x)y for memb*(x, y, z).

And if there is no danger of misunderstanding, we shall use this bracket
notation also informally, thus (s), will be the same number as memb(s,i).

A similar convention for the function prolong will be made later.

0.43 Corollary. A\ functions are closed under primitive recursion.
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Proof. Assume F(0) = m and F(k + 1) = H(k,F(k)); let H be defined by
κ(x, y, z). Then F is defined by the following formula φ(x, y):

(3z)(Seq\z)) & lhm(z) = x + 1 & ( % = m &

(Vti < /Λ («))(Vv < u)(υ + 1 = ti -> *(*, (*)„, (*),.))

Similarly for the case of F having parameters. •

0.44 Remark. (1) In particular, exponentiation (n = mk) is Δ\ since it is
primitive recursive. We shall show in Chap. V that exponentiation is ΔQ
(which is a rather non-trivial result).

(2) An apparently more general form of primitive recursion defines F(k+l)
from the course of values F(0),..., F(fc) directly. Let, for each F, F(k, m) = s
iff s is the (code of the) sequence of length fc+1 such that for each i < fc, (s)i =
F(i, m). F results from G, H by primitive recursion on the course of values
if JF(0,m) = G(m) and F(k + l,m) = H(k, F(k), m). Clearly, Δι functions
are closed under this kind of primitive recursion.

(3) If the reader has a favourite primitive recursive coding of sequences
he may keep it since now he knows that his coding is Δ\ which is sufficient
for most applications. But he should keep in mind that it might be rather
difficult and cumbersome to show directly that his coding is Δ\ (or even ΣQ).

0.45 Theorem. A function F : Nn —• TV is general recursive iff it is Δ\.

Proof Clearly, each GRF is Δ\ since basic functions are and the class of Δ\
functions is sufficiently closed.

Conversely, if F : N -> N is Δι, thus F(k) = n iff JV t= (3z)φ(ίc,n,z) where
φ is ΣQ then by 0.35, the relation R C TV3 defined by φ is primitive recursive.
Define ίb(fc) to be the least sequence s of length 2 such that R(k, (5)0, («s)i);
then F(k) = (fb(&))()• ^0 results from F by a regular minimization and
taking the 0-th member of a sequence is a primitive recursive function; thus
F is a GRF. D

0.46 Fact. An infinite Δ\ set X C N has an infinite increasing enumeration
(i.e. a F : N —• N mapping N one-one arid increasing onto X).

(The reader can either use the fact that this is true for recursive sets of
natural members or prove that fact directly, which is easy using the available
means.)

0.47 Some Useful PRFs Concerning Sequences.
(1) For each n > 1, there is an n-ary PRF associating with each

fcoj j fcn-l £ N the n-tuple (&o, .., fcn-l)? i e. the sequence s of length n
such that, for each i < n, (θ)j = fct .
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(2) Concatenation: For s,t € Seq.s <~* t denotes the concatenation of s,t,
i.e. the sequence w such that

lh(w) = lh(s)
(w)i = (ι>), for each i < Zft(s),

(*)+i = (Oj for e a c h i < ih(i).

Put θ ^ ί = 0 i f θ ^ 5eςf or t £ Seq .

We show that this function is primitive recursive.

Define C(s,*,0) = s

C(s, t, i + 1) = prolong(C(s, t, i)), (ί)t ) if i < lh(t),

C(s,t,i + 1)) = C(s,*,0 if i>

(3) Concatentation of a sequence of sequences. If w G 5eg and for each
i < lh(w), (w)i 6 Seq then put

Concseq (w) = (tt>)0 ^ (w )i ^ ... ^ (̂ )//»(«;)-i

Concseq is primitive recursive:
Define

D(tί;, i + 1) = D(w, i) <— (w)i if i < lh(w),

D(w, i + 1) = ZJ(tι;, 0 if i > lh(w\

Conseq(w) = -D(υ;, lh(w)) .

The reader may easily verify the following facts for sequences β,ί (3 C <
means that s is an initial segment of ί, i.e. lh(s) < lh(t) and for each i < lh(s),

W . = (*)<);
(1) s ^ t C ^ ί ' implies t C *',
(2) 5 ̂  < C s' ^ t' implies s C sr oτ s* C s,
(3) ί C < implies the existence of a unique u such that t = s ^ tί,
(4) Concseq(s ̂  t) = Concseq(s) ̂  Concseq(t).

0.48 Matiyasevic(-Robinson-Davis-Putnam) Theorem. £Ί relations coincide
with relations defined by existential Lo-formulas, i.e. formulas consisting of
a block of existential quantifiers followed by an open formula.

We may additionally assume that the open formula in question does not
contain the predicate < (thus atomic formulas are only equalities of terms)
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since x < y may be replaced by (3z)(z = x = y) and -i(x <y)hyy<x&xφ
y. Thus each open formula containing < is equivalent to an existential formula
not containing <.

A readable proof may be found in [Davis 73, Hubert's tenth]. Note that
this theorem (often called the MRDP theorem) is very famous; it implies
recursive unsolvability of Hubert's tenth problem.

0.49 Remark. Concerning the choice of the language LQ, observe that what
we have said till now gives some justification to our choice of the language of
arithmetic. In this language, all GRF's are first order definable (which is very
natural for a first order arithmetic); and it can be shown that multiplication
is not first order definable in the reduct of N to (io without *) and similarly,
addition is not first order definable using (Lo without +).

This follows from the fact that the set of all sentences of (L without *)
true in N is Δ\ (i.e. recursive), the same for sentences of (L without +) and
from the undecidability results of Chap. III.

On the other hand, zero, successor and ordering are easily definable in
the reduct of N to (+, *); the reasons for taking them as primitives are only
technical and inessential variants axe possible.

(c) Beginning Arithmetization of Metamathematics

0.50 Introduction. To arithmttizt mttamathtmatics means to make meta-
mathematics a part of arithmetic (or at least to make important parts of
metamathematics parts of arithmetic). It is Gδdel's invention that this is
possible. The first task consists in showing that important logical notions are
definable in N by formulas of first order arithmetic; this is our task in the
present subsection. The second task is then to show that important proper-
ties of these notions are provable in various systems of axiomatic arithmetic.
(This task is postponed.)

To be able to define logical notions by arithmetical formulas we must
identify objects of logic (as symbols, formulas, proofs, etc.) with numbers.
There are two approaches to this task, not substantially different. First,
we may think of logical objects as non-numbers (whatever they may be)
and give some explicit rules on how to associate numbers to them. This
procedure is usually called Gδdel numbering and speaks of Gδdel numbers
of formulas, proofs, etc. Feferman observed that we have another apparently
simpler possibility: just to identify logical objects with some numbers.

Recall our (pseudo)definition of terms: we defined some atoms (atomic
terms) and specified operations (formation rules) under which the set of
terms is closed. There axe two tacit assumptions: first that the set of terms
is the least set containing all atoms and closed under formation rules; and,
second, that each non-atom t uniquely determines the formation rule and



Preliminaries 21

its components that give t according to the formation rule. Similarly for
formulas; so let us speak generally about expressions. We have a set At φ 0
of atoms, a set Op of operations, each operation e having its arity Ar(e), and
expressions are just elements of the free algebra generated by our atoms using
our operations. More precisely, the free algebra of the type (Op, Ar) generated
by At is a set Expr C At together with a function Appl (of application)
associating with each operation o, and each sequence s of expressions such
that lh(s) = Ar(o), an expression Appl(o, s) G At such that Appl is one-one
(for such pairs (o, s)) and Expr is the smallest set containing At and closed
under Appl. Generalizing slightly, we replace the assumption At C Expr by
the assumption that we have a one-one embedding of At into Expr] it will be
technically convenient to assume that for each atom a G At the one-element
sequence (a) is an atomic expression. Appl is then defined for pairs (o,s) as
above and its range is the set of non-atomic expressions.

Finally, two free algebras given by At, Op, Ar are isomorphic in the obvious
sense. Thus we may speak of the free algebra and its various presentations.
We are interested in Λ\ presentations.

0.51 Fact. Let 0 φ At C N, let (Op, Ar) be a type, At Π Op = 0. Then
there is a presentation (Expr, Appl) of the free algebra of the type (Op, Ar)
generated by At such that both the set Expr and the function Appl are
primitive recursive in (At, Op, Ar).

Proof. For each o G Op and each sequence s of length Ar(o) let Appl(o, s)
be (o) ^ Concseq(s), i.e. the sequence beginning by o and continuing by the
concatenation of all members of s] let Appl(o, s) = 0 otherwise. (Note that
this presentation is often called the Polish notation.) Clearly, Appl is PR in
(Op, Ar). Call w a derivation of z if w is a sequence, its last element is z and
for each i < lh(w) we have the following:

either (w){ is an atomic expression (x) or there are o,s < w such that
(w)i = (o) Concseq(s),o G Op, s is a sequence of length Ar(o) and for each
k < lh(s), there is a j < i such that (s)k = (w)j (i.e. (w)i results from some
preceding elements of w using an operation).

Let

Expr = {z\(3w)(w is a derivation of z)} .

We show that (Expr, Appl) is a presentation of the free algebra in question.
D

Lemma A. If e, ef are expressions and e C e ' then e = e.

Proof. Let e be the smallest expression such that there is an expression ef

which is a proper initial seqment of e. Then e = (o) Concseq(s) and e' =
(o) ^ Concseq(s'),s φ s1. Let i be the least number such that (&){ φ (s')t*;
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show (using 0.47 (l)-(4)) that (s){ C (s')i o r ( A C (s)i and (*).-, ( A are
expressions less than e. D

Lemma B. If e = (o) ^ Concseq((s) and e' = (o) ^ Concseq(s') are
expressions and e = e' then 6 = 3'.

Proo/. Assume not; then Concseq(s) = Concseq(st) and if i is the least such
that (θ), φ (s')i then (s) t C (θ'), or (s'), C (θ), , which contradicts Lemma
A. Thus (Expr, Appl) is a presentation.

It remains to show that Expr is a set PR in (At, Op, Ar). For this it is
sufficient to bound the quantifier (3w) in the definition above, i.e. to find a
function H PR in (At, Op, Ar) such that

Expr = {e|(3iϋ < H(e))(w is a derivation of e)} .

To this end show that if e has a derivation then it has a derivation w' without
repetitions and such that each (w)ι is a (non-initial) segment of e, i.e. for some
s, t, e = s ^ (w)i <~^ t. (Just omit all superfluous members of w and show
that the resulting sequence w1 is a derivation of e).

We know from the preceding that for each s there is at most one expression
e ; and at most one t such that e = s ^ e' ^ tf; thus sequence w1 satisfies
lh(wf) < lh(e). Thus we can choose H(e) = ( e , . . . , e) (e times); clearly, H is
PR. This completes the proof of 0.51. D

0.52 Corollary. If (At, Op, Ar) is PR then (Expr, Appl) is PR; if the former
is Δι then the latter is Δ\.

0.53 Definition. A first order language is A\ if the sets of all predicates,
function symbols, constants and variables are (mutually disjoint) Δ\ sets
and the function Ar defined for each predicate and function symbol (arity) is
a Δ\ function. We additionally assume that no predicate, function symbol,
constant and variable is a sequence and that there are two further non-
sequences denoted -1, —K

0.54 Corollary. If a language L is Δ\ then there are Δ\ sets Term (of all
terms) and Form (of all formulas) such that

(1) Term is the free algebra given by variables and constants as atoms and
function symbols with their arities as operations;

(2) The set of all atomic formulas is Δ\\ the functions associating with each
atomic formula its predicate and its sequence of arguments respectively
are Δ\\ and no atomic formula is a sequence.

(3) Form is the free algebra given by atomic formulas as atoms and by the
following operations: —> (binary), -1 (unary) and for each variable x an
operation (Vx) (unary).



Preliminaries 23

0.55 Discussion. Here we stop our preliminary development of arithmetiza-
tion. We survey ideas that could follow; we shall not elaborate on them here
since we shall prove stronger results in Chap. I that will imply the facts
sketched below as corollaries. Namely, instead of showing that some things
are Δ\ definable in the standard model, i.e. that some definition have some
properties in N we show that these properties are provable in some fragments
of arithmetic. We shall prove in particular the following:

- the substitution function Subst is Δ\ in N\
- the set of all logical axioms is Δ\ in N. A theory is axiomatized if its

language is Δ\ and its set of special axioms is also Δ\.

It is easy to see that for each axiomatized theory T the set of all proofs in T
(T-proofs) is Δ\ and the set of all T-provable formulas is Σ\. T is decidable if
the set of T-provable formulas is Δ\. (Undecidability of axiomatized systems
of arithmetic is closely related to their incompleteness and will be studied in
Part B of the book.)

Concerning semantics:

- the evaluation function Val of terms in N is Δ\ in JV;
- the satisfaction for ΣQ formulas in N is Δ\ in N.

In Chap. I we shall show that basic facts about arithmetization as sketched
till now are provable in the theory IΣ\ using induction for Σ\ formulas. This
will be basic for our investigations of systems of arithmetic containing 1Σ\,
which are a matter of interest in the main part of the book. But note that
Chap. V is devoted to theories weaker than IΣ\\ in these theories special
care is necessary and special codings of sequences, formulas etc. are used.
Chapters I-IV occasionally use some results from Chap. V; explicit reference
will always be made.






