
Introduction

People have been interested in natural numbers since forever. The ancient
mathematicians knew and used the principle of descenie infinie, which is a
form of mathematical induction. The principle is as follows: if you want to
show that no number has the property </?, it suffices to show that for each
number n having the property φ there is a smaller number m < n having
the property φ. (If there were a number having φ we could endlessly find
smaller and smaller numbers having <p, which is absurd.) The Greeks used
the principle for a proof of incommensurability of segments. The principle
was rediscovered in modern times by P. Feπnat (1601-1665). The principle
of mathematical induction itself (if 0 has the property φ and for each number
n having φ also n + 1 has φ then all numbers have φ) seems to have been first
used by B. Pascal (1623-1662) in a proof concerning his triangle. A general
formulation appears in a work of J. Bernoulli (1654-1705). (Our source is
[Meschkowski 78-81].)

In 1861 Grassman published his Lehrbuch der ArUhmetik; in our terms,
he defines integers as an ordered integrity domain in which each non-empty
set of positive elements has a least element. In 1884 Prege's book Grundlagen
der Arithmetik was published. We can say that Prege's natural numbers are
classes; each such class consists of all sets of a certain fixed finite cardinality.
(Frege speaks of concepts, not of classes.) The famous Dedekind's work Was
sind und was sollen die Zahlen appears in 1888. Dedekind's natural numbers
are defined as a set N together with an element 1 E N a one-one mapping /
of N into itself such that 1 is not in the range of / and N is the smallest set
containing 1 and closed under /. Dedekind and Frege agreed that arithmetic
is a part of logic, but differed in their opinions on what logic is. They both
used the same main device: a one-one mapping and closedness under that
mapping.

Dedekind was not interested in finding a formal deductive system for natu-
ral numbers; this was the main aim of Peano's investigation of natural num-
bers (Aήthmetices pήncipia nova methoda exposita, 1889). Peano's axiom
system (taken over from Dedekind, who had it from Grassman) is, in our ter-
minology, second order: it deals with numbers and sets of numbers. Nowadays
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it is usual to call the first-order axiomatic arithmetic Peano arithmetic; this
terminology was probably introduced by Tarski (personal communication by
G.H. Mύller). Whitehead and Russell published their Principia mathematica
in 1908; the book also includes a foπnalization of arithmetic.

Hubert formulated his programme as follows: unsere ύblichen Methoden
der Mathematik samt und sonders ah widerspruchsfrei zu erkennen (to show
that our usual methods of mathematics are free from contradictions in their
whole). [Hilbert-Bernays 34, Zur Einleitung]. This should have been shown
by unitary methods forming a proper part of arithmetic [ibid., p. 42], GόdePs
famous incompleteness results [Gδdel 31] showed Hubert's program in its
original formulation to be unrealistic (even if Hubert denies this in his Ein-
leitung); but it has remained an important source of inspiration for proof
theory, see [Kreisel 68]. Related work from the thirties by Tarski (undefin-
ability of truth in arithmetic), Church (undecidability of arithmetic) and
Rosser (elimination of the assumption of α -consistency) is well known. In
modern texts these results are proved using the well-known diagonalization
(or self-reference) lemma, which is already implicit in GδdeΓs proof. This
lemma first appeared explicitly in [Carnap 34], but, surprisingly, it was ne-
glected by many authors for a long time. Feferman's paper [Feferman 60]
is a fundamental paper for modern study of arithmetization of metamathe-
matics. But it is also necessary to mention Volume II of Hubert-Bernays's
monograph [Hilbert-Bernays 39], containing a detailed exposition of arithme-
tization including the arithmetized completeness theorem. Early results fol-
lowing Feferman's Arithmetization were obtained by Montague, Shepherdson
and others. In the sixties, Feferman and Montague worked on a monograph
devoted to the arithmetization of metamathematics, but unfortunately the
book has never been finished. [Smoryήski 81-fifty] is a very readable survey
of the development of self-reference.

Non-standard models of arithmetic were first constructed by Skolem
[Skolem 34]; in present terms, he used the method of definable ultrapower.
In 1952 Ryll-Nardzewski proved that Peano arithmetic PA (first order!) is
not finitely axiomatizable. Specker and McDowell showed in 1959 that each
(countable) model of PA has an elementary end-extension. Rabin [61] showed
that PA is not axiomatizable by any axiom system of bounded quantifier
complexity. Further important results were obtained by Friedman, Gaifman
and Paris in the early seventies. [Smoryήski 82] is a very readable treatise of
development of model theory of arithmetic (up to the early eighties).

A result of fundamental importance was obtained by Paris in 1977: he
found an arithmetical statement with a clear combinatorial meaning which is
true but unprovable in PA; moreover, he was able to show the unprovability
by model-theoretical means, without any use of self-reference. His proof used
a new method, called the method of indicators, developed by Paris and Kirby.
Harrington found an elegant reformulation of Paris's statement; his reformu-
lation is a strengthening of the finite Ramsey's theorem on homogeneous sets



Introduction 3

[Paris-Harrington 77]. This was followed by many papers by various authors,
among them McAloon, Kotlarski, Murawski.

Later Paris and his students (Kirby, Clote, Kaye, Dimitrocopulos and oth-
ers) turned to the study of fragments of PA. We shall rely substantially on
their work. The first four chapters of the book deal mainly with fragments
containing at least induction for Σ\-formulas. At present let us only say that
in such theories we may freely construct recursive functions using primitive
recursion. The fifth chapter deals with bounded arithmetic. Parikh seems to
have been the first to study bounded arithmetic [Parikh]. He suggested inves-
tigating induction for bounded formulas since they are easily decidable (e.g.
in linear space). This was developed significantly by Paris, Wilkie and Paris's
students. The relation to complexity theory has been known from the begin-
ning of the investigation of bounded arithmetic. Buss's dissertation, which
later appeared as a book [Buss 86, Bounded ar.], was a further important
impulse. Buss contributed both in finding new connections with complexity
theory and in applying proof-theoretical methods. There are various later
results; the reader will find such results here.

The aim of our study of the metamathematics of first-order arithmetic is
to give the reader a deeper understanding of the role of the axiom schema of
induction and of the phenomenon of incompleteness. In Part A, we develop
important parts of mathematics and logic in various fragments of first order
arithmetic. The main means are by coding of finite sets, arithmetization of
logical syntax and semantics and through a version of Kδnig's lemma called
the Low basis theorem.

Part B is devoted to incompleteness. Our main question reads: what more
can we say about systems of arithmetic than that they are all incomplete?
There are at least four directions in which the answer may be looked for:

(1) For each formula φ improvable and non-refutable in an arithmetic T
we may ask, how conservative it is over T, i.e. for which formulas φ the
provability of φ in (T + φ) implies the provability of φ in T.

(2) We may further ask if (T + φ) is interpretable in T, i.e. whether the
notions of T may be redefined in T in such a way that for the new notions
all axioms of (T + φ) are provable in T.

(3) Given T we may look for natural sentences true but improvable in T
(for example, various combinatorial principles).

(4) Moreover, we may investigate models of T and look at how they
visualize our syntactic notions and features.

Bounded arithmetic is studied in Part C. Various results of Part A are
strengthened by showing that constructions done in stronger fragments are
possible in some systems of bounded arithmetic and how. For bounded arith-
metic we ask, besides questions (l)-(4), also the following:
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(5) What is the relationship between provability in fragments and complex-
ity of computation? One of the most important goals (presently inaccessible)
is to show independence of some open problems of complexity theory from
some fragments.

Details on the structure of the book are apparent from the table of con-
tents.




