Part B

The Absolute Theory

“... the central notions of model
theory are absolute, and absoluteness,
unlike cardinality, is a logical
concept.”

G. Sacks, from
Saturated Model Theory






Chapter V

The Recursion Theory of £, Predicates
on Admissible Sets

There are many equivalent definitions of the class of recursive functions on the
natural numbers. Different definitions have different uses while the equivalence
of all the notions provides evidence for Church’s thesis, the thesis that the con-
cept of recursive function is the most reasonable explication of our intuitive
notion of effectively calculable function.

As the various definitions are lifted to domains other than the integers (e. g.,
admissible sets) some of the equivalences break down. This break-down provides
us with a laboratory for the study of recursion theory. By studying the notions
in the general setting one sees with a clearer eye the truths behind the results
on the integers.

The most dramatic breakdown results in two competing notions of r.e. on
admissible sets, notions which happen to coincide on countable admissible sets.
We refer to these as the syntactic and semantic notions of r.e. and study the former
in this chapter. The semantic notion is discussed in Chapter VIIL

1. Satisfaction and Parametrization

In view of Theorem I1.2.3 (which shows that r.e. on w is just £, on HF) it is
natural to ask oneself what properties of r.e. and recursive lift up to Z; and A;
on an arbitrary admissible set. Luckily, the more important results, results like
Kleene’s Enumeration and Second Recursion Theorem, lift to completely arbi-
trary admissible sets.

1.1 Definition. Let A be admissible and let R be a relation on A.

(i) Ris A-re. if Ris Z; on A.

(ii) R is A-recursive if R is A; on A.

(iii) R is A-finite if ReA.

(iv) A function f with domain and range subsets of A is A-recursive if its

graph is A-r.e.

If A=L(x) then we refer to these notions as a-r.e., a-recursive and a-finite,
respectively.
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As in ordinary w-recursion theory, a total A-recursive function will have an
A-recursive graph.

The first result of w-recursion theory we want to generalize is Kleene's
Enumeration Theorem.

1.2 Definition. Let S be a collection of n-ary relations on some set X. Let Y< X.
An n+1-ary relation T on X parametrizes S (with indices from Y ) if S consists
of all relations of the form

Se=1{(xps--r X)| T(€,X15..., X,)}
as e ranges over Y.

1.3 Theorem. Let A =(I; A,€,...) be an admissible set. There is an A-r.e. rela-
tion T, which parametrizes the class of n-ary A-r.e. relations, with indices from A.

To prove this theorem we make use of our earlier formalization in KPU of
syntax and semantics. The proof is more important than the theorem itself.

There is a systematic ambiguity which has served us well until now. We have
been using ¢, y,... to range over formulas of our metalanguage L* as well as
over formulas of formalized languages. We must avoid this confusion in this
section.

Let L*=L(e,...) be fixed and finite. For simplicity we assume L* has only
relation symbols. The extension to the general case is sketched in the exercises.
We consider L* here as a single sorted language with variables x;,x,,... and
unary symbols U (for “urelement”) and S (for “set”). Let I* be some effective
coding of L¥ in HF. For basic symbols like R we let "R™ be the set in [HF which
names R. For definiteness we take v,="x,"=<0,n). To each formula ¢ of L*
there corresponds its formalized version "¢", an element of [*¥ =IHF, defined
by recursion equations

“ony =AY
Ax, 0" =370

and so forth.
Define, in KPU, an operation 9, on sets a by: 9, is a structure for [* with
universe TC(a) which interprets the symbols of I* as follows:

Symbol Interpretation

L {p|lpeTC(a)}

'S’ {b|beTC(a)}

€ {<x,y)|x,yeTC(a), xey}

‘R” {{X1se s X € TC(Q)"| R(Xy, ..., X,)} -

Clearly R, is a X, operation of a. Recall the notation ¢ from § L.4.
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1.4 Lemma. For each formula ¢(x,,...,x,) of L* the following is a theorem of
KPU: for all sets a and all xi,...,x,eTC(a), if s={{v,x;p|i=1,...,n} then

T (x1,..,x,) iff NE="¢ [s].

Proof. For ¢ atomic this follows from the definition of 9,. The result follows
by induction on formulas. 0

1.5 Definition. Let X-Sat, be the following X, formula of L* with variables
Vs XipeeerXp:

“y is a X formula of I* with free variables among v,,...,v, and there is a
transitive set a with x,,...,x,€a such that

N, =yls]

where s={{v,x>|i=1,...,n}".

That this can be expressed by a %, formula follows from the results in § III.1.

1.6 Proposition. Let ¢(x,,...,x,) be a £ formula of L¥. The following is a theorem
of KPU: for all x,...,x,,

O(Xg5ees X)) B Z-Sat,(T@(Xgsenes X)) s Xseens Xp)-

Proof. Assume the axioms of KPU. The following are equivalent:

O(X15--0rXp)

3a[Tran(a) A xq,...,x,€a A Q9(xy,...,X,)]

3a Is [Tran(a) A xy,...,x,€a A R,="¢" [s], where s={<v,xp|i=1,...,n}]
2-Sat, ("7, X1, .5 X,)-

The first two lines are equivalent by ¥ Reflection, the middle two by Lemma 1.4
and the last two by the definition of X-Sat,. [

Define T,(e, x,,...,x,) to be the X, formula:
“e is an ordered pair {y,z» and Z-Sat,,,(¥,x,,...,X,,2) .
Proof of Theorem 1.3. Since T, is X, any predicate defined by
R(xy,...,x,) iff T(e,xi,...,x,)

is A-re. To prove the converse, let R be an n-ary A-re. predicate. By using
ordered pairs it has a Z; definition on A with exactly one parameter z, say

R(xy,....,x,) iff A=Ey(xy,....x,,2).
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Then let e={"Y(x,,...,x,4,)",z) and apply 1.6. [
1.7 Corollary. Let A be admissible. There is an A-r.e. set which is not A-recursive.
Proof. Just as for w-recursion theory define
K={ecA|A=T(e,e)}.

If A—K were A-re. there would be an e, such that for all ecA, e¢K iff
Ti(ey,e), and hence e ¢ K iff eqeK. 0

Let M=(M) be an infinite set with no additional relations. Note that if
XcM is HYPy-re. then X is HYPy-finite since by 11.9.3, X or M—X is
finite. Thus Corollary 1.7 cannot in general be improved to get a A-r.e. subset
of M which is not A-recursive.

1.8—1.10 Exercises

1.8. Suppose L*=L(e,f,...) has a function symbol f. Show that under the stand-
ard treatment of function symbols as relation symbols, A, formulas transform
into both ¥ and IT formulas (but not necessarily into A, formulas). Hence X,
formulas transform into X formulas.

1.9. Let L* be a finite language with function symbols. Define X-Sat, for L* in
such a way that 1.6 and hence 1.3 become provable.

1.10. Find an admissible set Ag, such that the class of Ag-r.e. subsets of M
cannot be parametrized by an Ag-r.e. binary relation with indices from M.

2. The Second Recursion Theorem for KPU

The Second Recursion Theorem in w-recursion theory is a mysterious device
for implicitly defining recursive partial functions, or equivalently, r.e. predicates.
The theorem is equally mysterious and equally useful in our setting.

Let L*=L(eg,...) be a finite language (as in §1) and let R be a new n-ary
relation symbol, n>1.

2.1 Definition. The collection of R-positive formulas of L*(R) is the smallest class
of formulas containing all formulas of L*, all atomic formulas of L*(R), and

closed under

A, Vv, Yuev, Juev, Yu, Ju
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for all variables u, v. We use the notation

o(R.)

to indicate that ¢ is an R-positive formula.
Given a formula ¢(R) of L*(R) and a formula ¥(x,...,x,) of L* we use the
notations

¢(Y/R)
PAX 15w Xy W(X g5ty X))

more or less interchangeably to denote the formula resulting by replacing
each 'occurrence of an atomic formula of the form R(t,,...,t,) in ¢(R) by
Y(ty/x1,...,t,/x,) (unless some t; is not free for x; in ¥ in which case we must
first rename bound variables in ¥, but then we agreed in Chapter I not to men-
tion such details). Thus x,,...,x, do not occur free in ¢()/R) (unless they are
free in ¢(R)), and R does not occur in @(/R).

2.2 Lemma. If ¢(R,) is a X formula of L*(R) and if Y(x,,...,x,) is a X formula
of L* then o(Y/R) is a T formula of L*.

Proof. By induction on the class of R-positive formulas ¢(R,). [

2.3 The Second Recursion Theorem. Let ¢(X,y,R,) be an R-positive T formula
where R is n-ary, X=x,,...,x, and y=y,,...,yy. There is a X formula Y(X,y) of
L* so that the following is a theorem of KPU: for all parameters j and all x,...,x,

Y(X5--0 X, ¥) B qo(xl,...,x,,,i,ixl,...,x,, W(Xyseees Xs 7)) -

Proof. To simplify notation we assume n=k=1. Let 6(x,y,z) be the £ formula
o(x,y,Ax E-Sat5(z,x,y,2)).

Let e="0(x,y,z)’e HF and let ¥(x,y) be 0(x,y,e), or rather, the £ formula
equivalent to it obtained by replacing the constant e by a good X, definition of e.
Then we have, in KPU, that the following are equivalent:

Y(x,)

0(x,y,e)

o(x,y,Ax Z-Sat; (e, x,y,e))
@(x,y,Ax 0(x, y,e))

@0, y,Ax Y(x,y). 0
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Since any X formula is equivalent, in KPU, to a X, formula, we could have
demanded that the y of 2.3 be X,.

We give a simple application of the Second Recursion Theorem. In any
admissible set Agy, HF is an Ag-recursive subset since

aeHF iff sp(a)=0 A (rk(a) is a natural number).

IHF g, however, is not always A, definable. (The student can find an example of
this in Exercise 2.6.)

2.4 Proposition. There is a X, formula y(x) such that in any admissible set Bqy,
HF = {ae Agy| Ay=y[al}.

Proof. Let R be unary and let ¢(x,R.) be the X formula
(x is a finite setyAVyex (if y is a set then R(y)).

Now apply the Second Recursion Theorem to get a formula y such that
KPURY(x) > (x is a finite set A Vyex (y is a set > Y(y)).

Now let Aqy, be admissible. A trivial proof by induction on € shows that
acHFgy iff AgpFyld]

for all aeAgy. [0

2.5—2.6 Exercises

2.5. Show that a formula @(R) is logically equivalent to an R-positive formula
iff the result of pushing negations inside ¢ as far as possible (using de Morgan’s
laws) results in a formula in which 1R does not occur.

2.6. Let M be a recursively saturated model of Peano arithmetic, KP or ZF. Show
that HF g, is not HY Py-recursive.

3. Recursion Along Well-founded Relations

In this section we use the Second Recursion Theorem to give a new principle of
definition by recursion along well-founded relations. This serves as a useful
warm-up exercise in the use of the Second Recursion Theorem.
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3. Recursion Along Well-founded Relations

3.1 Theorem. Let A=Ay, be admissible, let p be an MA-recursive function and
define a binary relation < by

x<y iff xep(y)

for all yedom(p).

(i) The well-founded part of <, WA), is A-r.e.
(i) If G is a total k+2-ary A-recursive function then there is an MA-recursive
F with

dom(F)=(M u A*x #A<)
such that
F(Z,x)=G(Zx,{{,F(Z,y)> | y<x})
Sor all Ze(M U A)* and all xe WH(<).
Proof. Recall that ##(<) is the largest subset B of Field (<) such that:

x<y, yeB implies xeB, and
<[ B? is well founded .

There is such a largest set by I1.8.2. Note that pred(x) = # /(<) implies xe#A(<).

Part (i) of the theorem follows from part (ii) but we need (i) in the proof of (ii).

Besides, (i) is an easy example of the use of the Second Recursion Theorem.
Define a ¥, formula ¥(x, ) such that

M Yix,a) iff 3z(z=p(x)AVyezIB<ays(y,f))

is a theorem of KPU and hence true in A. Since this is only our second use of
the Second Recursion Theorem, perhaps we should be a bit more explicit. Let
n(x,z) define the graph of p; n may have some other parameters which remain
fixed throughout (the y's of the Second Recursion Theorem). Let R be a new
binary relation symbol and let ¢(x,a, R, ) be the X formula

3z[n(x,z2) AVyezIBeaR(y,h)]

of L*(R). Note that R does indeed occur positively in this formula. Now apply
the Second Recursion Theorem to get y satisfying (1). We will never again be
this explicit; rather we'll just write an equation like (1) and leave it to the reader
to see that the right-hand side is of the appropriate form. Now given , one proves,
for aeA,

(2 AFyY(x,0) implies xe WY/ (<)
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by a simple induction on a, using (1). A little less trivial is

3) xeW /(<) implies AFEIToy(x,o).

Assume xe#/(<). Since #Y(<)<=Field(<), p(x) is defined. We may assume

by induction (<[ #7(<) is well founded so induction over it is legitimate) that
for each yep(x)

AEIBY(y.p)

and hence
A=Yyep(x)IBY(y,p),

so by X Reflection there is an aeA with
AEYyep(x)AB<ay(y.p).
By (1),
A=Y(x,a).
Combining (2), (3) we have
WHA<) = (xe A| A= T (x,0)}
which makes ##(<) an A-r.e. set.
To prove (ii) we use the Second Recursion Theorem again. We want to define

the graph of F by a X, formula /(Z,x,w). Let us suppress the parameters since
they are held fixed throughout. We want

y(x,w) iff xe#A<L)AFX)=w
iff xewA<)AAf[f=FIp(x)Aw=G(x,f)].

The Second Recursion Theorem gives us a X,/ so that

Yyx,w) iff xe#A<)AIf[fisa function A dom(f)=p(x)

AV yep)Y(y, f () Aw=G(x,[)]
is true in A for all x,w. Using ¥ Replacement one shows by induction on <[ #7(<)
that

xeWy(<) implies AEI!wi(x,w)

so we may use /(x,w) as a definition of an A-recursive F. One then checks that F
satisfies the desired equation, again by induction on <[ #A<). 0
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3.2 Definition. Let < be a binary relation with nonempty wellfounded part.
Define the <-rank function p=, for xe W /(<), by

p=(x)=sup{p~(y)+1ly<x}.
Define the rank of <, p(<), by
p(<)=sup{p=(x)+1|xe#A<)}.

3.3 Corollary. Let A be an admissible set with < an element of A and a=o0(A).
(i) p(<)<a

(i) If #A<L)eA ( for example, if < is well founded) then p(<)<a.
(ili) If #A<)eA then p(<)=ua.
Proof. To apply Theorem 3.1 define an A-recursive function p by
p(x)={yeField(<)|y<x} .
(This is the reason we assumed < eA.) Then the definition
p (x)=sup{p~(y) +1|y<x}
falls under 3.1 (ii) so always gives values in A. This proves (i).
If #A<)eA then we may use X Replacement to form
sup{p=(x)+1|xe#A<)}

in A. This gives (ii). To prove (iii), suppose p(<)=pcA, and let us prove
WH(<)eA. For y<f let

F(3)=; <, F©)U {xeField (<) px) = Uz <, FO)}
={xeField(<)|p~(x) <y}
be defined by X Recursion for y<pf. But then

W/(<) = Uy<ﬂF(y)

is in A by X Replacement. [

While the most useful results of w-recursion theory lift to an arbitrary ad-
missible set, many of the more pleasing facts of recursion theoretic life on w carry
over only to special admissible sets. In particular, there are many results of re-
cursion theory which use the effective well-ordering of the domain in an essential
way.

3.4 Definition. Let A=(IMM;A,c,...) be an admissible set with a=o0(A). A is
recursively listed if there is an A-recursive bijection of « onto M U A.
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Lemma II1.2.4 shows that HF is recursively listed. We will study the recursion
theory of recursively listed admissible sets in the next section. They are related
to this section by means of the following result.

3.5 Proposition. A is recursively listed iff there is a total M-recursive function
p such that

x<y iff xep(y)
defines a well-ordering < of MU A.

Proof. Suppose e:a—A is an A-recursive enumeration of M U A. Note that

e~ ! is A-recursive. Define p(y)={e(f)|B<e”'(y)} and note that xep(y) iff

e Yx)<e Y(y).

Now suppose p is given as above. Note that, by 3.1, p= is an A-recursive
function. Since < is a linear ordering, p~ is one-one so we can let e be the inverse
of p=. By £ Replacement, p= has range o so e has domain a. [

Recall the definition of L(x) given (in KPU) in ILS.

L(0)=0

Liz+1)=2(L(x) U {L()})

L(A)=J,<; ) for 1 a limit ordinal
where

2(b)=bu {ZF(x,y): x,yeb, 1<i<N}.

We have shown that if a is admissible then L(x) is the smallest admissible set A
with o(A)=a. There is a natural well-ordering of L(a) given by putting everything
in L(p) before everything in L(d) for f<d and ordering the elements a of L(8+1)
—L(p) according to which Z(x,y)=a. To make this precise define, in KPU,
a X, formula y(x, y), which we write as x <, as follows. First let

F(x) =the least a(xe L(x+1))
0 if xeL(L(F(x)),
G(x)=< theleast i, 1<i<N, suchthat x=%(z,,z,) for some
z1,z2,€ £ (L(F(x))) otherwise.

24,230 <lwWy, Wy if
z; < w,; or
ziel@)aw,=L(a) or
z;=w,; and,

z,< W, oOr

z,eL@)Aw,=L(a).
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Given that <; already wellorders L(x), <|, wellorders the pairs z;,z, from
S (L())=L(x)u {L(o)} “lexicographically after putting L(o) itself at the end of the
alphabet”.

Now define < by

x<py if xeL and yel and F(x)<F(y) or
F(x)=F() A G(x)<G(y) or
F(x)=F(y)A G(x)=G(y) and there is a pair
21,2,€ L (L(F(x))) such that x=%;,)(z,,22)
but for all w,,w,e L(L(F(x))), if y=Fguw,w,)
then <zy,25)TpEm Wi, Wwa) .
We could define <, explicitly, if we really had to, but for our purposes here we
can be content to use any such formula given by the Second Recursion Theorem.
To see that the Second Recursion Theorem applies we need only observe that,

once <, is replaced by its - definition, the right-hand side is a £ formula and that
< occurs positively.

3.6 Lemma (of KPU). For each a, < [L(a) x L(«) well orders L(«) in such a way
that for B<y<a, if xeL(B), yeL(y)—L(B) then x<,y.

Proof. By induction on o. 1[I

3.7 Theorem. If o is an admissible ordinal then L(a) is a recursively listed admissible
set.

Proof. Since, for x,yel, (x<py) iff x=yv y<_x, we see that <, is A; when
restricted to L. Also we can define
p(x)=1{ye L(F(x)+ )|y <px}
={yeLlly<_.x}

for all xeL(a) so p is a-recursive, and
x<py 1iff xep(y)

so we may apply Proposition 3.5. 10

3.8—3.11 Exercises

3.8. An admissible set Agy, is resolvable if there is an Ag-recursive function f
with dom(f)=o0(Agy) such that Agy=|Jrng(f).

i) Show that if Ag, is resolvable then there is a function f with the above
properties which also satisfies: f(f)is always transitiveand f <y implies f(8)ef(y).
Such an f is a resolution of Agy,.
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i) A well-founded relation < is a pre-wellordering if for all x,yeField(<),
p~(x)<p=(y) implies x<y.

Show that an admissible set Agy, is resolvable iff there is a total Agy-recursive
function p with Ag=|Jrng(p) such that

x<y iff xep(y)
defines a pre-wellordering of Agy.

39. Show that every admissible set of the form L(a, ) is resolvable. In particular,
HY Pgy is resolvable.

3.10. Let L(a,a) be admissible and assume that there is a well-ordering < of a,
< an element of L(a,a). Modify the definition of < to show that L(a,a) is recur-
sively listed. In particular, if 4 ={w, +, x> and if L(«), is admissible then it
is recursively listed. Hence HYP . is recursively listed.

3.11. Let A be admissible, <e A, < not well-founded but
A= “<is well founded” .

(In other words, every subset X of Field(<) which happens to be an element of A
has a <-minimal element.) Show that p(<)=o0(A).

4. Recursively Listed Admissible Sets

In this section we show how the elementary parts of the theory of r.e. sets gen-
eralize from w-recursion theory to any recursively listed admissible set.

4.1 Theorem. Let A=Ay, be a recursively listed admissible set, with o=o(A),
and let B be a nonempty subset of . The following are equivalent:
(i) Bis A-r.e.
(i) B is the range of a total A-recursive function.
(iii) B is the range of an A-recursive function with domain o.

Proof. We have (iii)=>(ii) since there is an A-recursive bijection e of « onto
M uU A. Clearly (ii)=(i) so we prove (i)=>(iii). Let

xeB iff AE=3Iyo(x,y)
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where ¢ is A,. Fix x,€B. Define an A-recursive f by

fB)y=1"eB) if o(1%e(p), 2" e(B))

=x, otherwise.
Then B=rng(f) and a=dom(f). 0

4.2 Reduction Theorem. Let A=Ay be a recursively listed admissible set. For
any pair B,C of A-r.e. sets there is a pair B,,C, of disjoint A-r.e. sets with By< B,
Cy=C and ByuCy=BuC.

Proof. We may assume B and C are nonempty. Use 4.1 to choose A-recursive
functions F,G with domain o(A) such that

B=rng(F), C=rng(G).
Define B, and C, by:

xeB, iff AB[F(B)=xAVy<BG(y)#x]
xeC, iff J[G(y)=xAVBLyF(B)#x]

Then clearly B, and C, are disjoint A-r.e. sets with By=B, C,=C. If xeB—C
then xeB,. If xeC—B then xeC, If xeBnC then let  be the least ordinal
with F(f)=x, y the least with G(y)=x. If f<y then xeB, but if f>y then
xeCy so BUCSB,uC, [

4.3 Corollary (Separation Theorem). Let A =~Agy be a recursively listed ad-
missible set. For any pair B,C of disjoint T1, sets on A there is an A-recursive set
containing B but disjoint from C.

Proof. Apply 42to A—B, A—C to get disjoint sets By, C, with B B,, C<C,,
B,uCy=A. Then B, is A-recursive. [

4.4 Uniformization Theorem. Let A=Agy be a recursively listed admissible
set and let R be an A-r.e. binary relation. There is an A-recursive function F with
(i) dom(F)={x|3yR(x,y)}
(i1) for xedom(F),
R(x, F(x)) .

Proof. Let e be an A-recursive bijection of o(A) onto A. Let R be given by

R(x,y) iff 3zS(x,y,z)
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where S is A-recursive. Define F by

F(x)=y iff 3B[S(x,1"e(B),2"e(B) A V7 <B T1S(x,1%e(y), 2" e(y)) A
y=1%e(p)]. 0
The passage, in 4.4, from the X, definition of R to the ¥, definition of F was

explicitly given, so we can get the following more complicated but stronger result.
For zeA we let

W2 ={(x, )| Ty(zx,)}

where T, is the A-r.e. relation which parametrizes the A-r.e. binary relations,
as it was defined in § 1.

4.5 Theorem. Let A be a recursively listed admissible set. There is a total A-re-
cursive function G such that for all ze A:

(i) Wi, is the graph of an A-recursive function,
(i) W= W?, and
(iii) dom(W?2)=dom(W¢,,)).
Proof. See 4.4 and remarks following it. 0

Using this we get the following analogue of Kleene’s T-predicate for recursive
partial functions.

4.6 Theorem. Let A be a recursively listed admissible set. There is an A-r.e.
predicate T% of three arguments which parametrizes the collection of all partial
A-recursive functions, with indices from the ordinals of A.
Proof. Let e:o(A)—A be a recursive listing and let G be as given in 4.5. Define
T3(B,x,y) iff Ty(Gle()),x,y).
Then for each S,
fp={<X,Y>| T’f(ﬁ,an)}

is a partial function with X, graph (by 4.4i). If f=W? then pick f so that e()=z.
Then since

WG(z)=Wz
by 4.4, fﬂ=f. 1]

4.7 Corollary. Let A be a recursively listed admissible set. There are disjoint
A-r.e. sets which cannot be separated by an A-recursive set.
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Proof. Let B,C be the disjoint A-r.e. sets defined by

B={B| T%(B,B,0)}
C={BIT3(8.5.1)}

where T% is given in Theorem 4.6. Suppose D were an A-recursive set with BS D,
CnD=0. Let

gix)=1 if xeD
=0 if x¢D

so that g is A-recursive. Pick f so that
gx)=y iff T3(B,x,y).

If feD then g(B)=1 so T%(B,B,1) which implies feC, but CnD=0. If f¢D
then g(8)=0 so T%(B,B,0) which implies feB, but B€D. But feD or f¢D
so we have a contradiction in either case. Thus there can be no such D. [

It is an open problem to determine whether the conclusion of 4.7 holds for
arbitrary admissible sets.
4.8—4.10 Exercises

4.8. Let M=<(M,R,,...,R,> be countable and suppose there is a well-ordering
of M which is A{ on M. Prove the following:

(i) Let B be a IT} subset of M. There is a function F with domain o(HY Pgy)
such that

B= Ua <o(MYP,R)F(°‘)
and for each f<o(HY Pg,)
Ua < ﬂF(a)
is A} on M. [Pick an F which is HY Py, recursive. ]
(ii) (Reduction) If B,C are I} subsets of M then there are disjoint I} subsets
BogB, COEC Wlth B0UC0=BUC.
(iii) (Separation) If B,C are disjoint £} subsets of 9t then there isa A} set D with
BcsC, CnD=0.

(iv) (Uniformization) If REM xM is I1} on M there is a I1! subrelation
R, <R such that

dom(R,)=dom(R)
xedom(Ry)=>3!yR(x,y).
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If dom(R)=M then R, is a A} relation.

4.9. Show that for any admissible Ay, and any BS Agy, Bis Ag-r.e. iff B=dom(f)
for some Ag-recursive function f.

4.10. Show that if Ay, is resolvable then the Reduction and Separation Theorems,
4.2 and 4.3, still hold. In particular, show that 4.8(i), (ii), (iii) hold without the
hypothesis that M has a A} well-ordering.

5. Notation Systems
and Projections of Recursion Theory

An important stimulus in the earlier development of admissible ordinals was the
desire to understand the analogy between I1} and r.e. sets of natural numbers.
The metarecursion theory of Kreisel-Sacks [1965] explained this by developing
a recursion theory on wg, the first nonrecursive ordinal, with the property that
a set of natural numbers in I1{ on w iff it is w$-r.e. The theory was developed by
using a notation system for the recursive ordinals to define the notions of w¢-re-
cursive, w-r.e. and wi-finite.

The development by means of admissible sets proceeds the other way around.
Instead of using known facts about IT} sets to develop a recursion theory on
by means of a notation system, we have a recursion theory given on f (it is the

first admissible ordinal > w; see 5.11) and then transfer the results to I} subsets
of w via a notation system.

5.1 Definition. Let A=Ay, be admissible.

(i) A notation system for A is a total A-recursive function n such that if
x#y then n(x) and =n(y) are disjoint non-empty sets. (We think of 7n(x)
as a set of notations for x.)

(ii) The domain of a notation system =, D, is defined by (!)

D,=Jscsmx). (Thus D, is the set of all notations.)

(iii) Associated with a notation system = is a function |-|, with domain D,
and range AU M defined by

yl.=x iff yemn(x).
(Thus, for any notation y, y is a notation for |y|,.)

(iv) A is projectible into C if C is A-r.e. and there is a notation system n with
D.c=C.
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It is best to think of the notation system as the triple D, ||, @ even though the
first two can be defined in terms of the third. We require C to be A-r.e. in (iv) only
because that is the only kind of C that interests us in this context.

5.2 Lemma. Let n be a notation system for the admissible set A.

(i) = is a one-one function.
(i) D, is A-r.e. but not A-finite.
(iii) The graph of |-|, is an A-recursive relation. In particular, |-|, is an A-re-
cursive function.

Proof. The only part which is not absolutely immediate is the fact that D, is not
A-finite. But if D eA then, by X Replacement, the range of ||, would be an ele-
ment of A whereas this range is all of MU 4. [

Our plan for this section is to first exhibit some useful notation systems and then
use them to transfer results.

5.3 Theorem.

(i) For any structure MM, HY Py, is projectible into HF gy,
(ii) For any admissible set &, IHY P(A) is projectible into A.

The theorem is a simple consequence of the following lemma, an effective
version of Theorem I1.5.14.

5.4 Lemma. Let L be a finite language, let M be a structure for L, let L*=L(e)
and let ae Vg, be a transitive set with M <a. Let L'=L*U {X|xeau {a}} be the
usual language with constant symbol X for x. Let o be the least ordinal such that

Ay =(M;L(a,n),€)

is admissible and assume L' is coded up on Ay in a way that makes the syntactic
operations of L., all Ag-recursive. There is a total Ag-recursive function n such
that for each xe Mgy, n(x) is a set of good X, definitions of x with parameters from
av{a}.

Proof. We already know, from Theorem I1.5.14, that each xe g, has a good X,
definition with parameters from au {a}. The object here is to use the Second
Recursion Theorem to show how we can go Ag-recursively from x to a set m(x)
of good X, definitions of x, by reexamining the proof of I1.5.14. If we look back
at that proof we see that this is really pretty obvious. We write out clauses in the
definition of 7. In each case it is assumed that none of the earlier cases hold.
We also arrange things so that v is the only free variable in any formula considered.

Case Ine. If xeau {a} then n(x) is the set whose only member is the L,
A, formula

v=X.
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Case 2wo. If x=p+1 then n(x) is the set of formulas
Iw[o=F(w) A @(w/v)]
where ¢(v)en(f) and w is the first variable not in ¢(v).
Case 3hree. If n(p) is defined then n(L(a, B)) is the set of formulas of the form
Iw[v=L(a,w) A p(w/v)]
where @(v)en(f). We may use “v=L(a,w)” since L(-,")is a £, operation symbol.

Case 4our. If xel(a,f+1)—F(L(a,p)) then n(x) is defined as follows. Find
the least i, 1 <i<N, such that for some y,zeL(a,p)u {L(a, )},

x=F(y,2).
Then n(x) is the set of all formulas of the form
Aw, Iw, [0=F (Wi, wa) A @(w,/0) A (W, /v)]

where, for some y,ze¥(L(a,f)), x=F(y,z) and ¢@(v)en(y) and Y(v)en(z) and
wi, W, are the first two distinct variables not appearing anywhere in ¢ or . The
set of all such formulas exists by £ Replacement. This clause in the definition of
n(x)=y is I, as can be seen by writing it out.

Case Sive. If f<a is a limit ordinal then n(f) is defined Agy-effectively as
follows. Find the first A, formula ¢(x,y,z,,...,z,) of L* (first in some effective

well-ordering of HF, say that given by 11.2.4 or 3.7 of this chapter) such that for
some d,z,,..., z,€ L(a,p)

(1) La, p)EVxedy o(x,y,24, ..., 2,)
but
(2) L(a,p)= 13bVxedIyebo(x,y,zq, ..., 2,) .

Now given ¢ let (f)(=0(p.d,zy, ..., z,)) be formed from ¢ just as in the proof
of I1.5.14. Let n(f) be the set of all formulas of the form

I, W, e W [0, W, Wy, W) AW/ A Ny 0w iv)]

such that for some d,z,,...,z,eL(a,f), (1) and (2) hold and Yen(d) and, for
1<j<n, g(v)en(z;). Again, this clause in the definition of m(x)=y can be seen
to be £ and so, by the Second Recursion Theorem, 7 is an Ag-recursive func-
tion. [
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Proof of 5.3. For (i) simply note that L,,, can be coded up on HFg in this case.
For (ii) we can code L., on Ag itself. The admissibility of Ay, comes in only
in that this coding can be done on Ay, and is far stronger than we need. 1[I

We will see in § V1.4 that if M has a “built in pairing function” then HY Py,
is projectible into M.

5.5 Corollary. Let A ={w,+,> be the structure of the natural numbers. HYP ;.
is projectible into N".

Proof. The simplest proof is just to observe that in this case the coding used in
the proof of 5.3(i) can be done on .4 itself. An alternate explicit proof will appear
in §VI4. [

We now give some examples of the use of notation systems. Combined with
5.5 and the results of §1V.3, the next two results show that, over .4, the I} rela-
tions are parameterized by a IT} relation, that there are II} sets which are not
A}, and that there are A} sets which are not first order definable over 4.

5.6 Theorem. Let A be an admissible set which is projectible into C.

(i) For n=1 there is an (n+1)-ary A-r.e. relation S on C which parametrizes
the class of all n-ary relations on C which are A-r.e.

(ii) There is subset of C which is A-r.e. but not A-recursive.

Proof. (ii) follows from (i) just as in the proof of 1.7. To prove (i) let = be a notation
system for A with D,=C. Let T, be the (n+1)-ary relation on A which para-
metrizes the n-ary A-r.e. relations. Define

S, xq5..x,) Mf x4,...,x,eC,  yeD, and T(ylpxy,...,X,).

S is A-r.e. since C and D, are A-r.e. and ||, is A-recursive. Now let R=C" be
A-r.e. Pick a z such that

R(xy,...,x,) iff T(z,x,...,x,).

Then for any yen(z),

R(xy,...,x,) iff S(,xq,...,x,). [

5.7 Theorem. Let A be an admissible set with o(A)>w. Let W=(N,...> be a
structure ( for a language K) which is an element of A and suppose that A is projec-
tible into N.

(i) There is an A-recursive (n+1)-ary relation S on N which parametrizes
the n-ary relations on M which are first order definable over N (using parameters ).

(i) There is a subset of 9 which is A-recursive but not first order definable
over N.
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Proof. As usual (ii) follows from (i) by diagonalization. To prove (i) define

Soy, x5 .-, x,) UMff y=<¢@,s) where o(vy,...,0,Wy,...,w,,) is a formula of
K., and s is an assignment with values in N, s(v;)=x; all i<n, and NRE=[s].

S, is clearly A; on A. Since o(A)>w the set X of all relevant pairs {¢,s) is an
element of A. Let © be the notation system for A with D, <= N. Define

S(z,x1,..0s x,) iff yeX[n(y)=z A So(¥ X1, -0 Xa)] -

Since X eA, the quantifier on y is bounded so S is indeed A-recursive. It clearly
parametrizes the relations definable over t. [

We now turn to a result, Theorem 5.9, which will allow us to identify O(A").
A notation system 7 is univalent if each 7(x) is a singleton, that is, if it assigns a
unique notation to each xeA.

5.8 Proposition. (i) Let A be a recursively listed admissible set projectible into C.
There is a univalent notation system which projects A into C.
(i) HYP, has a univalent notation system which projects into N".

Proof. (i) If 7 projects A into C then define n,, the univalent notation system, by
ny(x)={y} where y is the first member of 7n(x).

Part (ii) follows from (i) and 3.10. 0

5.9 Theorem. Let A be an admissible set which is projectible into C.

If there is a univalent notation system projecting A into C then

o(A)={p(<)|< a well-ordering, < =C? <eh}.

Proof. Every well-founded relation <eA has p(<)<o(A) by 3.3(ii) so we need
only show that each feA is of the form p(<) for some pre-wellordering < € A,
< < C2 Let n be a notation system projecting A into C. Let b=|Jrng(x| f)e A.
Now b= D,=C and b is the set of all notations for ordinals y <. Define < =bx b
by

x<y iff |x[,<lyl,.

Then < is a pre-wellordering of b of length f and it is a well-ordering if = happens
to be univalent. 0
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5.10 Corollary. O(A")={p(<)|< is a A{ well-ordering, < =N x A"}
= wj.

Proof. The first equality is immediate 5.9, 5.10 and §IV.3. The second follows
from the first and the result from ordinary recursion theory that every A} well-
ordering of .#" has order type some a<wi. [

The reader unfamiliar with the result used in the above proof can take
o ={p(<)| < is a A} well-ordering, < =N x A"}
as the definition of .
5.11 Corollary. wq is the first admissible ordinal greater than w.

Proof. w§ is admissible by 5.10. Let o be the least admissible >w so that L(«)
is admissible and w9 >a«. But if @$>a then « is the order type of some Al well-
ordering < of .4~ and hence of some A} well-ordering < of w. But then < eL()
by §IV.3 which contradicts 3.3(ii). 0

5.12—5.13 Exercises
5.12. For any M={M,R,,...,R,> show that

OM) = {p(<)| < is a pre-wellordering, <eHYPg, < =HFg,}.

5.13. Let A be a recursively listed admissible set. Show that there is a single-
valued notation system with domain o(A). Hence the recursion theory of A can
be transfered to o(A).

5.14 Notes. Notation systems are standard tools in ordinal recursion theory
but don’t seem to have been treated systematically before over arbitrary admis-
sible sets. The definitions used above are stronger than those of Moschovakis
[1974]. In the case where A is projectible into some CeA (the only case of
interest to Moschovakis) they are equivalent.

Corollary 5.11 is due to Kripke and Platek, but with more complicated proofs.

6. Ordinal Recursion Theory:
Projectible and Recursively Inaccessible Ordinals
In the final sections of this chapter we return to the origins of the theory of ad-

missible sets, recursion theory on admissible ordinals. We are thus in the domain
of admissible sets without urelements.
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Let 74 be the ™ admissible ordinal; that is, let
‘EO =w,

14 =least o[a is admissible Ao >1, for all y<f].

In this section we begin looking at the sequence of admissible ordinals and the
relationships between various members of it.

6.1 Definition. An admissible ordinal « is projectible into § (where B<a) if there
is a total a-recursive function mapping o one-one into . The least 8 such that «
is projectible into f is called the projectum of o and is denoted by a*. If a* <a
then « is said to be projectible; otherwise a is nonprojectible.

If o is admissible then L(«) is recursively listed so we see that o is projectible
into 8 in the sense of 6.1 iff () is projectible into f in the sense of 5.1 (iv). Similarly,
if B is also admissible then « is projectible into f§ (in the sense of 6.1) iff L(«) is
projectible into L(p) (in the sense of 5.1(iv)).

6.2 Proposition

(i) If k= is a cardinal then x is nonprojectible.
(ii) For any B,t4.,, is projectible into t.
(iii) If 14 is projectible into t, und t, is projectible into & then 1, is projectible
into 9.

Proof. (i) is obvious by cardinality considerations since otherwise x would have
the same cardinality as some f<k. For (ii), note that L(t,,,)=HYP(L(zp))
so L(t, ) is projectible into L(z,) by 5.3. Part (iii) is obvious. We simply compose
projections. [

From this proposition we see that there are many projectible ordinals. We
also see that t*=w for all n=0,1,2,....

As we mentioned at the beginning of this chapter, one use of generalized
recursion theory is as a laboratory for understanding ordinary recursion theory.
One important aspect of ordinary recursion theory is the number of different
versions of the notion of finite that arise. For examples, a set BSw is finite iff
any one of the following hold: B is recursive and bounded, B is R.E. and bounded,
or B is bounded. By defining a set BSL(x) to be a-finite if BelL(x) we have
chosen to use the first. This means that when we meet some use of a different
version of “finite” in ordinary recursion theory we may have trouble lifting this
to a-recursion theory. The following theorem shows us that if « is projectible
then there are going to be a-r.e. subsets of ordinals <o which are not a-finite.
Thus, for projectible ordinals we may expect some aspects of ordinary recursion
theory to become more subtle. This is particularly true in the study of a-degrees,
a subject not treated in this book.
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6.3 Theorem. Let o be admissible. The following are equivalent:
(i) o is nonprojectible.
(ii) L(x)=X, Separation.
(iii) If B<o and Bis an a-r.e. subset of f then B is a-finite.

Proof. We first prove (i)=>(ii). Suppose B<ael(x) and Bis X, definable on L(x).
We wish to prove BeLl(x). Pick B,<oa such that aeL(f,); hence B<L(f,).
The recursive listing f of L(a) given by < puts everything in L(j,) before every-
thing in L(a)—L(S,). If we show that the set

C={y|f(y)eB}

is an element of L(x), then Bel(x) by X Replacement. But C<f; for some
fi<a. Use 4.1 to pick an a-recursive function G mapping « onto C and define
H by X Recursion as follows:

H(B)=G(least y[G(y)¢ {H(0)| 6 <B}]).

Now H is a-recursive, one-one, and is defined on some initial segment of o. It
cannot be defined for all f<a, however, for this would give a projection of a
into f, <a and a is nonprojectible. Let 8, be the least ordinal for which H is not
defined. The only reason H(f,) can be undefined is that

C={HP)IB<B,}
so that CeL(x) by X Replacement.
The implication (ii)=>(iii) is trivial. We prove (iii)= (i) by contraposition.

Thus, let p:a—f be an a-recursive one-one mapping of « into 8, f<a, and let
B=rng(p). Then B is a-r.e., BS but B cannot be a-finite, since

a={p~!(x)|xeB}
and p~!is a-recursive. 1[I

6.4 Corollary. If o is projectible into B then there is an a-r.e. subset of f which is
not a-finite. [

6.5 Corollary. If « is nonprojectible then L(x) Beta.
Proof. L(e)=X, Separation, and X, Separation implies Beta. [

6.6 Corollary. Let k be an uncountable cardinal. For every [ <k there is a non-
projectible a between  and k.

Proof. L(k)E=X, Separation, so apply Theorem I1.3.3 with Agyh=L(x), 4,=p.
The resulting admissible set satisfies the axiom V=L (i.e. VxL(x)) and so is L(«x)
for some o<xk. Since L(x)=L(x), L(«)=X, Separation and hence « is non-
projectible. 0
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Now that we know there are lots of nonprojectible ordinals we can ask how
big the first one is. So far, all we know is that it is bigger than 7, for each n<w.
Is it 7,,? To shed some light on the size of the first nonprojectible we introduce the
recursively inaccessible ordinals.

6.7 Definition. An admissible ordinal « is recursively inaccessible if a is the least
upper bound of all admissibles less than o.

6.8 Theorem. If o is nonprojectible and greater than w then o is recursively in-
accessible.

Proof. Assume that.a is admissible, o> but that the ordinal
B=sup{y<al|y is admissible}

is less than a. We will prove that o is projectible into . Let e:a—L(x) be the re-
cursive listing of L(x) given by <. Since f is a sup of admissible ordinals, e[ f8
is the canonical listing of L(f) by ordinals < f. Thus, if L(x) were projectible into
L(B), then it would be projectible into § and so o would be projectible with o* < f.
But L(a) is the smallest admissible set with L(f) as an element, i.e. L(a)=HYP(L(S))
so L(x) is projectible into L(f) by Lemma 5.4. [

If we combine Theorem 6.8 with the next result we see that the first non-
projectible is fairly large, much larger than 7,

6.9 Theorem. If t, is recursively inaccessible then t,=a, and conversely.
We isolate part of the proof of 6.9 which will be used again.
6.10 Lemma. Define G(B)=1; for f<o. Then G is a t,-recursive function.
Proof. The result is literally trivial if «a=0. For «>0 we can define G by
GO0)=o,
G(B)=least)[L(;)=KP A ¢ (G(3) < )]

for f<oa. Since KP is an w-recursive set of axioms, it is in L(z,) so this is a X Re-
cursive definition of G. [

Proof of 6.9. Note first that 7,>a for all o, by induction. Suppose 7,=o. Then
for each <1, f<15<71, s0 1, is the sup of all smaller admissibles. Now suppose
1, iIs recursively inaccessible, but that t,>a. Note that « is a limit ordinal, since
741 can never be recursively inaccessible. Let G be as in Lemma 6.10 and observe
that

T, =sup {G(B)| f<a} .
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But this is a contradiction, for G is 7,-recursive and hence the right-hand side of
this equality is in L(z,) by £ Replacement. [

We see, by 6.9, that none of the following are recursively inaccesible and,
hence, all are projectible:

T15Tas s Tan Tt 15 o0 Teps Teyt 15 0ees Teyp ooy Tg 5 CEC

What are their projectums? We will show in the next section that all are projectible
into w by showing that projectums are always admissible.

The interest in projectums stems largely from the following property which
is quite useful in priority arguments involving a-degrees.

6.11 Theorem. Let o be admissible and let o* be its projectum. If B is a-r.e., BSf
for some B <a*, then B is a-finite.

Proof. The proof s like the proof of (i)=>(ii) in Theorem 6.3. Define an a-recursive
function F by

F(y)=y"™ member of B

F(y)=G(least 8(G()¢ {F(&)| £ <7})

where G maps « onto B. Now, since ff<a*, F cannot be a one-one mapping of o
into . Thus F(y) is undefined for some y<a. If y, is the least such then
B={F(y):y<yo} so BeL(n) by X Replacement. [

To prove stronger facts about nonprojectible ordinals we need to use the
notion of stable ordinal introduced in the next section.

6.12 Exercise. Let o be a limit of admissibles. Prove that L(x)=Beta even if
o is not admissible. This is an improvement of 6.5.

6.13 Notes. The concepts and results of this section are all due to Kripke and

Platek. The student interested in the uses of the projectum in the study of a-degrees
should consult Simpson’s excellent survey article, Simpson [1974].

7. Ordinal Recursion Theory: Stability

Given structures g, = By, we write Wy < By, if forevery T, formula ¢(vy, ..., v,)
and every x,..., x,€ gy,

BaEo[xy,...,x,] iff UpEe[xg,...,x,].
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7.1 Definition. An ordinal « is stable if L(x)<,L. The sequence of stable ordinals
is defined by

o, =the least stable ordinal,
o, =the least stable ordinal greater than each g for f<7y.

The first theorem shows that there are lots of stable ordinals and that they are
better behaved under sups than the admissible ordinals.

7.2 Theorem. (i) If A>0 is a limit ordinal then a,=sup{o;|f<A}.
(ii) Every uncountable cardinal is stable.
(iii) If w<pB<k, where k is a cardinal, then there is a stable ordinal o, f <o <k.
(iv) If « is a cardinal then k=o,.

Proof. To prove (i) let A1>0 be a limit. Since ¢,>sup{a,;|f <A} by definition,
it suffices to prove that the ordinal

y=sup{osl B<i}

is stable. Let ¢ be a X, formula, let x,,..., x,€L(y) and suppose
LEo[xy,...,x,].

Pick f<4 such that x,,...,x,eL(gp). Then L(op)=o[xy,...,x,] by stability,
and then L(y)Fo@[xy,...,x,] by persistence of £, formulas. (What we are really
proving here is that the union A=|J,;.,U; of a chain of < -extensions Ay, is a
< ;-extension of each j.)

Now let k> be a cardinal and suppose that x,,..., x,eL(x) and that
L.::ay‘//[xla [RAE] xn]

where i/ is A,. We need to see that L(x) satisfies the same formula. But, for large
enough cardinal /,

HA)=3JodyeL@)y[xy, ..., X,]
so, by 11.3.5,

H(k)=3JaTye L)y x4, ..., x,]

and so there is an o<k such that L(x)=3yy[x,,...,x,] and hence
L(x)=3yy[xy,..., x,], as desired.

To prove (iii) we apply Theorem I1.3.3. Note that we need only prove the result
for k regular since every singular « is a limit of regular cardinals. Let ay=8+1.
Given a, apply 11.3.3 to get an admissible set IB such that

L)<= B,
card(a,)=card(BB) <k,
Lk)=e@[X] iff BrFe[X]
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for every formula ¢ and every x,...,x,eL(x,). Now since B=L(x), B=L(y)
for some admissible y<x and we let a,,, be this y. Let a=sup,., a,<k. We
claim that « is stable; i.e, that L(e)<;L. It suffices to prove that L(x)<,L(x)
since k is stable. Let ¢ be £, and L(x)=¢[x,,...,x,], where x,,...,x,eL(x).
Pick k<w so that x,,...,x,eL(e,). Then L(a,,)E¢[xy,...,x,] by choice
of a; ., and then L(a)=¢[x,..., x,] by persistence of X, formulas.

Part (iv) follows from (i) and (iii). In fact, if f is any continuous increasing
function on the ordinals such that for all cardinals k>, f(d)<k implies
f(x+1)<k, one always has for all k>w, f(k)=«. First assume « is regular
and consider the set B of f such that f(f)<k. Bis an initial segment of the ordinals
and has no largest element so B is a limit ordinal 4. But then, by continuity,

f@)=sup{f(B)Ip<i}<k

but f(4)£k since A¢B so f(1)=k. Since k is regular, A=x. Now for singular
K the result follows by continuity since every singular k is the sup of regular
cardinals. For if x=sup;.,4; where the i, are regular, then f(x)=sup,., f(4,)
=supp<,ig=K. [

There is a useful relative notion of stability.
7.3 Definition. An ordinal a is S-stable if a<f and
L)<, L(p).
Since we have allowed a=f there is always at least one f-stable ordinal.

7.4 Proposition. (i) If a<f<y and a is y-stable then o is f-stable.
(i) If o is B-stable and B is y-stable then « is y-stable.
(iii) If B is stable and o<p then a is stable iff o is f-stable.
(iv) If B is a nonempty set of f-stable ordinals and a=supB then a is f-stable.

Proof. These are all simple consequences of the definition and the persistence
of X, formulas. [

7.5 Theorem. If a<p and « is B-stable then « is admissible. In particular, every
stable ordinal is admissible.

Proof. Suppose a<pB and L(x)<,L(B). Note that since the operations &, ..., Fy
all have A, graphs, and for x,yeL(a),

L(B)=3z(Fi(x,y)=2),
we have

L(o)= 3z(Fi(x,y)=2),
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so L(«) is closed under the operations #,, ..., 5. Thus L(«), in addition to being
transitive, is closed under pair and union and satisfies A, separation. It remains to
check A, Collection. Suppose

L@)EVxeadyp(x,y,z)
where ¢ is A, and a,ze L(«). Then, letting b=1(a)eL(B), we have

L(B)=Vxeadyeb p(x,y,2)
o)
L(B)=3IbVxeaIyebp(x,y,z)

and so, by L(x)<<,L(B),
L()=3bVxeadyebop(x,y,z). O

7.6 Corollary. (i) If B is admissible, a<[f and o is -stable then o is recursively
inaccessible.

(ii) Every stable ordinal is recursively inaccessible.

Proof. (i) Let B=1, and a=1; where d<a and 6<7. We need to see that
0 =0o. Suppose d <a. Then L(f)=3Ix[x=1,], so,by Lemma 6.10,and L(a)<,L(p),
L(x)=3x[x=1,] (one needs to observe that no parameters occur in the definition
of G in 6.10) from which we have t;€L(x), which is ridiculous since a=1t; and
o¢L(«). Part (ii) follows from (i). 0

The definition of « is S-stable appears to be model theoretic until one reformu-
lates it as follows: If f is a f-recursive function then whenever x,..., x,€L(a),
if f(xq,...,x,) is defined then f(xi,...,x,)el(«). This reformulation suggests
a way of generating the B-stable and the stable ordinals. First, however, a lemma.

Notice that we did not assume Uy <. 4By in the definition of Wy < By,

We are going to apply the notion to a case where we do not know, ahead of time,
that this holds.

7.7 Lemma (Tarski Criterion for <,). If Uy <SBy then Uy< By iff the fol-
lowing condition holds for every A, formula ¢(v,,...,v,) and every Xi,...,X,_,

€Uy if
%mhavn(p[xl’“-, xn—l]
then there is an x,eWUgy such that

BaE@O[Xqseees Xp_ 1,X,] -

Proof. U< By clearly implies the condition. To prove the converse, one first
uses the criterion to prove

WY [xy,....x,] iff BaEy[xy,...,x,]
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for all A, formulas ¢ and all x,,...,x,e%qy, by induction on . The atomic
cases hold by g, <= By, the propositional connectives take care of themsevles
and the criterion gets us past bounded quantifiers. Now suppose v, ¢(vy, ..., v,)
isa X, formula, x,,...,x,_,€Wg If Ugp=30,¢[xy,...,x,_,] then there is an
x,€Wgy such that Uy FEe[xy,...,x,-1,x,] s0 BaEe[xy, ..., X,_1,X,], since ¢
is Ao, and hence

By, @[xy, .00y Xy 1] -

The proof of the converse first uses the criterion to pick x,e%g, and then applies
the result for A, formulas. 0

We now come to the main theorem on the generation of stable ordinals. The
proof is rather amusing since we use the Collapsing Lemma to collapse a set that
is already transitive.

7.8 Theorem. Let 8 be an admissible ordinal and let 0<y<p. Let A be the set of
those aeL(B) for which there is a X, definition of a in L(B) using parameters <vy
(X, definable as elements in the sense of 11.5.13). Let a be the least ordinal not in A.
Then

(1) A=L(x), and

(ii) o is the least B-stable ordinal >7y.

Proof. It is not transparent that A is even transitive, let alone admissible. The first
step in the proof is to show

(1) {A,enA?)<,(L(p).e).

We use the Tarski Criterion. Suppose L(f)=3yop[ay,...,q,], where ay, ..., a,€A.
We need to find a be A such that L(f)=o¢[ay,...,a,b].

Since each a;eA4 is X, definable by a formula with parameters <y, we may
replace each g; by its definition and assume all the parameters are ordinals <7y,
except that ¢ now becomes X, instead of A,. Write ¢ as Izy(vy, ..., U, ), 2), SO
that L(B)=3y3zy(A,,..., Apy,2), where Ay,...,4,<7y. Let b=1%(c) where ¢
is the least pair <{y,z) in L(f) (least under the ordering <;) such that
LB)=y (A, .o Ams),2). Then b is X, definable in L(f) with parameters 4,,...,4,,
so beA and L(B)Fo¢(qay,...,a,,b). Which proves (1).

Let B=clpse(A) so that B is transitive, and

cq:{A,en A*>=(B,e).

Let 7 be the least ordinal not in B and note that < since there is an embedding
of 7 into §. We claim that

(2) B€L(7).
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The predicate (of x and J)
xeL(d)
is A, in KP so we can find a ¥, formula equivalent to it in KP:
xeL(s) iff 3FyO(x,d,y)

where 0 is A,. Now pick any xeB. We will show that xeL(d) for some é<r.
Write x as c,(a) for some aeA. Since A<L(f) there is an ordinal A<p such
that ael(4). By (1), 4 is a model of

31, y0(a,A,y) .

Hence B is a model of
34, y0(x,4,y),

but then x really is in L(5) for some de€B, proving (2).
Next we prove that

(3) A=B.

To prove this it suffices to prove that ¢ (a)=a for all aeA. Since y= 4, c,(A)=41
for all A<y. Let aeA be X, definable in L(f) by the X, formula ¢(x,4,,..., 4,)
where 1,,...,4,<7,

L= xo(x, A, ..., 4y,
L) =ola, Ay, ..., 4] .

If we can prove that L(B)=¢[c4(a), Ay, ..., 4,] then we will have a=c4(a). But
from (1) it follows that {A,en A= @[a,Ay,..., A,], 50 BE @[ c4(a),c(A1),..., c4(An)]-
As we mentioned, c,(A)=4; so BEop[c,a),Ay,...,4,]- By (2), BEL(p) so
L(B)=o¢[c4(a), Ay, ..., A,] by persistence of ¢. This proves A =B.

Since B is transitive and B<; L(f), it follows that B is admissible and that
B=L(t). But of course 7=a so A=B=L(x). Thus a is f-stable. Since y< A4,
y<oa If y<o'<f and o is also f-stable then every element of 4 must be in L(«)
so a<a'. Hence a is the least f-stable ordinal >y. 0

7.9 Corollary. The stable ordinals are generated as follows.
(i) oo={ala is T, definable in L without parameters},
L(oo)={xeL|x is X, definable in L without parameters};
(i) 0,4, ={alais T, definable in L with parameters <o},
L(o,,,)={x€eL|x is £, definable in L with parameters <o.};
(iii) If A is a limit ordinal then

o,=sup{o,|y<i},
L(O'A)=Uy</1L(0'y)-
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Proof. For (i) apply 7.8 with f=w,, y=0. For (ii) apply 7.8 with 8 equal to some
cardinal >0, and the y of 7.8 equal to o, +1. Part (iii) is just a restatement of part
of 7.2 included for completeness. [

We will study g, in some depth in the next section and give a classical de-
scription of it. Part (i) of the next theorem will play a crucial role.

7.10 Theorem. (i) o, is projectible into w.
(i) 0., is projectible into o,
(iii) If A is a limit ordinal then o, is nonprojectible.
Proof. Let’s dispose of (iii) first since it’s fairly trivial. We prove that

L(c,)=X, Separation

and then apply Theorem 6.3 to see that ¢, is nonprojectible. Let aeL(g,), let
¢ be X, and form the set

b={xea|Lie))=o[x]}.

Pick y<A large enough that a and the parameters in ¢ are members of L(s,).
Then, by L(c,)<;L(s;), we have

b={xea|L(o,)Fo[x]}
so bel(c;) by A Separation.

Now for (i). The idea is that we want to assign to each a <o, some X, de-
finition of o, thus projecting g, into HF. The trouble is that

L(oo)= 3! x ()

is not a o,-r.e. predicate of the formula ¢. To get around this we use the Uni-
formization Theorem, Theorem 4.4.
Recall the X, formula X-Sat,(z,y) from § 1. Let F be given by 4.4 so that F is

o y-recursive,
dom(F)={y(x)|y(x) is a T, formula A L(ao)=yy(y)}
={z|L(oo)F="“zis Z; A JyZ-Sat,(z,y)"}

and for each yY(x)edom(F), L(s,)=y(F(¥)). Now whenever a is Z; definable
there is a Y such that

L(oo)=3yy(y) ry[a]
so F(y)=a. We may project L(o,) into HF by

n(a)=least X, formula y such that F(y)=a,
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where by least we mean in some well-ordering of HF as given in 11.2.4. The proof
for (i) is similar, using X-Sat; instead of X-Sat;, once we observe that every
aeL(o,,,) is definable by a formula

Alxe[x,b,0,]

with beL(s) and no other parameters, by just using b to code a finite sequence
of ordinals. Now apply Uniformization to get a ¢, -recursive F such that

dom(F)={{yY(x,y,z),b> |y is £ and L(o,,,)F=3Ixy(x,b,0,)}
and, if F(y(x,y,z),b) is defined then

L(ay+ l)'= l//(F(l//’ b), bs 0'},) .
Then define

n(a)=least pair {i,b) such that F(y,b)=a.

This n projects L(o,, ;) into L(g,). Since L(c,) is recursively listed, this amounts
to projecting L(s,, ;) into o,. [0

The use of Uniformization in 7.10 is very typical of more advanced work in L.
We also use it to prove the next result.

7.11 Theorem. Let 8 be an admissible ordinal whose projectum B* is not w. Then
p* is the limit of smaller B-stable ordinals. Hence §* is f-stable and admissible.

Before proving 7.11 we state some of its consequences.

7.12 Corollary. If a>w is nonprojectible then o is the limit of smaller a-stable
ordinals. [

Next we present the result promised at the end of the last section.
7.13 Corollary. For any admissible ordinal o, a* is admissible and nonprojectible.

Proof. By 7.11, «* is admissible if a*>w. But if a*=w it is also admissible.
Nonprojectibility is obvious. [

Thus, if « is an admissible ordinal less than the first nonprojectible then
o*=w. We saw that the first nonprojectible ordinal was recursively inaccessible.
We can iterate this result using 7.11. We give only a sample result which shows
that the first nonprojectible is much larger than the first recursively inaccessible.

7.14 Corollary. Let p; be the ™ recursively inaccessible ordinal. If o is nonpro-
jectible and a>w then a=p,.
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Proof. Assume that a*=a but that a=p, for some y<a. Apply 7.12 to find
an a-stable ordinal 4, y<A<a. The predicate

y<a and y is recursively inaccessible
is a-recursive since it holds iff
y is admissible A Vx <y3r <l (x<t A 7 is admissible).

Define H(x)=p, for x<y. Then H is a-recursive and

L)=Vx<y3dy (H(x)=y)

SO
L(A)EVx<y3dy (H(x)=y)

since 4 is a-stable. But this is ridiculous for A itself is recursively inaccessible by
7.6, so A=H(x) for some x<7y. [

Some authors refer to ordinals o such that a=p, as being recursively hyper-

inaccessible.
We now return to prove Theorem 7.11.

7.15 Lemma (I1,-reflection). Let a>w be admissible and let Vx3y ¢(x,y) be a
sentence which holds in L(x), where ¢ is A,. Then for every y<a there is a A,
y<A<a such that

L(A)EVx3yo(x,y).
Proof. Let y<Ay<oa where all parameters in ¢ are members of L(4,). Let 4,
be the least ordinal such that for all xel(4,) there is a yeL(4,,,) such that
¢(x,y). There is such a 4,,,; by X Reflection. The sequence {4,:n<w) is a-
recursive so

l=supn<w/1n

is less than o. [0

Proof of Theorem 7.11. For several years all that was known about the projectum
B* of an admissible ordinal was that

(4) p* is admissible or the limit of admissibles.
For suppose f*<p but that there is an admissible ordinal 7, such that

B=t,>p*>sup;.,1;.
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But by Theorem 6.8 (and its proof) 7, is projectible into sup; ., 7; and hence so is S,
contradicting the definition of §*.

For the purposes of this proof we call an ordinal y nice if <|L(y)x L(y) has
order type y so that the function enumerating L, definable in KP, maps y onto
L(y). We know that every admissible ordinal is nice. The only point of proving (4)
was to prove that

(5) if w<&<P* then there is a nice limit ordinal y, E<y<f*.

If B* is admissible, this follows by IT, Reflection. If §* is the limit of admissibles
we pick y to be an admissible.

We are now ready to prove that if w <y <p* thenthereisa f-stablea, y <o <f*.
By (5) it suffices to prove this for nice y. Let « be the least f-stable ordinal >7.
Now L(x) is the set of aeL(f) definable by £; formulas with parameters <.
Since y is nice, though, we can code all these parameters into one so that

L(a)={aeL(p) | for some X, formula ¢(v,,v,) and some &<y, L(f)
=@!0,0(01,8) A 0a,)} -

As in Theorem 7.10, let F be a S-recursive function uniformizing X-Sat,. Note

that X-Sat, and hence the graph of F are §-r.e. definable by X, formulas without
parameters. Thus

L(o)=rng (FI (HF xy)).

Since y is nice we can identify HF xy with y and apply Theorem 6.11 to see that
dom(F}(HF x y))eL(p) since it is, essentially, a f-r.e. subset of y<f*. But if the
domain of a S-recursive function is in L(f), so is its range, so L(x)eL(f). That is,
a<fB. We need to see that a<f*. Suppose f*<a. The inverse of F[(HF xy)
maps L(x) into y so we could then project L(f) into 7y, contradicting the definition
of *. Thus a < f* so we have proven that f* is the sup of smaller f-stable ordinals.
Thus f* is itself f-stable and admissible. [

7.16—7.25 Exercises

7.16. Prove that every stable ordinal is the limit of smaller nonprojectible ordinals.
In particular, the first nonprojectible ordinal is less than the first stable ordinal,
even though the first stable ordinal is projectible into w.

7.17. Compute o¥. [Hint: 6%, , =w.]

7.18 (Jensen). Show that o is admissible iff o is a limit ordinal and IL(x) satisfies
A, Separation.

7.19. Prove the converse of Lemma 7.15. That is show that a limit ordinal a is
admissible and > iff every IT, sentence Vx 3y ¢(x,y,z) true in L(x) is true in
L(p) for arbitrarily large f<a.



7. Ordinal Recursion Theory: Stability 187

7.20. Let o be admissible, o>w. An ordinal f<a is an a-cardinal if there is no
feLl(o) mapping § one-one into an ordinal y<p.
(i) Show that if a* (the projectum of a) is <a then a* is an a-cardinal.
(ii) Prove that every a-cardinal x> (if there are any) is a-stable. [Show
that the proof of 7.2(ii) can be effectivized so as to hold inside L(«).]
(iii) Prove that if k is an a-cardinal >w and y<x then there is an a-stable
ordinal f, y<f<k. [Modify the proof of 7.11.]

7.21. Suppose a is admissible and w<oa* <a. Show that any a-r.e. subset of
some L(B), for B<a*, is a*-finite, not just a-finite as stated in 6.11. [Use 7.11.]

7.22. Assume that there is an a such that L(«) is a model of ZF. Show that the least
such a is less than gy,

7.23. Let Agy By be countable, admissible sets and suppose that Agy, is Bg-
stable; i.e., that

Ag<,Bg.

Let T be a theory of L which is definable over by a X, formula with parameters
from Ag,. Show that ifevery T, =T with T,eAq, hasa model then T has a model.
[Use the Extended Completeness Theorem.]

7.24. Let Ay be countable, admissible. Show that the following are equivalent:
(i) Ap<;HYP(Ag);
(ii) Ay is 1} reflecting; i.e. if &(v) is a I} formula and Agy=P[x], then
there is an admissible set ApyeAgy such that Ay = @[x]. In particular, if a<w,
then 7, is 7, ;-stable iff L(z,) is 1] reflecting. [Use the Completeness Theorem.]

7.25. An admissible ordinal « is recursively Mahlo if every a-recursive closed
unbounded subset of o contains an admissible ordinal. (This is the “effective
version” of the definition of Mahlo cardinal. See Chapter VIIL)

(i) Prove that if a is recursively Mahlo then it is recursively inaccessible,
recursively hyperinaccessible, etc.

(i) Prove that if « is the limit of smaller a-stable ordinals then « is recursively
Mahlo.

(iii) Prove that if a is nonprojectible then it is recursively Mabhlo.

7.26 Notes. The stability of uncountable cardinals is due to Takeuti [1960].
The concepts and other results in 7.1—7.10 are due to Kripke and Platek, indepen-
dently. Theorem 7.11 (and hence 7.12, 7.13, 7.20, 7.21) are due to Kripke. The
student interested in further similar results should study Jensen’s theory of the
fine structure of L as presented, for example, in Devlin [1973]. Exercise 7.23
appears in Barwise [1969]. Exercise 7.24 is due to Aczel-Richter [1973] and,
in an absolute form, to Moschovakis [1974]. Exercise 7.25 goes back to Kripke
and Platek.
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Putting admissible ordinals o> in their place.

Cardinal >w

stable (i.e., L(e)<,L)

limit of smaller
nonprojectibles

nonprOJectlble (iff L,=X, Separation)

recursively Mahlo
NS
l

recursively hyper-hyper-inaccessible
recursively hyper-inaccessible (i.e. a=p,)
recursively inaccessible (i.e. a=1,)

admissible
Notes:

1. No arrows are missing.

2. No arrows reverse.

3. The first stable ordinal o, is projectible into w; the f+1* stable ordinal g, ,
is projectible into o.

4. For A a limit, o, is nonprojectible.

5. If a is projectible then its projectum o* is admissible and nonprojectible.
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8. Shoenfield’s Absoluteness Lemma
and the First Stable Ordinal

In § 5 we saw that the first admissible ordinal 7, > is the least ordinal not the
order type of a A} well-ordering of HF and that a set X < HF is t;-r.e. iff X is
IT! on HF. In this section we prove an analogous result for the first stable ordinal
UO-

A relation R on HF is X! if it can be defined by a second order formula of the
form 3S, VS, ¢, where ¢ is first order:

R®) iff (HF,e>=38,VS,0(%,S,,S,).

If the complement HF"—R of R is X1, then R is said to be I13. If R is both £}
and IT} then R is AL.

At first glance the step from A} to A} seems a small one. We will show, however,
that it is an enormous jump, taking us from 7, past the first recursively inaccessible,
past the first nonprojectible all the way to o, the first stable ordinal. The precise
statement is contained in Corollary 8.3 below. The main step in the proof is the
following theorem, known as the Shoenfield-Lévy Absoluteness Lemma.

8.1 Theorem. Any X, sentence without parameters true in 'V is true in L.

Warning: this does not say that L<,V because parameters are not permitted.
Some extensions with parameters are discussed in the exercises.

We defer the proof of 8.1 to the end of the section (Corollary 8.11) since it
leads away from our chief concern.

8.2 Theorem. Let o, be the first stable ordinal and let R be a relation on HF.
(i) Ris 2} on {HF,e) iff Risao,r.e.
(i) Ris A} on {HF,e) iff Rel(a,).

Proof. As usual, (i) follows from (i). We first prove the (<=) half of (i). Let R be X,
on L(s,). We know that L(co)<,L by the definition of ¢, and that every xeL(c,)
is X, definable (as an element) in L by a formula without parameters (by 7.9).
It follows that every xeL(o,) is X, definable in L(c,) by a £, formula without
parameters. Thus any parameters in a X, definition of the relation R can be
eliminated so we may assume that

R(x) iff Ligo)=Iye(x,y)
where ¢ is A, and contains no parameters. But then we claim that
(1) R(x) iff Jo[o admissible A L(a)=3y o(x,y)].

The proof of (=) in (1) is trivial since we can let a=a,. The other half (<) of (1)
follows from L(o,)<,L for L(x)=3ye(x,y) implies LE=3Iye(x,y) and hence
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L(co)= 3y @(x,y) by stability. Using (1), it is not too difficult to rewrite R to be
%! over (HF,e). Namely, R(x) holds iff (HF, ) satisfies

(2) 3E,F[(HF,E)=KP+V=LAE is well founded AF is an isomorphism
of {(HF,e) onto an initial submodel of {HF,E> A (HF,E>E= 3y @(F(x),y)]

since any such (HF,E) is isomorphic to L(x) for some admissible a. By the
techniques of IV.2, everything inside the brackets is A} in €, E, F except the con-
dition
E is well founded.
But this is IT] by the very definition:
VX[3z(ze X)—>3z(ze X AVW(we X > wEz))] .
Hence the whole of (2) has the form
3E,F[---]
where [---] is IT] so (2) is Z3. (If you insist, you can always collapse the two existen-
tial second order quantifiers to one.)
To prove the other half of (i), let R<HF be X} over (HF,e), say
R(x) iff (HF,e>=3S,VS,0(x,S,,S,).
For each relation S, on (IHF,e), let ¢(S,) be the infinitary sentence
Diagram ((HF,€,S,>) A V0 \/emp(v =X) .

Thus S, occurs in o(S,).
We claim that R(x) holds iff L(g,) is a model of

(3) 3S,3P[S, < HF AP isa proof of (6(S;)—>¢(X,S1,S,))],

which will show that R is £, over L(g,). To show this, first suppose R(x) holds.
Then there is an S such that

(HF,€,8,)FVS; 0(x,54,S,)
and hence

o(S1)-(X,S,,S,)

is logically valid. It is a countable infinitary sentence, so it is provable. Hence (3)
holds in V. The only parameter in (3) is x and it is £, definable, being in HF.
Thus (3) holds in L by 8.1 and hence in L(c,). Thus R(x) implies L(oy)=(3). To
prove the converse, suppose (3) holds in L(s,). Then there is an S,el(g,) such
that

a(51)—(X,$1,S,)
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is provable, and hence, is logically valid. Thus,

(HF,e,$,)EVS, 0(x,S,,S,)
so R(x) holds. O

8.3 Corollary. The first stable ordinal is the least ordinal not the order type of
some well-ordering which is A} on (HF,e).

Proof. Every A} well-ordering R is in L(o,) so its order type is less than ¢, by 3.3.

To prove the converse, recall that g, is projectible into w by Corollary 7.10.
Let p be some one-one g ,-recursive map of ¢, into w. For <o, let

Ry={<p(x),p(y)> | x <y <P}

which is in L(g,) by £ Replacement. But then Ry is a well-ordering of order type 8
and R, is A} by Theorem 8.2(ii). [

We can now project the recursion theory from o, -r.e. sets of ordinals to X}
sets of integers using Section 5. We state some of the simplest results.

8.4 Corollary. (i) For any T} subsets B,C of HF there are disjoint L} sets B,,C,
with Bo<B, Cy<C and BuC=B,uC,.

(ii) Any two disjoint T1} subsets of HF can be separated by a A} set.

(ili) There are disjoint £} subsets of HF which cannot be separated by a A} set.

Proof. These are translations and projections of results we know about 6, [
8.5 Corollary. Every X} subset of HF is constructible.
Proof. If Ris £} on HF then it is X, on L(c,) and hence an element of L(cy+ w). [

It follows, of course, that every I1} subset of HF is constructible, but this is
as far as one can go. It is consistent with ZFC to assume there is a nonconstructible
A} subset of HF, where A} means expressible in both the forms

3S,VS,3S,(--1),
VS, 3S,VS,(---).

We now turn to the proof of Theorem 8.1. We need several preliminary lemmas.
A finitary formula ¢(x,, ..., x,) is an V 3-formula if it has the form

Vyieo, W32y, WX, 5, 2)

where ¥ is quantifier-free.
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8.6 Lemma (Skolem V3 normal form). Let K be a language and let ¥ be a finite
set of formulas of K., There is an expansion

L=KU{SI,..., Sn}

by a finite number of new relation symbols and an V3-sentence ¢ of L, with the
following properties:
(i) Every K-structure MM has a unique expansion M =M, S, ..., S,) with M = ¢.

(i1) For each formula y(y,...,y,) in ¥ there is a quantifier free formula yr, of
L, such that

Eo->VI[YG) = vo()]-

Proof. We may assume ¥ is closed under subformulas. Introduce, for each
Y1, ..., y)€ ¥ anew relation symbol S, . . Let ¢ be the conjunction of the
universal closures of the following:

Sy Y)Yy, ..., y,) if YeV is atomic,

SyVis s Y ISy (Y1, -, o) i TWEY,

SonvVis - Y Seyis s V) ASY1, -5 ) I (OAY)EY,

Sovw()’p ] Yn)‘—)se(yla“" y,,)v S:p(yh""yn) if (ng)elp’

Saymw(,\’p T j]m> e Yn)‘_’aymsw(yl, cre yn) if (aym‘//)e lll’

SVymw(yl, '“’jjms IR yn)HVym Sn//(yl’ RARE] ym) if (vyml//)e v.
Here we use yi ..., Vpms--os Vo tO0 deNOte Yy, ..o, Ve 1Vma1s--+» Y if m<n, to
denote y,, ..., y, if m>n. Now ¢ clearly has the desired properties. 0

8.7 Corollary. Let y be any sentence of K. There is an expansion L of K by a
finite number of new relation symbols and an V3-sentence ' of L, such that
(i) Every model M of  has a unique expansion to a model W' of '.
(i) If M=y and M is the reduct of M’ to a K-structure then ME=.

Proof. Let ¥ ={y} and apply 8.6. Let ¢ be as given there and let Y, be quantifier
free such that

VAl VR

The desired ' is (@ AY,), or rather, the V3-sentence equivalent to it after one
moves the quantifiers in ¢ out front. 0

The next lemma gives us an easy way to construct models of V3-sentences
and accounts for our sudden preoccupation with them.

8.8 Lemma. Let ¢ be an V3-sentence of L, say

Vxl’"'7xn3y19"-’yk¢(x’y))

where  is quantifer-free. Let



8. Shoenfield’s Absoluteness Lemma and the First Stable Ordinal 193
be a chain of L-structures. Suppose that for each l<w and each x,...,x,eM,
Wy 1 E Yo VWX s s Xy Y155 Vi) -
If M={),<,M;, then M=0o.
Proof. Trivial, since M, ,=3IPY(X,y) implies M= 3Ipy(x,y). [

The next lemma contains the secret to proving a number of important results,
including Theorem 8.1.

8.9 Lemma. Let (X, <) be a non-wellfounded partially ordered structure which
is constructible (i.e. is an element of L). There is a sequence {x,),<,, in L such that

Xn+1 <xn
Sor all n<o.
Proof. The hypothesis is that (X,<)>eL and that

VE(X, <) isnot well founded.

We claim that
4) LE=<X,<)> isnot well founded.

For otherwise, since L= Beta, there would be a function feL such that
Sx)={f(y)|y<x} for all xeX. But then (X, <) really would be well founded
(see Exercise 1.9.9). Now since (4) holds, there is a nonempty X,eL, X,=X
such that

VyeX,3ze Xy(2<y).

But then, using the axiom of (dependent) choice in L, there is a sequence of the
desired kind. 0

8.10 Theorem (of ZF). Let ¢ be a finitary sentence in a language L containing €
and some other relation symbols Ry,...,R,. If ¢ is true in some structure
A={A,e,R,,...,R,> where A is transitive, then there is a transitive structure
B=<(B,gR},...,R)) which is constructible and a model of .

Proof. We may assume that extensionality is a consequence of ¢ since it holds
in A. By 8.7 we may also assume that ¢ is V3, say

VXy(X)
where (%) is
0%, )
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and 6 is quantifier free. Let f=rk(4). We define a non-wellfounded structure
{X,<)eL. The set X consits of all pairs (B, f) such that B=(B,E,R;,...,R)>
is a finite structure with B<w, f:B—f and xEy implies f(x)<f(y). We define

By, [17<{Bo, fo?
to mean that B,=B,, f,<.f; and for every XeB,,
B, =y[x].
Now the definitions of X and < are absolute so {X,<)>eL. We claim that
(5) <X, < is not well founded.

Assuming (5) for a moment, let us finish the proof of the theorem. By Lemma 8.9
there is a sequence

<%n’fn>n<w
in L such that

<%n+ 19f;|+ 1><<%n’fn>
for each n. Let B=\)B, By Lemma 88, B=¢. Let f=|),f, Then, if
B=(B,E,R},...,R;)), then f:B—f and xEy implies f(x)<f(y) so E is well
founded. Now since Li=Beta, there is a transitive structure IBBeL isomorphic
to B. This B satisfies the conclusion of the theorem.

Now let’s go back and prove (5). Let X, be the set of those (B, f)e X such that
there is an embedding i of B into the original A such that

J(x)=1k(i(x))
for all xeB. The set X, is nonempty since {,,{<0,0>}>e X, where A, is the
substructure of A with universe {0}. It remains to show that X, has no < minimal
member. Let (B, foreX, with iy:B,—A the associated embedding. Let
A, <= A be isomorphic to B, via i,. Since

A=VXIFOX,5)
there is a finite structure A, W, =W, = A, such that for all xeU,,

A FyY[£].

Now choose B,=(B,E,,...) extending B, with B;=w so that for some
i, extending i,

i;:8,=%,.
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Let f,(x)=rk(i;(x)) for xeB,. Then (B, f;><(Bo,fo> and {(B,,f;>eX,. [
Theorem 8.1 is the informal version of the next result.

8.11 Corollary. For any X sentence ¢ of set theory

(p—o™)

is a theorem of ZF.

Proof. We work in ZF. Assume ¢. Then there is a transitive {A4,e)& ¢. But then
by Theorem 8.10, there is a transitive (B,e)eL such that {B,e)F¢. And
(B,e) S .na{L,€) so (Ledk=o; ie, oV, 1

Some extensions of these results are sketched in the exercises.

8.12—8.20 Exercises
8.12. Show that if
{HF,e)~3S,3S,VR¢(S,,S,,R,x)

where ¢ is first order, then there is an S, e€L(o,) such that
{HF,¢e,§,>=3S,VR¢(S{,S,,R,x).

This is the original version of Shoenfield's Absoluteness Lemma. A proof of it
can be discovered inside the proof of Theorem 8.2.

8.13. Show that there is a £} well-ordering of a subset of w of order type g,
8.14. Improve 8.11 by replacing ZF by KP + Beta.

8.15. Improve Theorem 8.10 as follows. Let ¢, A be as in 8.10, let B=rk(A).
Let « be the least admissible 7,>p if L(r,)=Beta, otherwise let «=1,,,. Show
that there is a transitive model B of ¢ which is an element of L(«).

8.16. Let « be a limit of admissibles. Show that any X, sentence (without para-
meters) true in V(o) is true in L(a). [Use 8.15.]

8.17. Let T be a countable set of finitary sentences true in some transitive struc-
ture A={A4,6,R,R,,...>. Show that there is a transitive model B of T which
is an element of I(T) and is countable in L(7T). [Hint: Modify the definition of
(X, <) in the proof of 8.10 so that bigger structures take care of more of the
sentences in T.]
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8.18. Prove that the following is a theorem of ZF (by using 8.17): for each X
formula ¢(v)

Vx< HF [¢(x)— ¢(x)"™].

8.19. Let « be the constructible N, i.e. the ordinal which, in L, is the first un-
countable cardinal. Prove that

L(®)<,V.

It is consistent with ZFC to assume o is countable. Prove that if o is countable and
if f>a then L(f)«,V.

8.20. Let & be a X! sentence true in some countable structure 9. Prove that there
is an MeL(o,) which satisfies @. If @ is I} you can improve this bound. How?

8.21 Notes. The original Shoenfield Absoluteness Lemma (Exercise 8.12) was

proved in Shoenfield [1961]. Theorem 8.1 appears as Theorem 43 in Lévy [1965].

The proof given in this section and some of the generalizations found in the Exer-

cises appeared in Barwise-Fisher [1970]. Exercise 8.16 is due to Jensen-Karp
1972].

[ Theorem 8.2 and its Corollary 8.3 are due to Kripke [1963] and Platek [1965]

in the form stated here. Their content, however, goes back to Takeuti-Kino [1962].





