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"... the central notions of model
theory are absolute, and absoluteness,
unlike cardinality, is a logical
concept."

G. Sacks, from
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Chapter V

The Recursion Theory of Σx Predicates
on Admissible Sets

There are many equivalent definitions of the class of recursive functions on the
natural numbers. Different definitions have different uses while the equivalence
of all the notions provides evidence for Church's thesis, the thesis that the con-
cept of recursive function is the most reasonable explication of our intuitive
notion of effectively calculable function.

As the various definitions are lifted to domains other than the integers (e. g.,
admissible sets) some of the equivalences break down. This break-down provides
us with a laboratory for the study of recursion theory. By studying the notions
in the general setting one sees with a clearer eye the truths behind the results
on the integers.

The most dramatic breakdown results in two competing notions of r.e. on
admissible sets, notions which happen to coincide on countable admissible sets.
We refer to these as the syntactic and semantic notions of r.e. and study the former
in this chapter. The semantic notion is discussed in Chapter VIII.

1. Satisfaction and Parametrization

In view of Theorem II.2.3 (which shows that r.e. on ω is just Σ! on IHF ) it is
natural to ask oneself what properties of r.e. and recursive lift up to Σ1 and Δ^
on an arbitrary admissible set. Luckily, the more important results, results like
Kleene's Enumeration and Second Recursion Theorem, lift to completely arbi-
trary admissible sets.

1.1 Definition. Let A be admissible and let R be a relation on A.
(i) R is A-r.e. if R is Σ^ on A.

(ii) R is ^-recursive if R is Δ^ on A.
(Hi) jR is A-finite if RE A.
(iv) A function / with domain and range subsets of A is ^-recursive if its

graph is A-r.e.
If A = L(α) then we refer to these notions as α-r.e., en-recursive and α-finite,
respectively.
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As in ordinary ω-recursion theory, a total A-recursive function will have an
A-recursive graph.

The first result of ω-recursion theory we want to generalize is Kleene's
Enumeration Theorem.

1.2 Definition. Let S be a collection of n-ary relations on some set X. Let Y ̂  X.
An n + l-ary relation T on X parametrizes S (with indices from Y) if S consists
of all relations of the form

as e ranges over Y.

1.3 Theorem. Let A = (9JΪ; A,e,...) be an admissible set. There is an A-r.e. rela-
tion Tn which parametrizes the class of n-ary A-r.e. relations, with indices from A.

To prove this theorem we make use of our earlier formalization in KPU of
syntax and semantics. The proof is more important than the theorem itself.

There is a systematic ambiguity which has served us well until now. We have
been using φ,ψ,... to range over formulas of our metalanguage L* as well as
over formulas of formalized languages. We must avoid this confusion in this
section.

Let L* = L(e,...) be fixed and finite. For simplicity we assume L* has only
relation symbols. The extension to the general case is sketched in the exercises.
We consider L* here as a single sorted language with variables x l 5x2,... and
unary symbols U (for "urelement") and S (for "set"). Let /* be some effective
coding of L* in HF. For basic symbols like R we let ΓFΓ be the set in HF which
names R. For definiteness we take ι;II =

 Γχπ"
1 = <0,n>. To each formula φ of L*

there corresponds its formalized version Γφ"1, an element of /*ω^HF, defined
by recursion equations

and so forth.
Define, in KPU, an operation 9lfl on sets a by: 9lfl is a structure for /* with

universe TC(α) which interprets the symbols of /* as follows:

Symbol Interpretation
ΓIΓ {plpeTC(α)}
ΓSΊ {b\beΎC(a)}
Γe^ {<x,);>|x,yeTC(α),xej;}

Clearly 9ϊα is a Σί operation of a. Recall the notation φ(a} from § 1.4.
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1.4 Lemma. For each formula φ(x^...,xn) of L* the following is a theorem of
KPU: for all sets a and all x l9...,xneTC(α), if s = {<ι; ί,x ί>|z = l,...,n} then

φ^ ,̂. ..,*„) iff 5lβNV[s].

Proof. For φ atomic this follows from the definition of 9ΐα. The result follows
by induction on formulas. D

1.5 Definition. Let Σ-Satπ be the following Σί formula of L* with variables

3>,xι,...,xπ:

"y is a Σ formula of /* with free variables among vl,...,vn and there is a
transitive set a with xί9...9xnea such that

where s = «ι; ί,x f>|z = !,...,«}".

That this can be expressed by a £x formula follows from the results in § III.l.

1.6 Proposition. Let φ(xl,...,xn) be aΣ formula of L*. The following is a theorem
of KPU: for all xί9...9xn9

φ(xί9...9xj iff Σ-Satn(
Γφ(xi,...,xn)~],x1,...,xn).

Proof. Assume the axioms of KPU. The following are equivalent:

3α3s[Tran(«)Λx1,...,xneαΛ^l f l^
Γφ"1[5], where s = {<t;ί,xί>|ί = l,...,w}]

Σ-SatnO
π,xl9...,xJ.

The first two lines are equivalent by Σ Reflection, the middle two by Lemma 1.4
and the last two by the definition of Σ-Sat,,. D

Define Tn(e,xi,...,xn) to be the Σ^ formula:

66 e is an ordered pair <ι/^,z> and Σ-Satn+1(^,x1,...,xn,z)".

Proof of Theorem 1.3. Since Tn is Σί any predicate defined by

R(xί9...9xJ iff Tn(e9xί9...,xJ

is A-r.e. To prove the converse, let R be an n-ary A-r.e. predicate. By using
ordered pairs it has a Σ^ definition on A with exactly one parameter z, say

...,x iff
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Then let e = O(x1,...,xπ + 1Γ,z> and apply 1.6. D

1.7 Corollary. Let A be admissible. There is an A-r.e. set which is not A-recursive.

Proof. Just as for ω-recursion theory define

If A — K were A-r.e. there would be an e0 such that for all eeA, eφK iff
7^(e0,e), and hence e0φK iff e0eK. D

Let 9Jΐ = <M> be an infinite set with no additional relations. Note that if
X^M is HYP^-r.e. then X is HYP^-finite since by II.9.3, X or M-X is
finite. Thus Corollary 1.7 cannot in general be improved to get a A-r.e. subset
of 9K which is not A-recursive.

1.8—1.10 Exercises

1.8. Suppose L* = L(e,f,...) has a function symbol f. Show that under the stand-
ard treatment of function symbols as relation symbols, Δ0 formulas transform
into both Σ and Π formulas (but not necessarily into Δ0 formulas). Hence Σj
formulas transform into Σ formulas.

1.9. Let L* be a finite language with function symbols. Define Σ-Satπ for L* in
such a way that 1.6 and hence 1.3 become provable.

1.10. Find an admissible set A^ such that the class of A^-r.e. subsets of 9JΪ
cannot be parametrized by an A^-r.e. binary relation with indices from M.

2. The Second Recursion Theorem for KPU

The Second Recursion Theorem in ω-recursion theory is a mysterious device
for implicitly defining recursive partial functions, or equivalently, r.e. predicates.
The theorem is equally mysterious and equally useful in our setting.

Let L* = L(e,...) be a finite language (as in §1) and let R be a new π-ary
relation symbol, n^ί.

2.1 Definition. The collection of R-positίve formulas of L*(R) is the smallest class
of formulas containing all formulas of L*, all atomic formulas of L*(R), and
closed under

Λ , v, Vwei;, 3weι;, V w , 3u
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for all variables u, υ. We use the notation

to indicate that φ is an R-positive formula.
Given a formula φ(R) of L*(R) and a formula ψ(xί9...9xj of L* we use the

notations

φ ( λ x ί 9 . . . 9 x n ι / / ( x ί 9 . . . 9 x n ) )

more or less interchangeably to denote the formula resulting by replacing
each occurrence of an atomic formula of the form R(ί1?...,ίπ) in φ(R) by
Ψ ( t ι / x ί 9 . . . 9 t j x n ) (unless some ίf is not free for xt in ψ in which case we must
first rename bound variables in ψ9 but then we agreed in Chapter I not to men-
tion such details). Thus x1?...,xn do not occur free in φ(φ/R) (unless they are
free in φ(R)\ and R does not occur in φ(ψ/R).

2.2 Lemma. // φ(R+) is a Σ formula of L*(R) and if φ(xl,...,xn) is a Σ formula
of L* then φ(φ/R) is a Σ formula of L*.

Proof. By induction on the class of R-positive formulas φ(R+). D

2.3 The Second Recursion Theorem. Let φ(x9y9R+) be an R-positive Σ formula
where R is n-ary, x = xί9...9xn and 3^ = 3^1,...,^. There is a Σ formula ψ(x9y) of
L* so that the following is a theorem of KPU: for all parameters y and all xί9...9xn

ψ(xί9...9xn9y) iff φ(xl9...9xn9y9λxί9...9xn\l/(xl9...9xn9y)).

Proof. To simplify notation we assume n = k = i. Let Θ(x9y9z) be the Σ formula

φ(x9y9λxΣ-Sat3(z9x9y9z)).

Let e = Γθ(x,y,zγeMF and let \l/(x9y) be θ(x,y,e)9 or rather, the Σ formula
equivalent to it obtained by replacing the constant e by a good Σx definition of e.
Then we have, in KPU, that the following are equivalent:

θ(x,y,e)

φ(x9y9λxΣ-Sat3(e9x9y9e))

φ(x,y,λxθ(x,y,e))

φ(x,y9λxψ(x9y)). D
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Since any Σ formula is equivalent, in KPU, to a Σί formula, we could have
demanded that the φ of 2.3 be Σx.

We give a simple application of the Second Recursion Theorem. In any
admissible set A^, HF is an AOT-recursive subset since

ae HF iff sp(α) = 0 Λ (rk(α) is a natural number) .

HF^, however, is not always Δ: definable. (The student can find an example of
this in Exercise 2.6.)

2.4 Proposition. There is a Σ1 formula φ(x) such that in any admissible set Am,

Proof. Let R be unary and let <p(x, R + ) be the Σ formula

(x is a finite set) Λ V yex (if y is a set then

Now apply the Second Recursion Theorem to get a formula φ such that

KPU\-φ(x) <-»(x is a finite set Λ V y e x (y is a set-+φ(y)) .

Now let AW be admissible. A trivial proof by induction on e shows that

αeΉFan iff ATOl=^[α]

for all aεAm. D

2.5 — 2.6 Exercises

2.5. Show that a formula φ(R) is logically equivalent to an R-positive formula
iff the result of pushing negations inside φ as far as possible (using de Morgan's
laws) results in a formula in which — i R does not occur.

2.6. Let $R be a recursively saturated model of Peano arithmetic, KP or ZF. Show
that IHF^ is not HYP^-recursive.

3. Recursion Along Well-founded Relations

In this section we use the Second Recursion Theorem to give a new principle of
definition by recursion along well-founded relations. This serves as a useful
warm-up exercise in the use of the Second Recursion Theorem.
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3.1 Theorem. Let A=AS[rί be admissible, let p be an A-recursive function and
define a binary relation -< by

*<y Iff χep(y)

for all yedom(p).

(i) The well-founded part of •<, i^/«), is A-r.e.
(ii) // G is a total k + 2-ary A-recursive function then there is an A-recursive

F with

such that

for all ze(MvA)k and all x

Proof. Recall that Ί^/K) is the largest subset B of Field «) such that:

, yeB implies xeB, and

< Γ B2 is well founded .

There is such a largest set by II.8.2. Note that pred(x)^ yγ«) implies x
Part (i) of the theorem follows from part (ii) but we need (i) in the proof of (ii).
Besides, (i) is an easy example of the use of the Second Recursion Theorem.

Define a Σί formula ^(x,α) such that

(1) \l/(x,<x) iff 3z(z=p(x)ΛVyεzlβ<aψ(y,β))

is a theorem of KPU and hence true in A. Since this is only our second use of
the Second Recursion Theorem, perhaps we should be a bit more explicit. Let
η(x,z) define the graph of p; η may have some other parameters which remain
fixed throughout (the /s of the Second Recursion Theorem). Let R be a new
binary relation symbol and let φ(x,α, R + ) be the Σ formula

of L*(R). Note that R does indeed occur positively in this formula. Now apply
the Second Recursion Theorem to get ψ satisfying (1). We will never again be
this explicit; rather we'll just write an equation like (1) and leave it to the reader
to see that the right-hand side is of the appropriate form. Now given ,̂ one proves,
for αeA,

(2) ANι^(x,α) implies X
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by a simple induction on α, using (1). A little less trivial is

(3) xeiT/K) implies

Assume x6^/«). Since Wf(O<^ Field «), p(x) is defined. We may assume
by induction (-< \ i^/«) is well founded so induction over it is legitimate) that
for each yep(x)

and hence

so by Σ Reflection there is an αeA with

Combining (2), (3) we have

= {χeA| AN3αι/φc,α)}

which makes i^/«) an A-r.e. set.
To prove (ii) we use the Second Recursion Theorem again. We want to define

the graph of F by a Σί formula ι/^(z,x,w). Let us suppress the parameters since
they are held fixed throughout. We want

ιA(*,w) iff

iff x

The Second Recursion Theorem gives us a Σ{ ψ so that

^(x,w) iff xe^7(-<)Λ 3/[/ /s α function Λ

is true in A for all x, w. Using Σ Replacement one shows by induction on -< [
that

xe^y«) implies Al=3!w^(x,w)

so we may use ^(x, w) as a definition of an A-recursive F. One then checks that F
satisfies the desired equation, again by induction on •< \ Wf«\ D
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3.2 Definition. Let -< be a binary relation with nonempty wellfounded part.
Define the ~<-rank function p<,(or xeW/(-<), by

Define the rank of -<, /o«), by

3.3 Corollary. Let A be an admissible set with -< an element of A and α=o(A).
(i) p«)<α.

(ii) // ^(-OeA (/or example, if -< is we// founded) then
(iii) // ^/K)eA then

Proof. To apply Theorem 3.1 define an A -recursive function p by

(This is the reason we assumed -<eA.) Then the definition

falls under 3.1 (ii) so always gives values in A. This proves (i).

If ^/(-<)6A then we may use Σ Replacement to form

in A. This gives (ii). To prove (iii), suppose p(^<) = βeA, and let us prove
. For y<β let

be defined by Σ Recursion for y < β. But then

is in A by Σ Replacement. D

While the most useful results of ω-recursion theory lift to an arbitrary ad-
missible set, many of the more pleasing facts of recursion theoretic life on ω carry
over only to special admissible sets. In particular, there are many results of re-
cursion theory which use the effective well-ordering of the domain in an essential
way.

3.4 Definition. Let A=(9M;,4,e, ...) be an admissible set with α = o(A). A is
recursively listed if there is an A-recursive bijection of α onto M u A.
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Lemma II.2.4 shows that HF is recursively listed. We will study the recursion
theory of recursively listed admissible sets in the next section. They are related
to this section by means of the following result.

3.5 Proposition. A is recursively listed iff there is a total A recursίve function
p such that

iff χ

defines a well-ordering •< of M u A.

Proof. Suppose e:α-»A is an A-recursive enumeration of M u A. Note that
e~l is A-recursive. Define p(y)={e(β)\β<e~l(y)} and note that xep(y) iff

Now suppose p is given as above. Note that, by 3.1, p< is an A-recursive
function. Since -< is a linear ordering, p< is one-one so we can let e be the inverse
of p<. By Σ Replacement, p< has range α so e has domain α. D

Recall the definition of L(α) given (in KPU) in II. 5.

L(0) = 0

) = y α < λ L(α) for λ a limit ordinal

where

We have shown that if α is admissible then L(α) is the smallest admissible set A
with o(A) = α. There is a natural well-ordering of L(α) given by putting everything
in L(β) before everything in L(δ) for β<δ and ordering the elements a of L(/? + l)
— L(jβ) according to which ^t(x,y) = a. To make this precise define, in KPU,
a Σ! formula ψ(x,y\ which we write as x<Ly, as follows. First let

F(x) = the least α (x e L(oc + 1 ))

O if xe^(L(F(x))),

G(χ) =< the least i, i^i^N , such that x = JΓ

ί(z1,z2) for some

z 1? z2 e 5^(L(F(x))) otherwise .

2 > < α < W l > W 2 > ΐf

^LWi or

x e L(α) Λ w t = L(α) or

1 = w1 and,

Z 2 <L W 2 OΓ

z2eL(α)Λ w2 =
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Given that <L already wellorders L(α), <α wellorders the pairs zl9z2 from
y (L(α)) = L(α) u (L(α)} "lexicographically after putting L(α) itself at the end of the
alphabet".

Now define < L by

x< L y if xeL and yeL and F(x)<F(y) or

F(x) = F(y)ΛG(x)<G(y) or

F(x) = F(y) Λ G(x) = G(y) and there is a pair

zl9z2e^(L(F(x))) such that x = #Γ

G(jc)(z1,z2)

but for all w1,w2e^(L(F(x))), if .y = ̂ G(x)(wι>w2)

then <z1,z2><F ( x )<w1,w2>.

We could define <L explicitly, if we really had to, but for our purposes here we
can be content to use any such formula given by the Second Recursion Theorem.
To see that the Second Recursion Theorem applies we need only observe that,
once <α is replaced by its definition, the right-hand side is a Σ formula and that
< L occurs positively.

3.6 Lemma (of KPU). For each α, <LfL(α) x L(α) well orders L(α) in such a way
that for β < γ < α, if xe L(β\ y e L(y) - L(β) then x < Ly.

Proof. By induction on α. D

3.7 Theorem. If α is an admissible ordinal then L(α) is a recursively listed admissible
set.

Proof. Since, for x,yeL, ~ι(x<Ly) iff x = yvy<Lx, we see that < L i s Δ 1 w h e n
restricted to L. Also we can define

= {yεL\y<Lx}

for all xeL(α) so p is α-recursive, and

x<Ly iff xep(y)

so we may apply Proposition 3.5. D

3.8 — 3.11 Exercises

3.8. An admissible set Am is resolvable if there is an A^-recursive function /
with άom(f) = o(Am) such that Am = (Jrng(f).

i) Show that if A^ is resolvable then there is a function / with the above
properties which also satisfies : /(/?) is always transitive and β < y implies f(β)
Such an / is a resolution of A^.
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ii) A well-founded relation -< is a pre-wellordering if for all x, ye Field (~<\

p<(x)<ρ<(y) implies

Show that an admissible set A^ is resolvable iff there is a total A^-recursive
function p with Aan = yrng(p) such that

iff xep(y)

defines a pre-wellordering of A^.

3.9. Show that every admissible set of the form L(α,α) is resolvable. In particular,
is resolvable.

3.10. Let L(α,α) be admissible and assume that there is a well-ordering -< of a,
-< an element of L(α,α). Modify the definition of <L to show that L(α,α) is recur-
sively listed. In particular, if Λ^= <ω, +, x > and if L(α)^ is admissible then it
is recursively listed. Hence HYP^ is recursively listed.

3.11. Let A be admissible, <eA, -< not well-founded but

<is well founded" .

(In other words, every subset X of Field(-<) which happens to be an element of A
has a -<- minimal element.) Show that

4. Recursively Listed Admissible Sets

In this section we show how the elementary parts of the theory of r. e. sets gen-
eralize from ω-recursion theory to any recursively listed admissible set.

4.1 Theorem. Let A=Aα n be a recursively listed admissible set, with α = o(A),
and let B be a nonempty subset o/A. The following are equivalent:

(i) B is A-r.e.
(ii) B is the range of a total Ik-recursive function.

(iii) B is the range of an A-recursive function with domain α.

Proof. We have (iii)=>(ii) since there is an A-recursive bijection e of α onto
M u A. Clearly (ii) => (i) so we prove (i) => (iii). Let

iff
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where φ is Δ0. Fix x0eB. Define an A-recursive / by

f(β) = ί*e(β) if φ(lsie(βl2nde(β))

= x0 otherwise.

Then B = mg(f) and α = dom(/). D

4.2 Reduction Theorem. Let A=Am be a recursively listed admissible set. For
any pair B,C of A-r.e. sets there is a pair B0,C0 of disjoint A-r.e. sets with B0^B,
C0<ΞC and #0

Proof. We may assume B and C are nonempty. Use 4.1 to choose A-recursive
functions F, G with domain o(A) such that

B = rng(F), C = rng(G).

Define B0 and C0 by:

Q iff

0 iff

Then clearly B0 and C0 are disjoint A-r.e. sets with B0^B, C0^C. If xeB — C
then xeB0. If xεC-B then xeC0. If xeBnC then let j8 be the least ordinal
with F(β) = x, y the least with G(y) = x. If β^y then xe50 but if β>y then

so βuC^β 0uC 0. D

4.3 Corollary (Separation Theorem). Let A=Am be a recursively listed ad-
missible set. For any pair B,C of disjoint H^ sets on A there is an A-recursive set
containing B but disjoint from C.

Proof. Apply 4.2 to A-£, A-C to get disjoint sets B0,C0 with B^B0, C^C0,
BQ vC0 = A. Then B0 is A-recursive. D

4.4 Uniformization Theorem. Let A=Ayjl be a recursively listed admissible
set and let R be an A-r.e. binary relation. There is an A-recursive function F with

(i) άom(F) = {x\lyR(x,y)}
(ii) for xedom(F),

R(x,F(x)).

Proof. Let e be an A-recursive bijection of o(A) onto A. Let R be given by

R(x,y) iff 3zS(x,y,z)
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where S is A-recursive. Define F by

F(x) = y iff 3jS[S(x,lst^),2nde(j?))ΛV7<j8nS(x,

y = l«e(fi]. D

The passage, in 4.4, from the Σί definition of R to the Σx definition of F was
explicitly given, so we can get the following more complicated but stronger result.
For zeA we let

W2

z={(x9y)\T2(z9x,y)}

where T2 is the A-r.e. relation which parametrizes the A-r.e. binary relations,
as it was defined in § 1.

4.5 Theorem. Let A be a recursively listed admissible set. There is a total A-re-
cursive function G such that for all zeA:

(i) WQ(Z) is the graph of an A-recursive function,
(ii) W2

G(z}^Wl and
(iii)

Proof. See 4.4 and remarks following it. D

Using this we get the following analogue of Kleene's Γ-predicate for recursive
partial functions.

4.6 Theorem. Let A be a recursively listed admissible set. There is an A-r.e.
predicate T* of three arguments which parametrizes the collection of all partial
A-recursive functions, with indices from the ordinals of A.

Proof. Let e: o(A)-»A be a recursive listing and let G be as given in 4.5. Define

Tϊ(β,x,y) iff T2(G(e(β)\x,y).

Then for each β,

fβ={<χ,y>\τmχ,y)}

is a partial function with Σl graph (by 4.4i). If /= W2

Z then pick β so that e(β) = z.
Then since

by4.4,/,=/. D

4.7 Corollary. Let A be a recursively listed admissible set. There are disjoint
A-r. e. sets which cannot be separated by an A-recursive set.
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Proof. Let B,C be the disjoint A-r.e. sets defined by

B = {β\TΪ(β,β,Q)}

C = {β\TΪ(β,β,ί)}

where Γf is given in Theorem 4.6. Suppose D were an A-recursive set with B^D,
= Q. Let

g(x) = ί if

= 0 if xφD

so that g is A-recursive. Pick β so that

g(x) = y iff

If jβeD then g(β) = ί so Tf(ftft l) which implies βeC, but CnD = 0. If
then 008) = 0 so Tf (β, ft 0) which implies jSeβ, but B^D. But βeD or βφD
so we have a contradiction in either case. Thus there can be no such D. D

It is an open problem to determine whether the conclusion of 4.7 holds for
arbitrary admissible sets.

4.8—4.10 Exercises

4.8. Let SD ίί=<M,Λ1,...,JR/> be countable and suppose there is a well-ordering
of M which is Δ} on 9K. Prove the following:

(i) Let B be a Π} subset of 9M. There is a function F with domain
such that

and for each β<o(ΉYPm)

is Δ} on M. [Pick an F which is HYP^ recursive.]
(ii) (Reduction) If B,C are Π} subsets of SDΐ then there are disjoint Πj subsets

B0^B, CQ^C with £ 0uC 0=£uC.
(iii) (Separation) If J5, C are disjoint Σ} subsets of 301 then there is a Δ} set D with

(iv) (Uniformization) If R^MxM is Π} on 9W there is a Π} subrelation
Q^R such that
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If άom(R) = M then RQ is a Δj relation.

4.9. Show that for any admissible Am and any B c A^, B is A^-r. e. iff B = dom(f)
for some A^-recursive function /.

4.10. Show that if A^ is resolvable then the Reduction and Separation Theorems,
4.2 and 4.3, still hold. In particular, show that 4.8(i), (ii), (iii) hold without the
hypothesis that 9Jί has a Δ} well-ordering.

5. Notation Systems
and Projections of Recursion Theory

An important stimulus in the earlier development of admissible ordinals was the
desire to understand the analogy between Πj and r.e. sets of natural numbers.
The metarecursion theory of Kreisel-Sacks [1965] explained this by developing
a recursion theory on coj, the first nonrecursive ordinal, with the property that
a set of natural numbers in Π} on ω iff it is ω^-r.e. The theory was developed by
using a notation system for the recursive ordinals to define the notions of ω\ -re-
cursive, ωc

rr.e. and ω\ -finite.
The development by means of admissible sets proceeds the other way around.

Instead of using known facts about Π} sets to develop a recursion theory on ω\
by means of a notation system, we have a recursion theory given on ω\ (it is the
first admissible ordinal >ω; see 5.11) and then transfer the results to Π} subsets
of ω via a notation system.

5.1 Definition. Let A=Am be admissible.

(i) A notation system for A is a total A-recursive function π such that if
x^y then π(x) and π(y) are disjoint non-empty sets. (We think of π(x)
as a set of notations for x.)

(ii) The domain of a notation system π, Dπ, is defined by (!)

Oπ = \JxeA π(x). (Thus Dπ is the set of all notations.)

(iii) Associated with a notation system π is a function | |π with domain Dπ

and range A u M defined by

\y\π = x iff yεπ(x).

(Thus, for any notation y, y is a notation for \y\π.)
(iv) A is projectible into C if C is A-r.e. and there is a notation system π with
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It is best to think of the notation system as the triple Dπ, | |π, π even though the
first two can be defined in terms of the third. We require C to be A-r.e. in (iv) only
because that is the only kind of C that interests us in this context.

5.2 Lemma. Let π be a notation system for the admissible set A.

(i) π is a one-one function.
(ii) Dπ is A-r. e. but not A-finite.

(iii) The graph of | |π is an A-recursive relation. In particular, \ \π is an Ik-re-
cursive function.

Proof. The only part which is not absolutely immediate is the fact that Dπ is not
A-finite. But if DπeA then, by Σ Replacement, the range of | |π would be an ele-
ment of A whereas this range is all of Mu A. D

Our plan for this section is to first exhibit some useful notation systems and then
use them to transfer results.

5.3 Theorem.

(i) For any structure 90Ϊ, HYP^ is projectible into HF^.
(ii) For any admissible set A, HYP(A) is projectible into A.

The theorem is a simple consequence of the following lemma, an effective
version of Theorem II.5.14.

5.4 Lemma. Let L be a finite language, let 901 be a structure for L, let L* = L(e)
and let aeWm be a transitive set with M^a. Let L'= L*u {x | xeαu {a}} be the
usual language with constant symbol x for x. Let α be the least ordinal such that

is admissible and assume L is coded up on A^ in a way that makes the syntactic
operations of Lωω all A^-recursίve. There is a total Am-recursive function π such
that for each xeA^, π(x) is a set of good Σl definitions of x with parameters from
au {a}.

Proof. We already know, from Theorem Π.5.14, that each xeAm has a good Σl

definition with parameters from a\j{a}. The object here is to use the Second
Recursion Theorem to show how we can go A^-recursively from x to a set π(x)
of good Σ! definitions of x, by reexamining the proof of II.5.14. If we look back
at that proof we see that this is really pretty obvious. We write out clauses in the
definition of π. In each case it is assumed that none of the earlier cases hold.
We also arrange things so that v is the only free variable in any formula considered.

Caselne. If xeau{a} then π(x) is the set whose only member is the L'ωω

Δφ formula

v=x.
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Case 2 wo. If x = β + 1 then π(x) is the set of formulas

3w [υ = <f(w) Λ φ(w/ι;)]

where φ(v)Eπ(β) and w is the first variable not in φ(v).

Case 3hree. If π(β) is defined then π(L(a,β)) is the set of formulas of the form

3w [υ — L(a", w) Λ φ(w/v)~\

where φ(v)eπ(β). We may use "t; = L(1Γ, w)" since L( , ) is a Σx operation symbol.

Case4our. If xeL(α,β + l) — £f(L(a,β)) then π(x) is defined as follows. Find
the least ί, 1^/^Λf, such that for some y,zeL(α,/J)u (L(α,β)},

Then π(x) is the set of all formulas of the form

3wt 3w2[ι; = «^'ί(w1, w2) Λ

where, for some y,ze^(L(a,β)\ x = #r

i(y,z) and φ(v)eπ(y) and ^(ι )eπ(z) and
w l 5 w 2 are the first two distinct variables not appearing anywhere in φ or ψ. The
set of all such formulas exists by Σ Replacement. This clause in the definition of
π(x) = y is Σ, as can be seen by writing it out.

Case5ive. If β<a is a limit ordinal then π(β) is defined A^-effectively as
follows. Find the first Δ0 formula φ(x,y,zί, ...,zn) of L* (first in some effective
well-ordering of HF, say that given by Π.2.4 or 3.7 of this chapter) such that for
some rf,z1,...,zΠeL(α,j8)

(1)

but

(2)

Now given φ let Θ(β)( = θ(β,d,zί9...9zj) be formed from φ just as in the proof
of II.5.14. Let π(β) be the set of all formulas of the form

3w, w1? . . . , wn[θ(ι;, w, w1? . . . , wn) Λ ^(w/ϋ) Λ /\J= x σ/w/i;)]

such that for some rf,zl5...,zneL(0,/?), (1) and (2) hold and ψeπ(d) and, for
l^j^H, σ^i JeπίZj ). Again, this clause in the definition of π(x) = y can be seen
to be Σ and so, by the Second Recursion Theorem, π is an A^-recursive func-
tion. D
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Proof of 5.3. For (i) simply note that Lωω can be coded up on HF^ in this case.
For (ii) we can code L'ωω on Aw itself. The admissibility of A^ comes in only
in that this coding can be done on Am and is far stronger than we need. D

We will see in §VI.4 that if 501 has a "built in pairing function" then
is projectible into SR.

5.5 Corollary. Let yΓ = <ω, +,•> be the structure of the natural numbers.
is projectible into Ji* .

Proof. The simplest proof is just to observe that in this case the coding used in
the proof of 5.3 (i) can be done on yΓ itself. An alternate explicit proof will appear
in §VL4. D

We now give some examples of the use of notation systems. Combined with
5.5 and the results of §IV.3, the next two results show that, over Jf, the Π} rela-
tions are parameterized by a Π} relation, that there are Πj sets which are not
Δj, and that there are Δ{ sets which are not first order definable over ΛΛ

5.6 Theorem. Let A be an admissible set which is projectible into C.
(i) For n^i there is an (n + l)-ary A-r.e. relation S on C which parametrizes

the class of all n-ary relations on C which are A-r.e.
(ii) There is subset of C which is A-r. e. but not Ik-recursive.

Proof, (ii) follows from (i) just as in the proof of 1.7. To prove (i) let π be a notation
system for A with Dπ^C. Let Tn be the (rc + l)-ary relation on A which para-
metrizes the n-ary A-r. e. relations. Define

S(y,xί9...,xn) iff xί9...9xneC9 yεDκ and

S is A-r.e. since C and Dπ are A-r.e. and | |π is A-recursive. Now let R^Cn be
A-r. e. Pick a z such that

«(*!,. ..,*„) iff Tα(z,xl9...,xJ.

Then for any yeπ(z)9

R(xl9...,xJ iff %,*!,...,*„). D

5.7 Theorem. Let A be an admissible set with o(A)>ω. Let 91 = <7V,...> be a
structure (for a language K) which is an element of A and suppose that A is projec-
tible into N.

(i) There is an A-recursive (n + i)-ary relation S on N which parametrizes
the n-ary relations on 91 which are first order definable over 91 (using parameters).

(ii) There is a subset of 91 which is A-recursive but not first order definable
over 91.



172 V. The Recursion Theory of Σt Predicates on Admissible Sets

Proof. As usual (ii) follows from (i) by diagonalization. To prove (i) define

SoCy>Xι» - >xn) iff y = (φ>sy where φ(vί9 ..., vn,wί9 ..., wm) is a formula of
Kωω and 5 is an assignment with values in 91, 5(1;.) = ̂ . all iXn, and

S0 is clearly Δ t on A. Since o(A)>ω the set Jf of all relevant pairs <φ,s> is an
element of A. Let π be the notation system for A with Dπ^N. Define

S(z,x1?. ..,*„) iff

Since XeA, the quantifier on y is bounded so S is indeed A-recursive. It clearly
parametrizes the relations definable over 9ί. D

We now turn to a result, Theorem 5.9, which will allow us to identify
A notation system π is unίvalent if each π(x) is a singleton, that is, if it assigns a
unique notation to each xeA.

5.8 Proposition, (i) Let A be a recursively listed admissible set projectible into C.
There is a univalent notation system which projects A into C.

(ii) HYP^ has a univalent notation system which projects into Jf .

Proof, (i) If π projects A into C then define π l 5 the univalent notation system, by

πιM = {y} where y is the first member of π(x) .

Part (ii) follows from (i) and 3.10. D

5.9 Theorem. Let A be an admissible set which is projectible into C.

I -< is a well-founded relation, -< c C2, -< e A}
ί5 β pre-wellordering, -< c C2, -< eA} .

// ίfeere is α univalent notation system projecting A wίo C f/iew

a well-ordering, <^C2,

Proof. Every well-founded relation -<eA has p(-<)<o(A) by 3.3 (ii) so we need
only show that each jSeA is of the form p(<) for some pre-wellordering
•< ̂ C2. Let π be a notation system projecting A into C. Let b = \Jrng(π\
Now b^Dπ^C and bis the set of all notations for ordinals y<β. Define <<^bxb
by

iff W π <!y | π .

Then •< is a pre-wellordering of fc of length β and it is a well-ordering if π happens
to be univalent. D
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5.10 Corollary. O(Jf} = {p«}\< is a Δ} well-ordering, <^N

Proof. The first equality is immediate 5.9, 5.10 and §IV.3. The second follows
from the first and the result from ordinary recursion theory that every Δ j well-
ordering of Jf has order type some α<ωc

t. D

The reader unfamiliar with the result used in the above proof can take

ωι — \P«}\< is a A} well-ordering, •< <^Jf x JV*}

as the definition of ω\.

5.11 Corollary. ω\ is the first admissible ordinal greater than ω.

Proof. ω\ is admissible by 5.10. Let α be the least admissible >ω so that L(α)
is admissible and ω\ ^α. But if ω\ >α then α is the order type of some Δ} well-
ordering < of yΓ and hence of some Δ} well-ordering -< of ω. But then -<eL(α)
by §IV.3 which contradicts 3.3 (ii). D

5.12—5.13 Exercises

5.12. For any 9W = <M,Λ 1,...,R /> show that

0(2)1) = {ρ«)\< is a pre-wellordering, <eHYPOT, -<^IHF^}.

5.13. Let A be a recursively listed admissible set. Show that there is a single-
valued notation system with domain o(A). Hence the recursion theory of A can
be transfered to o(A).

5.14 Notes. Notation systems are standard tools in ordinal recursion theory
but don't seem to have been treated systematically before over arbitrary admis-
sible sets. The definitions used above are stronger than those of Moschovakis
[1974]. In the case where A is projectible into some CeA (the only case of
interest to Moschovakis) they are equivalent.

Corollary 5.11 is due to Kripke and Platek, but with more complicated proofs.

6. Ordinal Recursion Theory:
Projectible and Recursively Inaccessible Ordinals

In the final sections of this chapter we return to the origins of the theory of ad-
missible sets, recursion theory on admissible ordinals. We are thus in the domain
of admissible sets without urelements.
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Let τβ be the βih admissible ordinal; that is, let

τ0=co,

τβ = least α [α is admissible Λ α > τy for all y < /?] .

In this section we begin looking at the sequence of admissible ordinals and the
relationships between various members of it.

6.1 Definition. An admissible ordinal α is projectible into β (where β^α) if there
is a total α-recursive function mapping α one-one into β. The least β such that α
is projectible into β is called the projectum of α and is denoted by α*. If α*<α
then α is said to be projectible; otherwise α is nonproj edible.

If α is admissible then L(α) is recursively listed so we see that α is projectible
into β in the sense of 6.1 iff L(α) is projectible into β in the sense of 5.1 (iv). Similarly,
if β is also admissible then α is projectible into β (in the sense of 6.1) iff L(α) is
projectible into L(β) (in the sense of 5.1(iv)).

6.2 Proposition

(i) If κ^ω is a cardinal then K is nonproj edible.
(ii) For any β,τβ + ± is projectible into τβ.

(iii) // τβ is projectible into τy nnd τy is projectible into δ then τβ is projectible
into δ.

Proof, (i) is obvious by cardinality considerations since otherwise K would have
the same cardinality as some β<κ. For (ii), note that L(τβ+i) = ΉYP(L(τβ))
so L(τ0+ J is projectible into L(τ^) by 5.3. Part (iii) is obvious. We simply compose
projections. D

From this proposition we see that there are many projectible ordinals. We
also see that τ*=ω for all rc = 0,l,2, ... .

As we mentioned at the beginning of this chapter, one use of generalized
recursion theory is as a laboratory for understanding ordinary recursion theory.
One important aspect of ordinary recursion theory is the number of different
versions of the notion of finite that arise. For examples, a set B^ω is finite iff
any one of the following hold: B is recursive and bounded, B is R.E. and bounded,
or B is bounded. By defining a set £^L(α) to be α-finite if £eL(α) we have
chosen to use the first. This means that when we meet some use of a different
version of "finite" in ordinary recursion theory we may have trouble lifting this
to α-recursion theory. The following theorem shows us that if α is projectible
then there are going to be α-r.e. subsets of ordinals β<α which are not α-finite.
Thus, for projectible ordinals we may expect some aspects of ordinary recursion
theory to become more subtle. This is particularly true in the study of α-degrees,
a subject not treated in this book.
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6.3 Theorem. Let α be admissible. The following are equivalent:
(i) α is nonprojectίble.

(ii) L(oc)\=Σ1 Separation.
(iii) // β <α and B is an α-r. e. subset of β then B is a- finite.

Proof. We first prove (i)=>(ii). Suppose B^aεLfa) and B is Σj definable on L(α).
We wish to prove BeL(α). Pick β0<oί such that αeL(j80); hence B<^L(β0).
The recursive listing / of L(α) given by < L puts everything in L(/?0) before every-
thing in L(α) — L(/?0). If we show that the set

C = {γ\f(y)εB}

is an element of L(α), then £eL(α) by Σ Replacement. But C^β^ for some
βl<a. Use 4.1 to pick an α-recursive function G mapping α onto C and define
H by Σ Recursion as follows :

H(β) = G(least y [G(y) φ (H(δ) \ δ < /?}]) .

Now H is α-recursive, one-one, and is defined on some initial segment of α. It
cannot be defined for all β<α, however, for this would give a projection of α
into βι<(x and α is nonprojectible. Let β2 be the least ordinal for which H is not
defined. The only reason H(β2) can be undefined is that

C = {H(β)\β<β2}

so that CeL(α) by Σ Replacement.
The implication (ii)=>(iii) is trivial. We prove (iii)=>(i) by contraposition.

Thus, let p: α-»β be an α-recursive one-one mapping of α into β, β«x, and let
B = rng(p). Then B is α-r.e., B^β but B cannot be α-finite, since

and p"1 is α-recursive. D

6.4 Corollary. // α is projectible into β then there is an α-r. e. subset of β which is
not α- finite. D

6.5 Corollary. // α is nonprojectible then L(u)\=Beta.

Proof. L(α)l=Σ1 Separation, and Σ1 Separation implies Beta. D

6.6 Corollary. Let K be an uncountable cardinal. For every β<κ there is a non-
projectible α between β and K.

Proof. L(κ)^=Σ1 Separation, so apply Theorem II.3.3 with Am

The resulting admissible set satisfies the axiom V = L (i. e. Vx L(x)) and so is L(α)
for some α<τc. Since L(α)ΞL(κ;), L(oί)\=Σ1 Separation and hence α is non-
projectible. D
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Now that we know there are lots of nonprojectible ordinals we can ask how
big the first one is. So far, all we know is that it is bigger than τn for each n<ω.
Is it τω? To shed some light on the size of the first nonprojectible we introduce the
recursively inaccessible ordinals.

6.7 Definition. An admissible ordinal α is recursively inaccessible if α is the least
upper bound of all admissibles less than α.

6.8 Theorem. // α is nonprojectible and greater than ω then α is recursively in-
accessible.

Proof. Assume that α is admissible, α>ω but that the ordinal

β = sup (y < α I y is admissible}

is less than α. We will prove that α is projectible into β. Let e: α->L(α) be the re-
cursive listing of L(oc) given by <L. Since β is a sup of admissible ordinals, e\ β
is the canonical listing of L(β) by ordinals < β. Thus, if L(α) were projectible into
L(β), then it would be projectible into β and so α would be projectible with α* ̂  β.
But L(α) is the smallest admissible set with L(β) as an element, i. e. L(α) = HYP(L(β))
so L(α) is projectible into L(β) by Lemma 5.4. D

If we combine Theorem 6.8 with the next result we see that the first non-
projectible is fairly large, much larger than τω.

6.9 Theorem. // τα is recursively inaccessible then τα = α, and conversely.

We isolate part of the proof of 6.9 which will be used again.

6.10 Lemma. Define G(β) = τβ for β<a. Then G is a τ^-recursive function.

Proof. The result is literally trivial if α = 0. For α>0 we can define G by

G(0)=ω,

for j8<α. Since KP is an ω-recursive set of axioms, it is in L(τα) so this is a Σ Re-
cursive definition of G. D

Proof of 6.9. Note first that τα^α for all α, by induction. Suppose τα = α. Then
for each β < τα, β ̂  τβ < τα so τα is the sup of all smaller admissibles. Now suppose
τα is recursively inaccessible, but that τα > α. Note that α is a limit ordinal, since
τβ+i can never be recursively inaccessible. Let G be as in Lemma 6.10 and observe
that
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But this is a contradiction, for G is τα-recursive and hence the right-hand side of
this equality is in L(τα) by Σ Replacement. D

We see, by 6.9, that none of the following are recursively inaccesible and,
hence, all are projectible:

What are their projectums? We will show in the next section that all are projectible
into ω by showing that projectums are always admissible.

The interest in projectums stems largely from the following property which
is quite useful in priority arguments involving α-degrees.

6.11 Theorem. Let α be admissible and let α* be its projectum. If B is a-r.e., B^β
for some β<α*, then B is a- finite.

Proof. The proof is like the proof of (i) => (ii) in Theorem 6.3. Define an α-recursive
function F by

.e.

F(y) = yίh member of B

F(γ) = G (least δ(G(δ) φ (F(ξ) \ ξ < γ } ) )

where G maps α onto B. Now, since β < α*, F cannot be a one-one mapping of α
into β. Thus F(y) is undefined for some y<α. If y0 is the least such then
B = {F(γ):γ<γ0} so £eL(α) by Σ Replacement. D

To prove stronger facts about nonprojectible ordinals we need to use the
notion of stable ordinal introduced in the next section.

6.12 Exercise. Let α be a limit of admissibles. Prove that L(α)t=Beta even if
α is not admissible. This is an improvement of 6.5.

6.13 Notes. The concepts and results of this section are all due to Kripke and
Platek. The student interested in the uses of the projectum in the study of α-degrees
should consult Simpson's excellent survey article, Simpson [1974].

7. Ordinal Recursion Theory: Stability

Given structures l̂
and every x !,..., x

^ ,̂ we write

iff

if fore very Σ t formula < p ( v i 9 . . . , v n )



178 V. The Recursion Theory of Σt Predicates on Admissible Sets

7.1 Definition. An ordinal α is stable if L^-^L. The sequence of stable ordinals
is defined by

σ0 = the least stable ordinal,

σy =the least stable ordinal greater than each σβ for β<y .

The first theorem shows that there are lots of stable ordinals and that they are
better behaved under sups than the admissible ordinals.

7.2 Theorem, (i) If λ>0 is a limit ordinal then σλ = sup{σβ\β<λ}.
(ii) Every uncountable cardinal is stable.

(iii) // ω ̂  β < K, where K is a cardinal, then there is a stable ordinal α, β < α < K.
(iv) // K is a cardinal then κ = σκ.

Proof. To prove (i) let λ>0 be a limit. Since σλ^sup{σβ\β<λ} by definition,
it suffices to prove that the ordinal

y = sup{σβ\β<λ}

is stable. Let φ be a Σl formula, let x l 5 ..., xneL(y) and suppose

Pick β<λ such that xl9...,xneL(σβ). Then l^(σβ)\=φ[_xl,...9xn\ by stability,
and then L(y)l=<p[x1,...,xπ] by persistence of Σ: formulas. (What we are really
proving here is that the union 9Ϊ = UJJ<A9Ϊ^ of a chain of -<: -extensions 31^ is a
-< ! -extension of each 21 .̂)

Now let κ>ω be a cardinal and suppose that xί9 ..., xneL(κ) and that

Ll= 3)̂  [>!,..., xj

where ψ is Δ0. We need to see that L(κ ) satisfies the same formula. But, for large
enough cardinal A,

so, by Π.3.5,

and so there is an α</c such that L(α)t=3^^[xl5 ..., xn~] and hence
I4κ)t=3yιl/\_xί9 ...,xw], as desired.

To prove (iii) we apply Theorem II.3.3. Note that we need only prove the result
for K regular since every singular K is a limit of regular cardinals. Let a0 =
Given απ apply II.3.3 to get an admissible set B such that

card(απ) = card(B) < K ,

L(/c)Nφ[3c] iff
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for every formula φ and every x1?...,xπ6L(απ). Now since lB = L(κ\ B = L(γ)
for some admissible y<κ and we let απ + 1 be this y. Let α = supπ<ω απ<τc. We
claim that α is stable; i.e., that L(α)-<1L. It suffices to prove that L(α)-<1L(κ;)
since K is stable. Let φ be Σ1 and L(κ)N=φ[Λ:1,...,xπ], where x1,...,xπeL(α).
Pick k<ω so that x1 ?..., xπeL(αk). Then Lία^+^Nφ^j,...,^] by choice
of α f c + 1 and then L(a)t=(p[x l5..., xj by persistence of Σx formulas.

Part (iv) follows from (i) and (iii). In fact, if / is any continuous increasing
function on the ordinals such that for all cardinals κ>ω, /(α)<κ; implies
/(α + l)<κ;, one always has for all κ>ω, f(κ) = κ. First assume K is regular
and consider the set B of β such that f(β) <κ. Bis an initial segment of the ordinals
and has no largest element so B is a limit ordinal λ. But then, by continuity,

but f(λ)<£κ since λ φB so f(λ) = κ. Since /c is regular, λ = κ. Now for singular
K the result follows by continuity since every singular K is the sup of regular
cardinals. For if κ = supβ<yλβ, where the λβ are regular, then f(κ) = supβ<γf(λβ)

λ = κ. D

There is a useful relative notion of stability.

7.3 Definition. An ordinal α is β-stable if α^β and

Since we have allowed a = β there is always at least one jS-stable ordinal.

7.4 Proposition, (i) // α^jδ^y flnd α is γ-stable then α is β-stable.
(ii) // α is β-stable and β is γ-stable then α is y-stable.

(iii) // β is stable and a<β then α is stable iff α is β-stable.
(iv) // B is a nonempty set of β-stable ordinals and α = supJ5 then α is β-stable.

Proof. These are all simple consequences of the definition and the persistence
of Σ! formulas. D

7.5 Theorem. // a<β and α is β-stable then α is admissible. In particular, every
stable ordinal is admissible.

Proof. Suppose α</J and l.(y)^^(β). Note that since the operations ̂ ^ ...9&N

all have Δ0 graphs, and for x,yeL(α),

we have
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so L(α) is closed under the operations J^, ..., <FN. Thus L(α), in addition to being
transitive, is closed under pair and union and satisfies Δ0 separation. It remains to
check Δ0 Collection. Suppose

L(α) N Vx E a 3y φ(x, y, z)

where φ is Δ0 and α,zeL(α). Then, letting 5 = L(α)eL(β), we have

U(β)\=Vxea3yebφ(x9y,z)

so
Eb φ(x, y, z)

and so, by L^

y,z). D

7.6 Corollary, (i) // β is admissible, α<β and α is β-stable then α is recursively
inaccessible.

(ii) Every stable ordinal is recursively inaccessible.

Proof, (i) Let β = τy and u = τδ where δ^a and δ<γ. We need to see that
δ = x. Suppose (5<α. Then L(/?)N=3x[x = τJ, so, by Lemma 6. 10, and L^^L^S),
L(α)t= 3x[x = τj (one needs to observe that no parameters occur in the definition
of G in 6.10) from which we have τδeL(α), which is ridiculous since a = τδ and
α<£L(α). Part (ii) follows from (i). D

The definition of α is β-stable appears to be model theoretic until one reformu-
lates it as follows: If / is a ^-recursive function then whenever x l 5 ...,xπeL(α),
if /(x1? ...,xj is defined then /(x1? ...,xπ)eL(α). This reformulation suggests
a way of generating the β-stable and the stable ordinals. First, however, a lemma.

Notice that we did not assume 21̂  ̂  end S^ in the definition of $lan<ι3?9i.
We are going to apply the notion to a case where we do not know, ahead of time,
that this holds.

7.7 Lemma (Tarski Criterion for ^J. If 9ITOc$Bw then &&<&* iff the fol-
lowing condition holds for every Δ0 formula φ(v1,...,vn) and every xί9 . . . , x Λ _ 1

then there is an xnetyim such that

Proof. ^ίαu-<ιSί« clearly implies the condition. To prove the converse, one first
uses the criterion to prove

«»l=^[x1,...,xB] iff 93<^<AI>ι?. •-,*„]
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for all Δ0 formulas ψ and all *!,..., xΛ62IOT, by induction on ψ. The atomic
cases hold by Wm c 33 ,̂ the propositional connectives take care of themsevles
and the criterion gets us past bounded quantifiers. Now suppose 3vnφ(vί9 ...,vn)
is a Σ! formula, xί9 ...,xn_^G^im. If <St9Ji^=3vnφ[xl9...9xn,ί] then there is an
xnεMm such that Mmt=<p[xi9...,xn-i9xn~] so &9iϊ=φ[x1,...,xn-ί,xn]9 since φ
is Δ0, and hence

The proof of the converse first uses the criterion to pick xne*Άm and then applies
the result for Δ0 formulas. D

We now come to the main theorem on the generation of stable ordinals. The
proof is rather amusing since we use the Collapsing Lemma to collapse a set that
is already transitive.

7.8 Theorem. Let β be an admissible ordinal and let Q^γ<β. Let A be the set of
those aeL(β) for which there is a Σ1 definition of a in L(β) using parameters <y
(Σj definable as elements in the sense of II. 5. 13). Let α be the least ordinal not in A.
Then

(i) A = L(ct\ and
(ii) α is the least β-stable ordinal ^ y.

Proof. It is not transparent that A is even transitive, let alone admissible. The first
step in the proof is to show

(1) (Λen^XXLlAe).

We use the Tarski Criterion. Suppose L(β)\=^yφ[a^ . ..,#„], where aί9...,aneA.
We need to find a beA such that L(β)\=φ\_a^...,an,b~].

Since each ateA is Σ: definable by a formula with parameters <y, we may
replace each ai by its definition and assume all the parameters are ordinals < y,
except that φ now becomes Σί instead of Δ0. Write φ as 3z\l/(vί9 ..., vm9y,z), so
that L(β) \= 3y 3z ψ( λ ί9...9 λm,y,z\ where λί,...,λm<γ. Let b = l*\c) where c
is the least pair <y,z> in L(β) (least under the ordering <L) such that
L(β)\=\//(λl9...9λm,y,z). Then b is Σ{ definable in L(β) with parameters λί9...,λm

so beA and L(β)\=φ(a1,...,an,b). Which proves (1).
Let B = clpse(,4) so that B is transitive, and

Let τ be the least ordinal not in B and note that τ^β since there is an embedding
of τ into β. We claim that

(2) βci
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The predicate (of x and δ)

xeL(δ)

is Δ! in KP so we can find a Σl formula equivalent to it in KP:

xeL(<5) iff lyθ(x,δ,y)

where θ is Δ0. Now pick any xeB. We will show that xeL(δ) for some δ^τ.
Write x as cA(a) for some at A. Since A^L(β) there is an ordinal λ<β such
that αeL(Λ). By (1), A is a .model of

Iλ9yθ(a9λ9y).

Hence B is a model of

but then x really is in L(δ) for some (5e£, proving (2).
Next we prove that

(3) A=B.

To prove this it suffices to prove that cA(ά) = a for all aeA. Since y^A, cA(λ) = λ
for all λ<γ. Let αeA be Σ1 definable in L(β) by the Σ! formula φ(x,λ^...,λn)
where λl9...,λn<γ,

If we can prove that l4β)^=φ[cA(a)9λl9 ...,/iJ then we will have a = cA(a). But
from (1) it follows that (A9enA2yt=φ[a,λl9...,λn~]9 so BNφ[cx(fl),cx(λ !),..., c^ΛJ],
As we mentioned, c^i) = Λ>; so B\=φ[cA(a)9λί9...9λn~]. By (2), B^L(β) so
L(β) 1= φ [cx(α), Λ l 5 . . . , Aπ] by persistence of φ. This proves A = B.

Since £ is transitive and B^ L(jβ), it follows that B is admissible and that
B = L(τ). But of course τ = α so y4=β = L(α). Thus α is j8-stable. Since 7^^4,
y^α. If γ^a'^β and α' is also β-stable then every element of A must be in L(α')
so α ̂  α'. Hence α is the least jS-stable ordinal ^ y. D

7.9 Corollary. The stable ordinals are generated as follows.
(i) σ0 = {α|α is Σί definable in L without parameters},

L(σ0) = {xeL|x is Σ^ definable in L without parameters}*,
(ii) σy+ 1 = {α|α is Σ1 definable in L wiί/i parameters =ζσy},

L(σ);+1) = {xeL|x is Σj definable in L wiί/i parameters ^σy};
(iii) // A is a limit ordinal then
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Proof. For (i) apply 7.8 with β = ω^ y =0. For (ii) apply 7.8 with β equal to some
cardinal > σγ and the y of 7.8 equal to σy + 1. Part (iii) is just a restatement of part
of 7.2 included for completeness. D

We will study σ0 in some depth in the next section and give a classical de-
scription of it. Part (i) of the next theorem will play a crucial role.

7.10 Theorem, (i) σ0 is projectible into ω.
(ii) σy+1 is projectible into σr

(iii) // λ is a limit ordinal then σλ is nonprojectible.

Proof. Let's dispose of (iii) first since it's fairly trivial. We prove that

L(σλ)\=Σ1 Separation

and then apply Theorem 6.3 to see that σλ is nonprojectible. Let 0eL(σΛ), let
φ be Σx and form the set

Pick γ<λ large enough that a and the parameters in φ are members of L(σy).
Then, by IXσ^-^IXσJ, we have

so beL(σλ) by Δ Separation.
Now for (i). The idea is that we want to assign to each α<σ0 some Σί de-

finition of α, thus projecting σ0 into HF. The trouble is that

is not a σ0-r. e. predicate of the formula φ. To get around this we use the Uni-
formization Theorem, Theorem 4.4.

Recall the Σ1 formula Σ-Ssit1(z,y) from § 1. Let F be given by 4.4 so that F is
σ0-recursive,

) = {ψ(x)\ψ(x) is a Σ! formula Λ L(σ0) ϊ= 3y \l/(y}}

^"z is Σ! Λ

and for each ψ(x)edom(F), L(σ0)ϊ=ψ(F(ψ)). Now whenever a is Σx definable
there is a ψ such that

so F(ψ) = a. We may project L(σ0) into HF by

π(a) = least Σx formula ψ such that F(ψ) = a,
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where by least we mean in some well-ordering of ΉF as given in II.2.4. The proof
for (ii) is similar, using Σ-Sat3 instead of Σ-Sat1? once we observe that every
αeL(σy + 1) is definable by a formula

with foeL(σ) and no other parameters, by just using b to code a finite sequence
of ordinals. Now apply Uniformization to get a σ y + 1 -recursive F such that

is Σ and

and, if F(ι/φc,y,z),b) is defined then

Then define

π(α) = least pair <^,fc> such that F(ψ,b) = a .

This π projects L(σy+1) into L(σy). Since L(σy) is recursively listed, this amounts
to projecting L(σy+i) into σr D

The use of Uniformization in 7.10 is very typical of more advanced work in L.
We also use it to prove the next result.

7.11 Theorem. Let β be an admissible ordinal whose projectum β* is not ω. Then
β* is the limit of smaller β-stable ordinals. Hence β* is β-stable and admissible.

Before proving 7.11 we state some of its consequences.

7.12 Corollary. // α>ω is nonprojectible then α is the limit of smaller a-stable
ordinals. D

Next we present the result promised at the end of the last section.

7.13 Corollary. For any admissible ordinal α, α* is admissible and nonprojectible.

Proof. By 7.11, α* is admissible if α*>ω. But if α*=ω it is also admissible.
Nonprojectibility is obvious. D

Thus, if α is an admissible ordinal less than the first nonprojectible then
α*— ω. We saw that the first nonprojectible ordinal was recursively inaccessible.
We can iterate this result using 7.11. We give only a sample result which shows
that the first nonprojectible is much larger than the first recursively inaccessible.

7.14 Corollary. Let pβ be the βth recursively inaccessible ordinal. If α is nonpro-
jectible and α>ω then a = p0ί.
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Proof. Assume that α*=α but that a = pγ for some y<α. Apply 7.12 to find
an α-stable ordinal λ,y<λ<a. The predicate

y < α and y is recursively inaccessible

is α-recursive since it holds iff

y is admissible Λ Vx < y 3τ <λ (x < τ Λ τ is admissible) .

Define H(x) = px for x<y. Then H is α-recursive and

so

L(λ)\=Vx<yly(H(x) = y)

since λ is α-stable. But this is ridiculous for λ itself is recursively inaccessible by
7.6, so λ = H(x) for some x<y. D

Some authors refer to ordinals α such that α = pα as being recursively hyper-
inaccessible.

We now return to prove Theorem 7.11.

7.15 Lemma (Π2-reίlection). Let α>ω be admissible and let Vx3yφ(x,y) be a
sentence which holds in L(α), where φ is Δ0. Then for every y<α there is a λ,

u such that

Proof. Let y^Λ 0 <α where all parameters in φ are members of L(Λ0). Let λn+ί

be the least ordinal such that for all xeL(/LM) there is a yeL(λn+l) such that
φ(x,y). There is such a λn+1 by Σ Reflection. The sequence (λn:n«x>y is α-
recursive so

is less than α. D

Proo/ o/ Theorem 7.11. For several years all that was known about the projectum
β* of an admissible ordinal was that

(4) β* is admissible or the limit of admissibles .

For suppose β*<β but that there is an admissible ordinal τy such that
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But by Theorem 6.8 (and its proof) τy is projectible into supδ<yτδ and hence so is β,
contradicting the definition of /ϊ*.

For the purposes of this proof we call an ordinal γ nice if <JL(y) x L(y) has
order type y so that the function enumerating L, definable in KP, maps y onto
L(y). We know that every admissible ordinal is nice. The only point of proving (4)
was to prove that

(5) if ω^ξ<β* then there is a nice limit ordinal y, ζ^y<β* .

If β* is admissible, this follows by Π2 Reflection. If β* is the limit of admissibles
we pick y to be an admissible.

We are now ready to prove that if ω ̂  y < β* then there is a j?-stable α, y ̂  α < β*.
By (5) it suffices to prove this for nice y. Let α be the least /J-stable ordinal ^y.
Now L(α) is the set of αeL(jS) definable by Σ t formulas with parameters <y.
Since y is nice, though, we can code all these parameters into one so that

L(α) = {αeL(β) | for some Σl formula φ(vί9υ2) and some ξ<y, L(β)

As in Theorem 7.10, let F be a β-recursive function uniformizing Σ-Sat2. Note
that Σ-Sat2 and hence the graph of F are j8-r.e. definable by Σl formulas without
parameters. Thus

L(α) = rng(Fr(ΉFxy)).

Since y is nice we can identify HF x y with y and apply Theorem 6.11 to see that
dom(Ff(lHFxy))eL(β) since it is, essentially, a β-r.e. subset of y<jδ*. But if the
domain of a β-recursive function is in L(β), so is its range, so L(α)eL(/J). That is,
α<β. We need to see that α<β*. Suppose β*tζtt. The inverse of Ff(HFxy)
maps L(α) into y so we could then project L(β) into y, contradicting the definition
of β*. Thus α < β* so we have proven that β* is the sup of smaller β-stable ordinals.
Thus β* is itself ^-stable and admissible. D

7.16 — 7.25 Exercises

7.16. Prove that every stable ordinal is the limit of smaller nonprojectible ordinals.
In particular, the first nonprojectible ordinal is less than the first stable ordinal,
even though the first stable ordinal is projectible into ω.

7.17. Compute σ*. [Hint: <τ* + 1=ω.]

7.18 (Jensen). Show that α is admissible iff α is a limit ordinal and L(α) satisfies
Δ! Separation.

7.19. Prove the converse of Lemma 7.15. That is show that a limit ordinal α is
admissible and >ω iff every Π2 sentence Vx1yφ(x,y,z) true in L(α) is true in
L(jβ) for arbitrarily large β<α.
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7.20. Let α be admissible, α>ω. An ordinal β<α is an en-cardinal if there is no
/e L(α) mapping β one-one into an ordinal y < β.

(i) Show that if α* (the projectum of α) is <α then α* is an α-cardinal.
(ii) Prove that every α-cardinal κ>ω (if there are any) is α-stable. [Show

that the proof of 7.2 (ii) can be effectivized so as to hold inside L(α).]
(iii) Prove that if K is an α-cardinal > ω and y<κ then there is an α-stable

ordinal β,γ<β<κ. [Modify the proof of 7.1 1.]

7.21. Suppose α is admissible and ω<α*<α. Show that any α-r.e. subset of
some L(β), for /?<α*, is α*-finite, not just α-finite as stated in 6.11. [Use 7.11.]

7.22. Assume that there is an α such that L(α) is a model of ZF. Show that the least
such α is less than σ0.

7.23. Let A^lBvn be countable, admissible sets and suppose that A^ is Bw-
stable; i.e., that

Let T be a theory of LB which is definable over by a Σj formula with parameters
from Am. Show that if every T0 ̂  T with Γ0e Aw has a model then T has a model.
[Use the Extended Completeness Theorem.]

7.24. Let Am be countable, admissible. Show that the following are equivalent:
(i) AaR<1HYP(AαR);

(ii) Am is Π} reflecting; i.e. if Φ(v) is a Π} formula and A^NΦfx], then
there is an admissible set A^eA^ such that A^NΦ[x]. In particular, if a<ω1

then τα is τα+1-stable iff L^J is Π} reflecting. [Use the Completeness Theorem.]

7.25. An admissible ordinal α is recursively Mahlo if every α-recursive closed
unbounded subset of α contains an admissible ordinal. (This is the "effective
version" of the definition of Mahlo cardinal. See Chapter VIII.)

(i) Prove that if α is recursively Mahlo then it is recursively inaccessible,
recursively hyperinaccessible, etc.

(ii) Prove that if α is the limit of smaller α-stable ordinals then α is recursively
Mahlo.

(iii) Prove that if α is nonprojectible then it is recursively Mahlo.

7.26 Notes. The stability of uncountable cardinals is due to Takeuti [I960].
The concepts and other results in 7.1 — 7.10 are due to Kripke and Platek, indepen-
dently. Theorem 7.11 (and hence 7.12, 7.13, 7.20, 7.21) are due to Kripke. The
student interested in further similar results should study Jensen's theory of the
fine structure of L as presented, for example, in Devlin [1973]. Exercise 7.23
appears in Barwise [1969]. Exercise 7.24 is due to Aczel-Richter [1973] and,
in an absolute form, to Moschovakis [1974]. Exercise 7.25 goes back to Kripke
and Platek.
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Putting admissible ordinals α > ω in their place.

Cardinal >ω

i
stable (i.e.,

I
limit of smaller
nonprojectibles

nonprojectible (iff Lαl=Σ1 Separation)

recursively Mahlo
I

I
recursively hyper-hyper-inaccessible

I
recursively hyper-inaccessible (i. e. α = pα)

I
recursively inaccessible (i. e. α = τα)

1
admissible

Notes:

1. No arrows are missing.
2. No arrows reverse.
3. The first stable ordinal σ0 is projectible into ω; the β + 1st stable ordinal σβ+ί

is projectible into σβ.
4. For /I a limit, σΛ is nonprojectible.
5. If α is projectible then its projectum α* is admissible and nonprojectible.
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8. Shoenfield's Absoluteness Lemma
and the First Stable Ordinal

In § 5 we saw that the first admissible ordinal τ t >ω is the least ordinal not the
order type of a Δ} well-ordering of HF and that a set X^ HF is τ^r.e. iff X is
Π{ on HF. In this section we prove an analogous result for the first stable ordinal

σ0.
A relation R on HF is Σ2 if it can be defined by a second order formula of the

form 3St VS2φ, where φ is first order:

R(x) iff <HF,6>I=3S1 VS2φ(x, S1,S2).

If the complement HFπ-β of R is Σ2, then R is said to be Π2. If R is both Σ2

and Π2 then R is Δ^.
At first glance the step from Δ} to Δ2 seems a small one. We will show, however,

that it is an enormous jump, taking us from τ± past the first recursively inaccessible,
past the first nonprojectible all the way to σ0, the first stable ordinal. The precise
statement is contained in Corollary 8.3 below. The main step in the proof is the
following theorem, known as the Shoenfield-Levy Absoluteness Lemma.

8.1 Theorem. Any Σ! sentence without parameters true in V is true in L.

Warning: this does not say that L< jV because parameters are not permitted.
Some extensions with parameters are discussed in the exercises.

We defer the proof of 8.1 to the end of the section (Corollary 8.11) since it
leads away from our chief concern.

8.2 Theorem. Let σ0 be the first stable ordinal and let R be a relation on HF.
(i) R is Σ\ on <HF,e> iff R is σ0-r.e.

(ii) R is Δ* on <HF,e> iff #eL(σ0).

Proof. As usual, (ii) follows from (i). We first prove the (<=) half of (i). Let R be Σx

on L(σ0). We know that L^-^L by the definition of σ0 and that every xeL(σ0)
is Σ! definable (as an element) in L by a formula without parameters (by 7.9).
It follows that every xeL(σ0) is Σ1 definable in L(σ0) by a Σl formula without
parameters. Thus any parameters in a Σ1 definition of the relation .R can be
eliminated so we may assume that

R(x) iff L(σ0)\=3yφ(x,y)

where φ is Δ0 and contains no parameters. But then we claim that

(1) R(x) iff 3α[α admissible Λ L

The proof of (=>) in (1) is trivial since we can let α = σ0. The other half (<=) of (1)
follows from L(σ0)<1L for L(α)t= 3yφ(x,y) implies Lϊ=3yφ(x,y) and hence
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L(σ0)\='Byφ(x9y) by stability. Using (1), it is not too difficult to rewrite R to be
Σ£ over <HF,e>. Namely, R(x) holds iff <ΉF,e> satisfies

(2) 3E,F[<IHF,£>NKP + V = L Λ £ is well founded ΛF is an isomorphism
of <HF,£> onto an initial submodel of <HF,£> Λ <HF,E>*=3;yφ(F(x),;y)]

since any such <HF,£> is isomorphic to L(α) for some admissible α. By the
techniques of IV.2, everything inside the brackets is Δ} in e,F,F except the con-
dition

E is well founded.

But this is Π} by the very definition:

Hence the whole of (2) has the form

3E,F[— ]

where [---] is Π} so (2) is Σj. (If you insist, you can always collapse the two existen-
tial second order quantifiers to one.)

To prove the other half of (i), let R c HF be Σ^ over <HF,e>, say

R(x) iff <HF,e>N3S1VS2φ(x,S1,S2).

For each relation S1 on <HF,e>, let σ(Si) be the infinitary sentence

Thus St occurs in σ(Sί).
We claim that R(x) holds iff L(σ0) is a model of

(3) aS^Pp^HFΛP isaproofof(σ(Si)-+φ(x9Sl9S2))']9

which will show that R is Σί over L(σ0). To show this, first suppose R(x) holds.
Then there is an Sx such that

(HF,e,S1)l=VS2φ(x,S1,S2)
and hence

is logically valid. It is a countable infinitary sentence, so it is provable. Hence (3)
holds in V. The only parameter in (3) is x and it is Σί definable, being in HF.
Thus (3) holds in L by 8.1 and hence in L(σ0). Thus R(x) implies L(σ0)l=(3). To
prove the converse, suppose (3) holds in L(σ0). Then there is an S1eL(σ0) such
that
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is provable, and hence, is logically valid. Thus,

so R(x) holds. D

8.3 Corollary. The first stable ordinal is the least ordinal not the order type of
some well-ordering which is Δ2 on <HF,e>.

Proof. Every Δ2 well-ordering R is in L(σ0) so its order type is less than σ0, by 3.3.
To prove the converse, recall that σ0 is projectible into ω by Corollary 7.10.

Let p be some one-one σ0-recursive map of σ0 into ω. For β<σ0 let

RP={<p(χ),p(y)>\χ<y<β}

which is in L(σ0) by Σ Replacement. But then Rp is a well-ordering of order type β
and Rβ is Δ^ by Theorem 8.2(ii). D

We can now project the recursion theory from σ0-r. e. sets of ordinals to Σ2

sets of integers using Section 5. We state some of the simplest results.

8.4 Corollary, (i) For any Σ2 subsets B,C of HF there are disjoint Σ2 sets B0,C0

with BO^B,CQ^C and BvC = B0vC0.
(ii) Any two disjoint Π2 subsets of HF can be separated by a Δ2 set.

(iii) There are disjoint Σ2 subsets of HF which cannot be separated by a Δ2 set.

Proof. These are translations and projections of results we know about σ0. D

8.5 Corollary. Every Σ2 subset of HF is constructible.

Proof. IΪR is Σ2 on HF then it is Σ1 on L(σ0) and hence an element of L(σ0 + ω). D

It follows, of course, that every Π2 subset of HF is constructible, but this is
as far as one can go. It is consistent with ZFC to assume there is a nonconstructible
Δ\ subset of HF, where Δ^ means expressible in both the forms

3S1VS23S3(— ),

VS13S2VS3(— ).

We now turn to the proof of Theorem 8.1. We need several preliminary lemmas.
A finitary formula φ(χl9 ..., xn) is an V ̂ - formula if it has the form

where ^ is quantifier-free.
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8.6 Lemma (Skolem V3 normal form). Let K be a language and let Ψ be a finite
set of formulas of Kωω. There is an expansion

L=Ku{S1,...,Sπ}

by a finite number of new relation symbols and an VB-sentence φ of Lωω with the
following properties:

(i) Every ^-structure $01 has a unique expansion W = ($01, SΊ, . . . , Sn) with Wΐ t= φ.
(ii) For each formula φ(y^ ..., yn) in Ψ there is a quantifier free formula ι/f0 of

Lωω such that

Proof. We may assume Ψ is closed under subformulas. Introduce, for each
Ψ(yι> •••> yn)

EΨ a new relation symbol S^(yif ...tyn). Let φ be the conjunction of the
universal closures of the following:

S^ι,...,yJ^ιA(yι,...,yn) if ψeΨ is atomic,
if -ΊψεΨ,
Sίl,(yί9...,yJ if
S^1,...,yπ) if

ί9...,yj if (By
Sv^yi- -^ ^J^V^S^y !,..., ym) if

Here we use yι,...,ym,...,yn to denote 3>ι> >)>m-ι) 'm+ι> ---^m if ^^^ to
denote yl,...,yniϊm>n. Now φ clearly has the desired properties. D

8.7 Corollary. Let ψ be any sentence of Kωω. There is an expansion L of K by a
finite number of new relation symbols and an \f3-sentence φ' of Lωω such that

(i) Every model $R of φ has a unique expansion to a model 9W' of ψf.
(ii) // W\=\l/' and 501 is the reduct of 501' to a ^-structure then

Proof. Let Ψ = {ψ} and apply 8.6. Let φ be as given there and let ̂ 0 be quantifier
free such that

The desired ψ' is (φ Λ ι/r0), or rather, the V3-sentence equivalent to it after one
moves the quantifiers in φ out front. D

The next lemma gives us an easy way to construct models of V3-sentences
and accounts for our sudden preoccupation with them.

8.8 Lemma. Let φ be an W3-sentence of Lωω, say

where ψ is quantifer-free. Let
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be a chain of L-structures. Suppose that for each l<ω and each x l 5 . . . ,x π 6SER / 5

IfVΛ = \Jl<ωml9 then

Proof. Trivial, since yRι + ιt=3yψ(x,y) implies yjl\=3y\//(x,y). 0

The next lemma contains the secret to proving a number of important results,
including Theorem 8.1.

8.9 Lemma. Let (X, -<> be a non-wellfounded partially ordered structure which
is constructίble (i.e. is an element of L). There is a sequence <xπ>n<ω

 m L such that

for all n<ω.

Proof. The hypothesis is that <JΓ, X>eL and that

V N < Jf , -<> is not well founded .

We claim that

(4) L |= < Jf, -<> is not well founded .

For otherwise, since Lϊ=Beta, there would be a function /eL such that
f(x)={f(y)\y<x} for all xeX. But then <X,<> really would be well founded
(see Exercise 1.9.9). Now since (4) holds, there is a nonempty X0eL, X0^X
such that

But then, using the axiom of (dependent) choice in L, there is a sequence of the
desired kind. D

8.10 Theorem (of ZF). Let φ be a finitary sentence in a language L containing e
and some other relation symbols R 1 , . . . ,R / . // φ is true in some structure
A = <y4,e,jR !,..., Rty where A is transitive, then there is a transitive structure
B — <£, e, R'ί9 . . . , R[y which is constructible and a model of φ.

Proof. We may assume that extensionality is a consequence of φ since it holds
in A. By 8.7 we may also assume that φ is V3, say

where φ(x) is
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and θ is quantifier free. Let β = rk(A). We define a non-wellfounded structure
<JΓ,OeL. The set X consits of all pairs <95,/> such that S = <5,£,K1,...,R/>
is a finite structure with B^ω, f:B-+β and xEy implies f ( x ) < f ( y ) . We define

<»ιJιX<»o,/o>

to mean that S0^S1? /0^/ι and for every xe£0,

Now the definitions of Z and -< are absolute so <X, -<>eL. We claim that

(5) <X, -<> is not well founded.

Assuming (5) for a moment, let us finish the proof of the theorem. By Lemma 8.9
there is a sequence

\^«5 Jn/n<ω

in L such that

for each w. Let 93 = 1J93Π. By Lemma 8.8, 95 \=φ. Let /=UΠ/M. Then, if
95 = <B,£,R'1,...,Rί>, then f'.B^β and x£y implies f ( x ) < f ( y ) so £ is well
founded. Now since LNBeta, there is a transitive structure BeL isomorphic
to 95. This B satisfies the conclusion of the theorem.

Now let's go back and prove (5). Let X0 be the set of those (ϊ&9f)eX such that
there is an embedding i of 23 into the original A such that

/(x) = rk(ΐ(x))

for all xεB. The set X0 is nonempty since <2I0,{<0,0>}>eX0 where 910 is the
substructure of A with universe {0}. It remains to show that X0 has no •< minimal
member. Let <930,/0>eX0 with i0:930->A the associated embedding. Let
3I0— A be isomorphic to 330

 γia *o Since

there is a finite structure 9Il5 Slo^gij c A, such that for all

Now choose 951 = <B1,£1, ...> extending 230 with β^ω so that for some
i^ extending ί0,
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Let /1(x) = rk(i1(x)) for xeBv Then <»ι,/!>^«»oJo> and <»ι >/ι>e*o 0

Theorem 8.1 is the informal version of the next result.

8.11 Corollary. For any Σ sentence φ of set theory

is a theorem of ZF.

Proof. We work in ZF. Assume φ. Then there is a transitive <X,e>N=φ. But then
by Theorem 8.10, there is a transitive <£,e>eL such that <B,e>N<p. And
<β,e>c:end<L,e> so <L,e>N</>; i.e., φ(L\ D

Some extensions of these results are sketched in the exercises.

8.12—8.20 Exercises

8.12. Show that if

<HF,e>t=3S13S2VRφ(S1,S2,R,x)

where φ is first order, then there is an Sί eL(σ0) such that

<HF,e,S1>l=3S2VRφ(S1,S2,R,x).

This is the original version of Shoenfield's Absoluteness Lemma. A proof of it
can be discovered inside the proof of Theorem 8.2.

8.13. Show that there is a Σ2 well-ordering of a subset of ω of order type σ0.

8.14. Improve 8.11 by replacing ZF by KP + Beta.

8.15. Improve Theorem 8.10 as follows. Let φ, A be as in 8.10, let β = τk(A).
Let α be the least admissible τy>β if L(τy)t=Beta, otherwise let α = τy + 1. Show
that there is a transitive model IB of φ which is an element of L(α).

8.16. Let α be a limit of admissibles. Show that any Σl sentence (without para-
meters) true in V(α) is true in L(α). [Use 8.15.]

8.17. Let T be a countable set of finitary sentences true in some transitive struc-
ture A = <A,6,JR1,Λ2, ...>. Show that there is a transitive model IB of T which
is an element of L(T) and is countable in L(T). [Hint: Modify the definition of
<Λ", •<> in the proof of 8.10 so that bigger structures take care of more of the
sentences in T.]
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8.18. Prove that the following is a theorem of ZF (by using 8.17): for each
formula φ(v)

8.19. Let α be the constructible N l 9 i.e. the ordinal which, in L, is the first un-
countable cardinal. Prove that

It is consistent with ZFC to assume α is countable. Prove that if α is countable and
if β>κ then

8.20. Let Φ be a Σ^ sentence true in some countable structure 50Ϊ. Prove that there
is an 9JleL(σ0) which satisfies Φ. If Φ is Πj you can improve this bound. How?

8.21 Notes. The original Shoenfield Absoluteness Lemma (Exercise 8.12) was
proved in Shoenfield [1961]. Theorem 8.1 appears as Theorem 43 in Levy [1965].
The proof given in this section and some of the generalizations found in the Exer-
cises appeared in Barwise-Fisher [1970], Exercise 8.16 is due to Jensen-Karp
[1972].

Theorem 8.2 and its Corollary 8.3 are due to Kripke [1963] and Platek [1965]
in the form stated here. Their content, however, goes back to Takeuti-Kino [1962].




