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PART II. COMPACTNESS REGAINED
5. Admissibility

In passing from %, to % ., a very substantial gain in expressive power is achieved.
As is to be expected, however, there is a considerable price to pay. Many of the
very useful properties of #,,,,—most notably compactness—are no longer enjoyed
by Z,.- If we restrict our attention to %, ,,, then some of these properties are
salvaged. For example, interpolation, and a reasonable form of completeness can
be thus regained. Compactness, however, clearly still fails. To obtain an omitting
types result, we considered countable fragments Ly of £, . Though completeness
looks even better in this framework, interpolation, for example, fails. Thus, while
on the one hand we want to deal with parts of %, , small enough to be manage-
able, on the other hand, we would nevertheless like them to be large enough to be
closed, for example, under finding interpolants. For this latter consideration, it
would be preferable if the pieces that we deal with were given in some absolute
way, since then, using them to give bounds would be more meaningful from “the
first-order” point of view. L,, ,, itself, as a fragment of &, is given by cardinality
conditions, and so is certainly not “first-order”. .

In order to introduce the notion that has proven fruitful in this respect, we will
assume, first of all—without doing any of this explicitly—that the syntax and
semantics of ¥, are given within set theory. That is, we assume that sentences
are sets, structures are sets, satisfaction is a ternary relation between structures,
formulas, and functions from variables, etc. For any transitive set B we will thus
be able to define Ly = L, N B;that is, the formulas of Ly are those formulas of
L, in B. Mild assumptions on B will guarantee that Ly is a fragment in the sense
we have been using. Somewhat stronger conditions will give us a great deal of
closure, and, when combined with countability, will even give a form of com-
pactness.

5.1. KP and Admissible Sets

An admissible set is a transitive set 4, such that {4, €> is a model of a certain
theory KP, the initials standing for Kripke and Platek. Kripke [1964a, b] and
Platek [1966] were engaged in trying to generalize recursion theory to the ordinals.
They were following the earlier work of Takeuti [1960], [1965] and Tugué [1964]
who were studying recursion on the set of all ordinals, and Kreisel-Sacks [1965]
whose metarecursion theory, in turn, followed from earlier work of Kleene [1955b]
on recursive ordinals and hyperarithmetic sets. For a more complete history, the
reader should consult the introduction to Barwise [1975].

In order to present the theory KP, we must first recall the Lévy hierarchy of
formulas of a language containing the binary relation symbol € and perhaps other
symbols as defined in Lévy [1965]. The collection of Ay-formulas is the smallest
collection of formulas containing the atomic formulas, closed under the boolean
connectives of 71, & and v, and under bounded quantification. (That is, if ¢ is a
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Ao-formula and u and v are variables, Ju € v and Vu € vg are A,-formulas, where
Ju € v stands for Ju[u e v & ¢], etc.). The X,-formulas are formulas of the form
Jve, where ¢ is a Ay-formula. The collection of X-formulas is obtained from the
A,-formulas by closing under &, v, bounded quantifiers, and existential quan-
tifiers. A relation on a structure is said to be Z-definable, or simply X, if it can be
defined by a Z-formula. A relation is X, if it can be defined by a E-formula using
parameters. A relation is IT if its complement is X, and is A if it is both X and II.
All other similar definitions should follow easily from this sample.

The reason that the above classes of formulas are important is related to the
notion of an end extension. A structure (B, F, ...) is an end extension of a structure
(A, E,...>, where E and F are binary, if {4, E, ...> is a submodel of (B, F, ...>
and whenever a € 4 and (c, a) € F, then ¢ € A. In words, elements of 4 do not get
any new F-members in B. It is then quite easy to show inductively that Z-formulas
are preserved in going to end extensions. We call such formulas persistent. If we
insist that all the structures involved be models of some theory T we arrive at the
notion of persistent relative to T. A formula is absolute relative to T if it holds in a
model of T iff it holds in any end extension which is a model of T. Clearly ¢ is
absolute relative to T iff both ¢ and —1¢ are persistent relative to T. There is a
converse to the simple observation that X-formulas are persistent. Feferman and
Kreisel [1966] (see Feferman [1968b]) have shown that if ¢ is persistent relative
to T, then there is a X-formula ¢ such that T — ¢ < . Hence, if ¢ is absolute
relative to T, then in T ¢ is provably equivalent to both a - and a II-formula.

We can now give a set of axioms for KP. First, there are the axioms of ex-
tensionality, pairing and union, and the foundation scheme for arbitrary formulas
(since the set existence axioms are weak). In addition, we have the following two
schemes:

Ao-Separation: v Vx(x € v & x € u & ¢(x)), for each Ay-formula ¢ in which v
does not occur free.

Ay-Collection: Vx € u Iyp(x, y) — Jv Vx € u Iy € vep(x, ), for each Ay-formula
¢ in which v does not occur free.

Now, a structure U = {4, €,...> is admissible if (A, €) is transitive and
{A,€,...> = KP. A transitive set 4 is admissible if {4, €) is an admissible struc-
ture. It is often of interest to consider structures {4, €, ), where # is the power
set operation, and A is closed under power set. Even if (A4, €) is admissible and
A is closed under power set, {4, €, ) need not be admissible. As a notational
convention, we write L, to denote such an admissible fragment even when con-
sidering an admissible structure A = {4, €, .. ).

For later use, we mention two classes of sets given by conditions weaker than
admissibility. Transitive sets (B, €) satisfying all axioms of KP-except perhaps
that of A,-collection—are called rudimentary. The primitive recursive set functions
of Jensen-Karp [1971] contain certain innocuous functions, such as the zero
function, the pairing function and the union function, and are closed under com-
position and recursion. Transitive sets closed under these functions are called
primitive recursively closed sets and are easily seen to be rudimentary, though
they are not necessarily admissible.
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5.2. Some Admissible Sets

It will be useful to have some examples of admissible sets. The first example is
from the set-theoretic point of view. For x a set, let TC(x) denote the transitive
closure of x; that is, it is the smallest transitive set with x as a subset. For k an
infinite cardinal let H(k) = {x:|TC(x)| < k}, the set of all sets of hereditary
cardinality less than k. If k is regular, then H(k) is easily seen to be admissible. If
Kk = N, all axioms of ZF except infinity hold, while if k > N, all axioms except
perhaps power set hold. (Note that H(3Q,) is closed under power set, but (H(3,)),
€, ?) is not admissible.) H(X,) and H(},) are usually denoted by HF and HC,
respectively. Assuming that the underlying language is coded appropriately, then
Ly is simply L,,.

The other example is of a more recursion-theoretic flavor. Let w$* denote the
first non-recursive ordinal. That is, it denotes the first ordinal whose order type
is not given by a recursive relation. Then, the set L(w$¥) of all sets constructible
before the w{*-th stage is an admissible set. In fact, it is the smallest admissible set
containing w. It is quite easy to see that no smaller set containing @ would be
admissible. For a proof that it actually is admissible the reader should see Barwise
[1975]. We note, for use later, that the subsets of w in L(w$*) are exactly the hyper-
arithmetic sets.

An extremely important fact—and one about which we will have more to say
in Section 5.4—is that for each set x there is a smallest admissible set containing
x as an element. This set is denoted HYP(x). For B transitive, we let o(B) denote
the least ordinal not in B. Given an arbitrary set x—particularly if x happens to
be some structure M —we can associate with x the ordinal o(HYP(x)). As we shall
see, this ordinal will have a strong model-theoretic relation to IN.

5.3. Some Theorems of KP

KPis, of course, a weakened version of ZF, a version with separation and collection
limited to A,-formulas and power set totally eliminated. However, it turns out
that collection actually follows for X-formulas, while separation holds for A
subsets. In addition, replacement holds for Z-formulas, as does the reflection
principle; that is, if ¢ is a -formula, then ¢ < Jup™ is a theorem of KP. As a
consequence, every X-formula is equivalent to a X, -formula.

In KP we can show that for any set x, its transitive closure TC(x) exists, and
then prove the following scheme for definition by T recursion:

5.3.1 Lemma. Suppose G is an (n + 2) place Z-function. An (n + 1) place Z-function
may be defined by:

F(xq,...0%,9) = G(Xq, ..., X, 1, {2, F(x14, ..., X, 2)): 2 € TC(Y)}).
0
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There is an analogous scheme for relations, and it is given in

5.3.2 Lemma. Suppose P, Q are A-relations of (n + 1) and (n + 2) places, respec-
tively. An n place A-relation may be defined by:

R(xy, ..., x,,0) e P(xy,...,X,)
R(Xqy ooy Xy ) Q(Xyy vy Xn, ¥, {z€ TC(y): R(xq,...,%,2)}). 0O

These schemes guarantee that certain important functions and relations are,
respectively, £ or A definable. For example, the usual operations of ordinal
arithmetic or the rank of a set are X. In addition, by a straightforward argument
it is possible to show that if (X, <) is a well-ordering of order type a and <X, <)
is an element of the admissible set A4, then o € A. Specifically, A can contain only
well-orderings of order type < o(A).

If (B, E) = KP and b € B, then TC(b) will be well-founded in the sense of the
real world V just in case the rank of b in the sense of {B; E) happens to be well-
ordered in V. The set of all a € B which satisfy the condition (which is not expressible
in (B, E), unless all elements of B satisfy the condition) is called the well-founded
part of (B, E) and denoted WF(B, E). A result originating with Ville (see Barwise
[1975]) states that if (B, E) = KP, then WF(B, E) is isomorphic to an admissible
set. This is often called the “truncation lemma”.

Returning now to more model-theoretic concerns, suppose that 4 is admissible.
Then, if the underlying vocabulary is A on A4, so also will be the set of formulas of
L, and the set of sentences of L,. The satisfaction relation will be A, while the
quantifier rank of a formula will be given by a X-formula.

5.3.3 Application. Suppose M is a structure, m,, ..., m, € M, and « is an ordinal.
It is quite easy to see that the function taking (M, my, ..., my, &) tO Gy m,. ... m 1S
defined by a X recursion; and so, in particular, the relation “x = ¢(MM)” is £ on
any admissible set containing w. Of course, this does not mean that an admissible
set need be closed under o.

Now, if A = HC, and if ¢ is any sentence of ., then since, as was noted
earlier, every countable structure I (for a countable language) has its canonical
Scott sentence o(M) in Z,,,, the set S = {o(IN): M = ¢} is £ on HC and in
one-to-one correspondence with the isomorphism types of countable models of ¢.
Now, by the general set-theoretic result of Mansfield [1975], S has cardinality
< R, or = 2% This, of course, is simply the result of Morley [1970] on the weak
form of Vaught’s conjecture for &, ,. The same argument also works for PC
classes. On the other hand, it is known that the Vaught conjecture itself fails for
PC classes. In fact, using the “truncation lemma”, it is not difficult to see that the
order types of the ordinals in countable models of KP must be of the form a or
o + 7 - a, where 1 is the order type of the rationals and « is a countable admissible
ordinal. (To see that all the “non-standard” values are obtained one can appeal,
for instance to Theorem 7.2.7. H. Friedman originally noted this for ZF in place
of KP. However, by using KP, we get all the standard o immediately, which is
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what we need here). There are other proofs of this result and others relating to
Vaught’s conjecture. A good reference is Steel [1978]. More recently, Shelah (see
Harrington-Makkai-Shelah [198?]) proved the Vaught conjecture for w-stable
theories in % ,,,.

5.3.4 Remark. A next step up from the theorems we have discussed would be
X-separation. This principle is not provable in KP and is, in fact, quite strong.
For example, if {4, €) = “X-separation”, then it is easy to see that (4, €) is a
B-model, ie., if {A4,€)E “{x, <) is a well-ordering”, then {x, <) really is a
well-ordering. If {4, €) = “Z-separation” and is locally countable. That is, if for
each a € A, there is some bijection from a into w, then {4, €) is recursively in-
accessible, which means that if a € 4, then there is some admissible (B, €) such
that a € B € A. However, the smallest recursively inaccessible admissible set does
not satisfy X-separation. For {4, €) locally countable, it is shown in Nadel
[1974b] that (A4, €) is a f-model iff (A4, €) is recursively inaccessible. Though the
implication from right to left holds without local countability, there are f-models
that are not recursively inaccessible; for example, consider HYP(L(w,)).

5.4. Urelements

When a model theorist studies a model M = (M, R, ...), the only structure he
wants to consider is that imposed upon the elements of M by R, ... . The particular
elements forming the universe M are irrelevant and regarded as atoms or ur-
elements. Unfortunately, with ZF as metatheory, there are no urelements and M
will consist of sets, each with its own internal structure. While this may not be
aesthetically pleasing, in most instances the model theorist is able to simply
ignore the fact. However, in the present rather sensitive context, this is not possible.

For the current purpose, there are two main considerations. First, the set
HYP(IM) should depend only on the isomorphism type of 9. In fact it would
also be reasonable to expect that if 9t and 9N are potentially isomorphic, then so
are CLHYP(IN), ) and (HYP(M), €). It should be apparent that even the first
version would never be literally satisfied. One might then try to patch things up
as follows: assign to each isomorphism type the intersection of all admissible
sets containing models of that isomorphism type. This would work to some
extent for countable structures (see Nadel-Stavi [1977]); but, as we shall mention
later, even here there would be the difficulty that there need be no copy of I in
the intersection. However, suppose we consider even the simplest example of a
structure, a set M with no relations or functions at all. Suppose M has cardinality
J,,- Then any admissible set containing M must contain an uncountable ordinal.
Clearly this would violate the stronger version.

The second consideration is that by allowing urelements, there are more
admissible sets; and, consequently, a finer classification becomes possible. For
example, so far HF is the only admissible set with ordinal w. Allowing urelements
will provide many others, and these will turn out to be a significant class which
will be considered in more detail in Section 7.4.
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Having presented some reasons why doing without urelements would cause
problems, we go ahead and permit them from now on. This requires some changes
in terminology and a slight modification of the axioms of KP to form the analogous
theory KPU. We omit the precise details, all of which are carefully presented in
Barwise [1975]. We also omit the precise construction of HYP(IR), which is via
the Godel operations beginning with 9, a structure on urelements. Suffice it to say
that HYP(9) is the smallest admissible set containing 9 as an element, and that
the first consideration mentioned above holds in the strong version.

Now, having insisted on the need for urelements, we must confess that in
terms of our presentation here—because we are considering admissibility more
from the model-theoretic point of view than from the recursion theoretic, and we
will be omitting most of the details—urelements will really not play a significant
role, except in Section 5.5 and in our discussion of recursively saturated structures
in Section 7.4. The results we will be considering usually carry over from ad-
missible sets without urelements to the more general setting allowing urelements
with little or no change. Thus, we will simply suppress mention of urelements
except where they really do make a difference. However, there is one restriction
that we should make clear at this point. In exchange for having additional ad-
missible sets with ordinal w, it is sometimes necessary to restrict the underlying
vocabulary to be finite.

5.5. The Pure Part of HYP(M)

In this section we discuss some results concerning admissible sets with and without
urelements. Assume that {4, €) is an admissible set which may contain urelements.
Those elements of 4 other than the urelements are called sets. Among the sets
are distinguished the pure sets whose transitive closures do not contain urelements.
We call admissible sets without urelements (that is, those containing only pure
sets) pure admissible sets.

One urelement is like any other. And that is just the point. Consequently,
distinct sets may only be distinguishable by reference to the specific urelements
involved and might even be images of each other under some e-automorphism.
This cannot happen to pure sets. In some sense, then, pure sets have a real identity
while arbitrary sets need not. This is especially evident in comparing elements
from different admissible sets. For this reason, the set of pure sets in an admissible
set A, denoted pp(A), the pure part of A, plays a special role. For example, the set
of sentences of L , would be taken to be a subset of pp(4), so that these sentences
would form a subset of the sentences of £, as viewed from “the real world”
where we need not have urelements.

The following easy result is from Barwise [1975].

5.5.1 Theorem. If (A, €) is admissible, then {pp(A), €) is a pure admissible set. [

The next result, which is due to Makkai (see Nadel-Stavi [1977]), gives some
idea of the “internal” relation between pure sets and sets of urelements.
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5.5.2 Theorem. Let M be a countable structure on urelements. Then the following
are equivalent:

(1) M has only countably many automorphisms.
(ii) HYP(IR) contains a pure structure N which is an isomorphic copy of M and
an isomorphism between M and N. [

In Theorem 5.5.2, HYP(IR) might contain an isomorphic pure copy, but not an
isomorphism. Moreover, HYP(3) could be replaced by the class of sets con-
structible from I, or even hereditarily symmetric over 9. The next result from
Nadel-Stavi [1977] shows how pp(HYP(9R)) can be described without reference
to urelements.

5.5.3 Theorem. pp(HYP(IN)) is the smallest admissible set containing oby, for
each f € HYP(IM).

A case can be made for using pp(HYP(x)) as a measure of the information
contained in x. If we begin with a pure set x, rather than with a structure on urele-
ments, then we denote by x* the smallest pure admissible set containing x as an
element. The next result, which may be appreciated more after considering
canonical Scott sentences again in Section 7.1, shows that Mt and o(9) contain
about the same information.

5.5.4 Corollary. (i) If 6() € HYP(M), then pp(HYP(M)) = (a(M))*;
(i) If a(M) ¢ HYP(M), then (pp(HYP(MN)) U {a(M)})* = (D). [

Since admissible sets of the form pp(HYP(9)) might have special properties,
it is natural to ask which pure admissible sets can be represented as pp(HYP(IR))
for some M. First, some terminology is needed. An ordinal o is called admissible if
L(a) is admissible. This is the same as saying that « = o(A) for some admissible
set A. Sacks (see Friedman-Jensen [1968]) showed that a countable admissible
ordinal is of the form w7} for some x = w, where w] denotes Church-Kleene w,
relativized to x. In a similar spirit, Nadel-Stavi [1977] showed that every ad-
missible L(a) is of the form pp(HYP(IM)) for some M, as well as some other repre-
sentation theorems. Not all pure admissible sets could be represented as
pp(HYP(M)). An admissible set A4 is said to be resolvable iff there is a function
F:0(4) - A such that 4 = ( J,., F(B), and (4, €, F) is admissible. It is not
difficult to see that if A is resolvable, we can always find F, such that, for each
o < Be A, F(o) e F(f), and F(a) is transitive. If F can be chosen A on A, we call
A, A-resolvable. Clearly pp(HYP(9)) is resolvable, using F(B) = pp(L(B, M)),
but there are non-resolvable countable admissible sets. Nadel-Stavi [1977] asked
if this is the only constraint. Using structures M motivated by Steel forcing in
place of the simpler structures used in the partial result of Nadel-Stavi [1977],
S. Friedman [1982a] has shown this to be the case.
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5.6. Barwise Compactness

As we remarked earlier, compactness fails for &, , even for the simplest infinitary
fragments. However, the following variant of compactness does hold.

5.6.1 Theorem (Barwise Compactness Theorem). Let U be a countable admissible
structure and let T be a set of L, sentences X definable on . Suppose that each
T' < T, T € A, has a model. Then T has a model. [

This result can be proved directly using the model existence theorem, or it
can be obtained as a corollary to the extended Barwise completeness theorem
which will be treated in Section 6.1. Barwise compactness resembles ordinary
compactness, except that the theory T is restricted to be £ on A, rather than
arbitrary, while the hypothesis requires more than just finite sets being satisfiable.
Nonetheless, Barwise compactness is a very powerful and important tool. It is
safe to say that this result is what established admissible sets as an ongoing feature
of model theory and started a second wave of interest in infinitary logic.

5.6.2 Remarks. It is easy to see that ordinary compactness for .&,,,, follows from
Barwise compactness. The restriction to X-theories is really no restriction here
since, for any set X = HF, (HF, €, X) is admissible.

We will have more to say about Barwise compactness in Section 6.2 and will
end this chapter with a brief application of it.

5.7. An Application of Barwise Compactness

In this section we will give a simple example of how Barwise compactness may
be used. There are numerous applications to model theory. For a striking example
of a more set-theoretic nature the reader should see Barwise [1971]. Barwise
compactness is an especially potent tool used in conjunction with the omitting
types theorem, as, for example, in Keisler [1971a, p. 58]. We will give a simple
recursion-theoretic application which we will use later for model-theoretic pur-
poses.

Kleene [1955b] gave an explicit definition of a recursive linear ordering that
is well-ordered with respect to hyper-arithmetic subsets, but is not really well-
ordered. Later, in Section 7.1 we will be interested in the canonical Scott sentence
of such an ordering. We now will use Barwise compactness to show that such an
ordering indeed exists. Once that is established, it is relatively simple to see what
its order type could be. The object we construct is, by model-theoretic standards,
quite refined, since we are insisting that it be recursive. Although Barwise com-
pactness may seem at first glance to be much more restricted than ordinary
compactness, the far greater expressive power of &, ,, allows Barwise compactness
to provide more subtle models than can be obtained from ordinary compactness.
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Now, to begin the argument, let 4 = L(w$¥). We will use a language with a
binary relation symbol €, a constant symbol a for each a € 4, and an additional
constant symbol 9 (the symbols a are really expendable). Consider now a theory
T in L, that expresses the following:

(i) KP;
(i) atomic diagram of {4, €);
(iii) “every ordinal is recursive”;
(iv) “M is a recursive binary relation on w which is a well-ordering”;
(v) “9 has an initial segment of type a”, x € A4.

It is not difficult to see that T could be chosen to be X on A. It is also easy to see
that every subset T' < A, T'€ A has a model. Thus, T has a model ¥ =
(B, a, M>,. 4. Finally, there is sufficient absoluteness to guarantee that M really
is a recursive linear ordering with initial segment of type w$* and is also such that
every hyper-arithmetic subset of w has a least element. 9t cannot really be well-
ordered, since, if it were, it would be of order type some non-recursive ordinal.

6. General Model-Theoretic Properties
with Admissibility

In this section we will deal with aspects of the model theory of L 4, for 4 admissible,
where the syntax is somehow bound to the set A, but the models involved need
not be.

6.1. Barwise Completeness

In Section 3.2 we introduced the notion of provability I, , and stated a com-
pleteness theorem for it in Theorem 3.2.1. Now, we would like to use a stronger
notion of provability, a notion in which the proof itself—as well as the formulas
in the proof—are elements of an admissible set 4. In order for this stronger notion
to be complete, however, we will need to modify the definition of proof slightly.
Without going into all the details here (these can be found, for instance, in Barwise
[1975]), we modify the clause for conjunctions by taking as a proof of Y - /\ ®
a function f with domain ® such that for each ¢ € @, f(¢) is a set of proofs of
Y — ¢. Basically, this change is necessary because the axiom of choice need not
hold within an admissible set. Let us denote this new notion of proof by i ,. It
is then quite easy to see (using the axiom of choice in the universe) that for any
sentence of L4, -1, ¢ iff -, ¢. Finally, let - , ¢ mean that there is some proof
in A4, in the sense of - ,, of ¢. This is equivalent to saying “<{A4,e) =1, ¢”
since the notion that p is a proof of ¢ in the sense of - , is absolute for admissible
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sets. In particular, if T is a X ,-theory, that is, a theory in L, X-definable on 4,
then {¢: T+ 4,0} is Z,.
Barwise [1967] (also Barwise [1969b]) was able to prove

6.1.1 Theorem. For any admissible A, and ¢ a sentence of Ly, 1, @ iff - 4 .
Moreover, if T is a X 4-theory, then T\, @ iff T+ 4. [

Now, as an immediate consequence of Theorem 6.1.1 and the Karp com-
pleteness theorem (3.2.1) we have the following sharpening.

6.1.2 Theorem (Barwise Completeness Theorem). Let A be a countable admissible
set and ¢ a sentence of L 4, then = ¢ iff - 4 . Moreover, if T is a X 4-theory, then
TEeiff TH, 0. [

We now obtain the following generalization of the fact that the set of valid
sentences of L,,,, is r.e.

6.1.3 Corollary. Let A be countable admissible and T a X 4-theory. Then {¢: ¢ is
a sentence of Lyand T = ¢} isE,. [l

6.1.4 Remarks. The Barwise completeness theorem must clearly fail in general
for uncountable A, since the Karp completeness theorem already fails. In fact,
the extended version is easily seen to fail, even for subsets of HC of power N;.
The fact that Theorem 6.1.1 holds without cardinality restriction does show that
provability is absolute for models of ZFC, and this allows us to finish the argument
that was begun in the remarks of Section 3.2.2 that provability is equivalent to
validity in boolean-valued extensions of the universe. If ¢ is boolean-valid, we
simply pass to a universe in which ¢ is countable. In this universe ¢ is valid, and
we now appeal to the Barwise completeness theorem.

Corollary 6.1.3 also fails for uncountable 4. We will consider this subject
further in Section 6.3.

There is a converse to the Barwise completeness theorem due to Stavi [1973]
and extending partial results of Barwise [1967]. It is stated in reference to Theorem
6.1.1 instead, since, it then may hold for all cardinalities.

6.1.5. Let B be a transitive primitively recursively closed set such that if 1, @,
then g @. Then B is a union of admissible sets. [l

This result could be stated in a more general framework using certain classes
of abstract provability predicates rather than the particular ones we have used.
In contrast to Theorem 6.1.5, however, Stavi [1973] has shown that there is a
countable transitive primitive recursively closed set 4 such that the set of valid
sentences of L, is £, on A4, but 4 is not the union of admissible sets.
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6.2. Barwise Compactness (Continued)

Recall that for A admissible, S < 4, S is X on A iff S is X, on 4. We say that a
transitive set A is £,-compact if L , satisfies the Barwise compactness theorem for
¥, sets of sentences (rather than X). There are also relativized notions where
additional predicates are mentioned. The next result is due to Barwise [1967] and
shows that admissibility is the weakest assumption one can make to get X,-
compactness.

6.2.1 Theorem. Suppose A is rudimentary. Then if A is X,-compact, A is admis-
sible. 0

The subject of compactness for admissible fragments of £ ., will be considered
in Section 6.3.

6.3. Uncountable Admissible Sets

In considering Barwise compactness on uncountable admissible sets, or in trying
to determine the uncountable admissible fragments L, for which the L 4 validities
are X, on A, there are basically two sorts of results. The first sort involves impli-
cations between these properties and other conditions that seek to strengthen
the notion of admissibility. We will not pursue this line here. The interested reader
should consult Barwise [1975] for an introduction to these matters. The second
sort establishes the existence (in a “concrete” way) of uncountable admissible
sets satisfying Barwise compactness, or on which the validities are X,. Specialized
results in this direction were obtained earlier by Barwise [1968], Chang-
Moschovakis [1970], Green [1974], Karp [1972], Makkai [1974b], Nyberg
[1974, 1976] and perhaps others. More recently, S. Friedman [1981] and
Magidor—Shelah-Stavi [1984] have obtained more general treatments. Our
presentation here is based upon the latter of these. The idea is simply to assume
that in some reasonably nice way, the admissible set in question is the union of
countably many “small” sets. For simplicity, we will assume our admissible sets
are pure and give

6.3.1 Definition. Suppose  is admissible. S = A, is said to be a smallness predicate
for A if

(i) SisX, on A4;
(ii) if x € S, then P(x) € 4;
(iii) the relation {(x, Z(x)): x € S} is X, on A.

A is said to have the first decomposition property (DP1) if for some smallness
predicate S for U, every member of A is a countable union of members of S (in
the real world).
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6.3.2 Definition. A binary relation R on A4 is a decomposition relation for A if

(i) Ris X, on A4;
(i) YX IYR(X, Y);
(iii) whenever R(X, Y), then for some sequence {X,: n € ) such that X, € Y,
and 2(X,) = Yfornew, X =) {X,:new}.

A is said to have the second decomposition property (DP2) if it has a decomposition
relation. A is said to have the decomposition property (DP) if 2« has (DP1) and
(DP2). A set B = A is said to be g-small if it is a countable union of elements of
A. If U is g-small and has (DP), it is said to be countably decomposable.

Using the above notions, Magidor-Shelah—Stavi [1984] obtain their main
result in the next theorem and its corollary.

6.3.3 Theorem. Let A satisfy (DP) and assume T < L, is a-small and £, on A,.
Then

(i) {peL;:TE=E@}isZ, on¥Y;
(ii) If T has no model, then some T, = T, T, € A has no model. (I

6.3.4 Corollary. (i) If A satisfies (DP) then {¢p € L,: = @} is X, on A.
(ii) If A is countably decomposable then A satisfies Barwise compactness and
foratheory T, X, on A, {peL,: T ¢@}isE,onA. [

All of the specialized results on Barwise compactness and completeness alluded
to above are consequences of Theorem 6.3.3 and Corollary 6.3.4, including the
original results for 4 countable.

6.3.5 Examples. (i) If A4 is closed under (real) power set and the relation
{{x, P(x)): x € A} is £, on A, then, letting S = 4 and R = {{x, P(x)): x € A},
we have the Barwise-Karp cofinality w compactness theorem (see Barwise [1968]
and Karp [1972]).

(ii) Let A be an admissible set containing some element b, such that in the
sense of A, every element of A has cardinality at most the cardinality of b, and that
for some sequence <(b,;new)eAd, where (J{2?(b,): newled, b=
\ {b,: n € w}. Then, if we take S = {x € A: x has cardinality at most b, in the
sense of 4, for some ne w} and R = {(X, Y): 3f € A[ f is a function from a sub-
setof bonto X and Y = {f"Z: Z € | ) {?(b,): n € w}} we obtain Makkai’s com-
pactness theorem, Makkai [1974b], which generalizes Green [1974].

To what extent is the above decomposition property necessary? Magidor—
Shelah-Stavi [1984] gives the following partial converse to Corollary 6.3.4(i).

6.3.6 Theorem. Assume that V = L, then for o > ® admissible, {¢ € L,: = ¢} is
X, on {L,, € iff {L,, €) satisfies (DP).
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The situation for Barwise compactness is more complicated. Results of Barwise
[1975] and Stavi [1978] show, for example, that for k regular, there is a closed
unbounded subset of & < k such that {L,, €) satisfies Barwise compactness. The
idea here is that, for “soft” reasons, there are many {L,, €) satisfying Barwise
compactness, and some of these will not be countably decomposable. Magidor—
Shelah—Stavi [1984] realized that by strengthening the notion of Barwise com-
pactness to stable X,-compactness, where we call U stably X,-compact if all ad-
missible expansions of U satisfy Barwise compactness, a result would be forth-
coming. And this result we give in

6.3.7 Theorem. Assume that V = L. Let A be an admissible structure of the form
{L4»& Ry, ..., R,>. Then W is stably X,-compact iff either A is countably de-
composable or o is a weakly compact cardinal. [

There is an analogous result for the second part of Corollary 6.3.4(ii) and other
interesting results which the reader can find in Magidor-Shelah—Stavi [1984].

6.4. Interpolation

In Section 3.2 we mentioned that £, ,, satisfies interpolation. However, countable
fragments Ly of L, , do not, in general, satisfy interpolation. Barwise [1967]
has nevertheless shown that for 4 countable admissible, L, does satisfy inter-
polation; and, hence, its consequences such as Beth definability. His proof in
Barwise [1975] is similar to the consistency property proof of the Lopez-Escobar
interpolation theorem for L, ,,, except that in order to show the set under con-
sideration is a consistency property, it is necessary to appeal to the Barwise
completeness theorem. We point out here that no analogous appeal is needed
in the earlier result.

There is a converse result due to H. Friedman (see Makowsky—-Shelah—Stavi
[1976]).

6.4.1. Theorem. Let A be a transitive primitive recursively closed set. If L, is A-
closed, then A is the union of admissible sets. [

6.5. Hanf Numbers

Barwise [1967] was able to obtain a finer Hanf number result for countable
admissible fragments L ,. The results we state here are for X,-theories rather than
single sentences and originate in Barwise-Kunen [1971].

6.5.1 Theorem. Let A be countable admissible and T a X ,-theory. If, for each
B < o(A), T has a model of cardinality at least 2z, then T has a model of each infinite
cardinality. 11
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There is a generalization of Theorem 6.4.1 to arbitrary admissible sets, but for
these some preliminary discussion is required.

6.5.2 Definition. Let T be a X ,-theory for some admissible fragment A. Assume
the vocabulary has among its relation symbols a binary relation symbol <. T is
said to pin down the ordinal o if

(i) For any model M of T, <™ is a well-ordering of its field and
(ii) T has a model with <™ of order type a.

The least ordinal not pinned down by some X ,-theory T is denoted hy(A).

6.5.3 Theorem. Let A be admissible andk = | A|. The Hanf number (for L ,-theories)
of L, is sup{d(x): B < hg(A)}.

In Section 7.2 we will give a very short proof of the following important fact.
6.5.4 Theorem. Let A be countable admissible, then hg(A) = o(A4). 0

See Chapter IX for information about the size of hg(A) for A uncountable.

6.6. Global Definability

In Theorem 4.2.2 we mentioned an interesting local definability result. Here, we
give an important global definability result of Makkai [1977b]. The version we
will give first appeared in Barwise [1975], and it involves X}-sentences of &, ,
which are simply sentences of the form 3Q¢ where Q is a set of symbols and ¢ is
a sentence of £, ,,. The semantics is the obvious one.

6.6.1 Theorem. Let 30¢(P, Q) be a Zi-sentence of the countable admissible frag-
ment L,(t). For a countable structure MM define S(M) = {P: M = 30¢(P, Q)}.
The following are equivalent:

(i) For each countable I, |S(M)| = N,.
(ii) For each countable M, |S(M)| < 2%°.
(iii) There is a sentence y of L ,(7) of the form

\VEE ) 7RR00 70 2 TN ) 2 C TR )
Hwi(xl""’xk’ Y1,---,y,',.)],

which is a logical consequence of (P, Q), where each V; contains only
symbols of tnot in Q L {P}. 1[I

The proof of this result is somewhat involved and uses the interpolation
theorem. It has a number of important corollaries, all of which can be found in

Barwise [1975].
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6.7. Omitting Types Revisited

We now continue the thread that we began spinning in Section 1.5. Barwise
[1981] has shown that the facts that #,, , and &, .(Q,) each satisfies an omitting
types theorem as well as Barwise completeness and compactness results are not
isolated events, but rather are part of a general result of the type described at
the end of Section 1.5. Recall that we assume that the logic .#* satisfies the sub-
stitution axiom and admits only first-order variables. In the subsequent discussion
we will assume that R, &,, ..., &, are relation symbols, and ¢y, ..., c, are con-
stant symbols not contained in the vocabulary under consideration, while “true”
is some valid sentence in that vocabulary.

Barwise [1981] generalizes the notion of an omitting types theorem by the
following string of definitions.

6.7.1 Definition. A sentence ¢(R) of L* is said to be a test sentence if for all struc-
tures M, (M, (), <, R,) =* @(R) implies there is some n < w such that (M, R,) =*
@(R). A test set is a set of test sentences.

For #Z,, the relevant test set is just the set of all sentences of the form I[e(x) &
R(x)], for p € &Z,,,, while for £(Q,) it is the set of sentences of the form
S 3x(¢(¥, X) & R(x)) where S is a string of 3y;’s and Qy;’s and ¢ is a sentence of
Z(Qy)

6.7.2 Definition. (i) For any theory T of #* and set (cy, .. ., ¢,) of #*-sentences,
we say that T accepts X(cy,...,c,) if there is a model of T u
{Vx;...x, V Z}.

(ii) T locally accepts Z(c;, - - ., ¢,) with respect to a test set 7 if for all p(R) € 7,
if T U {¢(true/R)} has a model, so does T U {¢(c/R)} for some o € X.

(iii) £* has the Omitting Types Property (OTP) with respect to a test set J
if for all theories T of #* and all countable sets {Z(c;,...,n):i < w},
if T locally accepts each X;, then T accepts all the X; simultaneously;
that is to say, there is some

METuU {Vxl,...,x,,l.\/ Zi(xgy e X)) i < 0}
(iv) Z* has the OTP if #* has the OTP for some test set J.

We need one final definition before the results can be stated.

6.7.3 Definition. Let ™ be a test set. By a J-closed fragment of £% , we mean a
sublogic L} which contains #*, is closed under subformulas, satisfies the sub-
stitution axiom, if /\ ® € L} so is \/ {—1¢: ¢ € @}, and such that if p(R) € 7 and
o(\/ {¥;:i < }/R) € L} then \/ {o(y/R): i < w} € L}. A T-closed fragment L}
is said to be countable if for each countable vocabulary 1, #%(7) is countable.
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6.7.4 Theorem. Let ¥* be Ny-compact and have the OTP with respect to F. Let
L be a countable F-closed fragment of &%, ,,. Then ¥} has the OTP with respect
to the set Iy of &L} sentences of the form @R,y /S,,...,V,/S,), where
oR,Sy,....S)eT,and Y, ..., Y, are sentences of L. [

This result follows easily from the proof of the next completeness result, a
result which gives an alternate axiomatization for %, ,,.

6.7.5 Theorem. Let £* be an Xy-compact logic and ¥* have the OTP with respect
to the test set . Then the following proof system is complete for L%,

Axioms:

(A1) For each @(R) € 7, all sentences of the form

o(\/ {Yi:i < w}/R) > \/ {p(Yi/R): i < w}.

(A2) All valid sentences of £*.
(A3) All sentences of £% ., of the form

/\{‘pl'l<w}_>‘ﬁj’ j<(1).
(A4) All sentences of £3%,,, of the form

Vi <o} >\ {yi < o}

Rules:

(R1) Modus ponens.

(R2) Generalization.

(R3) From ¢ — Y, for alli < w infer ¢ > \ {¢;: i < w}.

(R4) From ofR,,...,R) infer @(o/Rq,...,0/R), for all formulas
Ry, ..., R)eF*01,...,0,€ Lp0- '

We will not give a complete proof of Theorem 6.6.5 (the reader should consult
Barwise [1981] for this), but will merely sketch the main lines of argument. The
proof is based on an idea from Keisler [1970]. Beginning with L}, we first form
L¥(7) in which we allow finitely many occurrences of some countable set of new
constants. Then, for each infinite disjunction \/ ®(cy, ..., ¢,) of L}(7'), we add a
new unary relation symbol R; which will interpret \/ ®(c;, ..., ¢,). The vocab-
ulary obtained by adding on these R;’s will be called t”. The idea is that for each
¥ of L¥(t") we will define some y* of L*(z”) which will play the part of y and will
be “finitary” also. Specifically, ¥* is defined inductively by the following four
clauses:

@) if 8 is in £*("), 6% = 0.
(i) (\/ Piley, ..., e))® = Riley, - .-, Cp).
(i) (A ®)* = (\/ {Tp: p e D™
(iv) o(o(/Ry, ..., a/R)* = (/R -, or /R
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An appeal to the N,-compactness of £§ is then made in order to prove the
key lemma to follow, where T U {¢} is a set of sentences of Ly(7)), T* =
{#7:0 € T}, and - denotes provability in the above system:

(#) T* = ¢* if T o.

Next, by making use of (#) and the fact that #* satisfies the OTP with respect
to J (recall that — depends on ), we can then prove Theorem 6.7.5. Finally,
by adding admissibility, Barwise [1981] obtains the result given in.

6.7.6 Theorem. Let £* be Ny-compact and have the OTP with respect to the test
set J. Let L% be a countable admissible fragment where the admissible structure
A = (A, €, ...) has the property that the set of valid sentences of L* and the set T
are each X, definable on A. Then:

(1) The set of valid sentences of L% is X, on A;
(ii) L% is Xi-compact; that is to say, if T < L% isX on A, and if every T, =€ T
with Ty € A has a model, then T has a model,
(iii) If @ € L%, then the least ordinal not pinned down by @ is in A.

The proofs of all parts of the above follow from Theorem 6.7.5 in the same way
that the analogous results for £, follow from the Karp completeness theorem for
£, the hypothesis on the validities of #* being required to manage the axioms
of the form (A2).

7. “Harder” Model Theory with
Admissibility

In this section we will consider aspects of the model theory of countable admissible
fragments L, in which the structures themselves are restricted to the set A or its
environs.

7.1. Scott Sentences and Admissible Sets

Suppose A is admissible and M is a structure with I € 4. How much can we
say about I or its complete &, theory th ,(9R) by just knowing its complete
L ,-theory, th,(%)? The first result asserts that th,(9t) tells you all you need to
know to distinguish 9t from other structures N € A.

7.1.1 Theorem. Suppose A is admissible and MM, Ne A with M=, , N. Then
M=_,0N 0O

7.1.2 Corollary. Suppose A is countable admissible and M, N € A with M =, , N.
ThenM=N. [
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For the easy proof of Theorem 7.1.1 see Nadel [1974b] where a slightly weaker
hypothesis is used. Scott’s theorem then easily gives Corollary 7.1.2. From Theorem
7.1.1 we can obtain the better bounds promised in Section 4.2. Specifically, the
formula ¢ in Theorems 4.2.1 and 4.2.2 can be taken to be in HYP(OM). For the
remainder of this section let us ignore all structures 9 such that o HYP(IM)) = w
since the questions we consider are of no interest for them.

Can Theorem 7.1.1 be improved by dropping the restriction that i € 4, or—
even better—by showing that IR has a Scott sentence in 4; or—still better—that
the canonical Scott sentence a(A) is in A? Any of the possibilities would actually
imply Vaught’s conjecture for %, ,. The results are due to Sacks, Harnik-
Makkai [1976], Makkai [1977b], and Steel [1978] who showed that Vaught’s
conjecture holds for sentences whose models have these properties.

However, all of these possible strengthenings fail to hold, as the following
example will show. It has long been known (see Nadel [1974b]) that there is a
recursive ordering M of order type w* + w{* - 5. (In fact, the example in Section
5.7 can be strengthened to provide this.) M is obviously an element of L(w$¥);
and, moreover, it can be shown that M = ox (o, <). This latter fact follows
from general results found in Karp [1965] or from a more specialized argument
given in Nadel [1974b], an argument which is based on the fact that L(w$¥)
“thinks” that M is well-ordered.

On the positive side, by applying Theorem 7.1.1 to expansions of 9t by finitely
many constants, we easily obtain the following result of Nadel [1974b] on Scott
heights.

7.1.3 Theorem. Let A be admissible and suppose I € A. Then SH(IM) < o(A),
whence o(IN) has quantifier rank at most 0(A) + w, and is in HYP(A). [

Let us call a structure 9 such that SH(M) < o(HYP(IR)) tame. Otherwise,
they will be termed, wild. It is easy to see that I is tame iff o(I) € HYP(IM).
Practically speaking, one has to go out of one’s way to find a wild structure. On
the other hand, there are not many positive results saying that various types of
structures are tame. We mention three. Nadel [1974b] shows that every scattered
linear ordering is tame. Nadel [1974a] shows that if ¢ € L ,, A countable, and ¢
has only finitely many non-isomorphic countable models, then, for every I = ¢,
SH(M) < o(A); and, if ¢ is countable in the sense of A4, then g(M) € A. Thus, in
the above situation, if o(4) = w$X, then every model of ¢ is tame. Finally, if M
is countable and has < 2®° automorphisms, then M is tame (see Nadel [1974b]).

Now we state the result of Nadel [1974b], a result which was alluded to earlier
in Section 4.1 and which, in some sense, helps justify the choice of ¢(I) as the
“canonical” Scott sentence of IN.

7.1.4 Theorem. Let A be countable admissible with w, & € A. Suppose ¢ € A is a
Scott sentence of some model M (not necessarily in A). Then o(IMM) € A. In fact,
SH(IN) is at most the quantifier rank of ¢ + .

We will return for additional comments on wild structures after discussing
Gregory’s result on uncountable models in Section 7.3.
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7.2. Lowenheim-Skolem Results and X, -saturated Models

In this section we briefly treat some downward Léwenheim-Skolem or, alter-
natively, “basis”—results, that are more subtle than the standard results dealing
only with cardinality. We assume all theories T mentioned are consistent.

7.2.1 Theorem. Let A be admissible and Ly a countable fragment of L, in the
sense of A. Let T € A be a complete Ly theory. Then T has a model M e A. [

The proof of the above result is straightforward and can be found in Nadel
[1974b]. If Ly is not required to be countable in the sense of A the result does
not hold, nor does it hold if T is not required to be complete. In the latter case, a
model can always be found in 4™, even if T is a theory in L, which is X on 4, so
long as A is countable in 4*. If the theory T in Theorem 7.2.1 happens to have a
prime model, then a prime model can be found in A4. Instead of looking for a
model in a set A, we can also try to find one in a “fattening” of A, that is to
say,inaset B 2 A such that o(4) = o(B). The next result, which is in this direction,
is due to Barwise-Schlipf [1976], Nadel [1974a], and Ressayre [1977] and is
only one aspect of an equivalence we shall discuss later.

7.2.2 Theorem. Suppose A is countable admissible and T is a X 4-theory. Then there
is a countable admissible set B 2 A, with 0(A) = o(B) and a model M = T, with
MeB. [

In the special case that 0o(4) = w, M will be a model on urelements. Otherwise,
I could be composed of urelements or sets. (The results in Nadel [1974a] and
Ressayre [1977] were formulated before the re-introduction of urelements.) We
can give now a very short proof of Theorem 6.4.3 as we promised earlier.

Proof of Theorem 6.5.4. First, modifying the example we discussed in Section 1.3,
we define by induction formulas /,(x) in the vocabulary of linear orderings that
express that the predecessors of x have order type o. Note that the formulas ¢,
can be found in L, whenever o € A. This already shows that hg(4) > o(A).

Now, suppose hg(4) > o(A). In particular, suppose the X ,-theory T pins
down some a > 0(A). Consider the X ,-theory T' = T U {3xy/4(x): B < 0o(A)}. T’
is clearly consistent by Barwise compactness and by Theorem 7.2.2. T" has a
model M in some admissible set B with o(B) = o(4). Now, if <™ is a well-ordering,
then T” insists it have type at least o(B). However, we observed in Section 5.3 that
an admissible set C cannot contain a well-ordering of order type > o(C), and so
<% is not well-ordered. [

The three papers Barwise-Schlipf [1976], Nadel [1974a] and Ressayre [1977]
were written with different purposes in mind and employed different terminology.
We will try to employ the terminology that seems to be in current use. The next
definition, which is due to Ressayre [1977], with modifications by Harnik and
Makkai, appears, at first glance to be more complicated than one might expect.
We will point out the reason for this presently.
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7.2.3 Definition. Let A be admissible. A structure M is said to be X 4-saturated if,
for each my, ..., m, € M it satisfies

@) ifI'(xq, ..., x,v)isa X, typein L,, then

iml=( A HUF'(ml,...,mk,v))

I'erl,I"'ed

- HU/\ r(ml, ceey My, U)’

(i) if I € 4, q is £, and for each i € I, g; denotes {¢: ¢ is a formula of L in
the free variables x,, ..., x,, such that (i, ) € q}, then

we( A VA=Y Aa

q9'Sq,q'€A) iel iel

Condition (i) alone is what one might expect as the definition. Models satisfying
(i) alone are sometimes called X ,-compact. Both conditions are needed, however,
to prove Theorem 7.2.6, which explains much of the importance of X ,-saturated
models.

7.2.4 Theorem. Let A be countable admissible and let T be a consistent X 4-theory.
Then T has a X j-saturated model.

The proof of this result can be obtained from the proof of Lemma 8.2.2. [

7.2.5 Definition. Let 4 be admissible and suppose (M, m,, ..., m,) is a structure
for a vocabulary 7 € A. M is said to be X ,-resplendent if, whenever ' 2 1, 7' € 4
and T is a X ;-theory in L 4(7") consistent with the L ,(t) theory of (M, m, ..., my),
then (M, m,, ..., m) can be expanded to a model of T. If the expansion can always
be taken to be itself X ,-saturated we say I is strongly X ,-resplendent.

7.2.6 Theorem. Let A be countable admissible. If M is a countable X 4-saturated
structure, then MM is X 4-resplendent. In fact, M is strongly X ;-resplendent.

In building the expansion, condition (i) in the definition of X ,-saturation is
used to realize types and witness existential formulas, while condition (ii) is needed
to handle disjunctions. We can obtain, with little difficulty, the converse of
Theorem 7.2.6, which holds without any cardinality restrictions. Now, we can
relate X ,-saturated structures to the earlier Lowenheim-Skolem results. This
result was first obtained by Ressayre [1977], with Schlipf [1977] examining the
case in which A = HF.

7.2.7 Theorem. Let A be admissible and I a X 4-saturated model. Then there is
some admissible B o> A with o(B) = 0(A) such that M e B. [
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To prove Theorem 7.2.7 we use, for the countable case, strong I ,-resplendency
to build a model of KP around I, with standard ordinals the same as 4, and then
use Ville’s result to take its well-founded part. Lévy’s absoluteness gives the
general result.

Does Theorem 7.2.7 have a converse? The answer is “almost”. Nadel [1974a]
and Ressayre [1977] were able to show that countable M satisfying the conclusion
of Theorem 7.2.7 were almost X ,-resplendent. The problem occurs because X,
sets need not be Xy sets. This does not occur if 4 is Xg; for instance, if A = L(x),
for some a. More recently, Adamson [1978] has been able to find a complete
converse, by slightly strengthening the notion of “fattening” used.

Most often in practice, rather than use the property of X ;-saturation directly,
we use instead the properties given in Theorems 7.2.6 and 7.2.7. However, X ,-
saturation has a distinct advantage over the other two notions: It is easy to see
that X ;-saturation is preserved under the union of an L ,-elementary chain. This
point is quite important for the proof of the main result of the next section.

7.3. Uncountable Models

As we noted earlier, a consistent sentence of L, , with an infinite model need
not have an uncountable model. The following important result is from Gregory
[1973] and it tells us when certain countable theories have uncountable models.

7.3.1 Theorem. Let A be countable admissible and suppose T is a X 4-theory of L 4.
Then the following are equivalent:

(i) T has an uncountable model
(ii) There are models of T M, N such that M < fr, N

Using the results of the previous section Ressayre was able to give a proof of
Theorem 7.3.1, a proof which was much simpler that Gregory’s original argument
and which we can present quite briefly. The difficult direction is in showing that
(ii) implies (i). The idea here is to build an L ,-elementary chain of countable models
whose union will be the desired uncountable model. Using (ii), the fact that T is
T, and the appropriate expansion theory, it is possible to find X ,-saturated models
M, = T and M, such that M, <+r, M,. Now, using strong resplendency, we
can find a X ,-saturated M, such that M, <, M,. This shows how to take care
of any successor stage in the chain. To manage limit stages, we need only use the
fact that the union of an L ,-elementary chain of I ,-saturated models is Z,-
saturated.

The requirement that T is £, in Theorem 7.3.1 is necessary, as was shown by
an example of Gregory mentioned in Gregory [1970].

We will now return to the subject of Scott sentences for a few additional
remarks. Since most familiar structures were tame, and wild structures were only
found with difficulty, various conjectures concerning wild structures naturally
arose from this limited experience.
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Of the original wild structures 9, each had a proper Lyypy, elementary sub-
model, and so Thy, .. () had an uncountable model. It was thought that this
might always be the case. However, Makkai [1981] has given a counterexample.
He also gives an example of a sentence ¢ of £, , with models of Scott height
cofinal in w;, but no uncountable model.

Again, for all the original wild structures it was the case that /\ Thy,ry pan (O
was not a Scott sentence. Makkai [1981] also gives a counterexample to the obvious
conjecture here as well. It should be pointed out that the examples mentioned
above, even with the alternate proofs by Shelah, are quite complicated.

7.4. Recursively Saturated Models

We now specialize our consideration of X ,-saturated models to the case in which
A = HF, the case originally considered by Barwise-Schlipf [1976]. In particular,
7 will now be finite.

Here, condition (ii) in the definition holds automatically, since / must be
finite, and so the definition looks more like what we might have first guessed.
Furthermore, Xy is essentially the same as r.e. in the sense of ordinary recursion
theory. Thus, a structure is Xyg-saturated iff every r.e. 1-type over the model is
realized. By Craig’s theorem, this becomes no weaker if we restrict to recursive
types. In fact, such models are called recursively saturated. On the other hand, a
recursively saturated model will realize every type over the model r.e. in the com-
plete theory of any simple expansion of the model by finitely many constants.

The notion of Zyg-resplendent is actually equivalent to the weaker looking
condition on I, that if MM is a t-structure and R is relation symbol not in 7 such
that for some 9 > M, N = IRP(R), then M = IRp(R), where ¢ is any sentence,
possibly with parameters from M. Without admitting parameters, the notion
becomes strictly weaker for 9t uncountable. For 9t countable, the parameters are
not necessary.

The corresponding condition on fattenings is that o(HYP(9t)) = w, and so,
of course, we must have 9t a model on urelements.

Finally, it follows from our earlier discussion, that these three conditions are
equivalent. We should also point out that, from Theorem 7.1.1, it follows that
recursively saturated models are w-homogeneous.

It has been noticed that the class of recursively saturated models appears in
certain natural applied situations. For example, Barwise—Schlipf [1975] showed
that the recursively saturated models of Peano arithmetic are exactly those models
that can be expanded to models of A}-PA, a certain natural fragment of analysis.
Lipshitz-Nadel [1978] show that if {4, +,-) is a model of Peano arithmetic,
then both (A, + ) and {4, -> must be recursively saturated. If (A4, + ) is a count-
able recursively saturated model of Presburger arithmetic, then resplendency
allows us to expand it to a model of Peano. This is not true in the uncountable
case; but, as shown in Nadel [1980b] for groups of cardinality ¥, recursive
saturation together with a simple group theoretic condition is enough, at least
for the “integer” version of Presburger arithmetic, and is also necessary.
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The notion of recursive saturation has already become an object of great
interest and many results have been forthcoming concerning it. While space does
not permit its further consideration here, it is safe to say that recursive saturation
seems likely to enter the permanent repertory of the model theorist.

It seems especially fitting to end our study of Z,,,,, with the topic of recursive
saturation, which, after all, can be expressed quite simply in .#,. The investiga-
tion of finitary logic led to the investigation of infinitary logic, which in turn en-
gendered the study of admissible sets, a study which has since come back to enrich
the study of &£, .

8. Extensions of &
Connectives

by Propositional

w1

The objective of this concluding section is threefold. First, there is the matter of
considering propositional connectives other than simple conjunction and dis-
junction. The second objective will be achieved as a by-product. In the course of
obtaining the results we will have occasion to employ techniques which help to
illustrate some of the ideas of the earlier sections. The third objective, which we
will consider first, involves more abstract considerations, namely the problem of
characterizing &, ,,.

The reader has no doubt been already struck by Lindstrom’s characterizations
of Z,., as a maximal logic satisfying various sets of conditions in Chapter II.
£ - can also be characterized as a maximal logic in several different ways, ways
that are described in Chapters III and XVII. Can %, , be characterized in this
way? It is obvious how to characterize £, ,, as a minimal logic, but not as a
maximal logic. A natural question to ask would be whether &, ,, is the maximal
logic whose syntax lives on HC and which satisfies certain basic model theoretic
properties, such as interpolation, some natural completeness result, and perhaps
some others. The results of Section 8.3 will show that this would not seem to be
the case.

8.1. Propositional Connectives

Our presentation in the remainder of this section is based on Harrington [1980]
which continues earlier work of H. Friedman [1977] and unpublished work of
Kunen. We will be concerned with the logic obtained by adding to %, ., a new
countable propositional connective.

First, we add to the definition of the formulas of %, ., the clause

23T

™ if ; is a formula for i < w, in some fixed finite set of free variables, then
s0is C(p;: i e w)).
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The semantics corresponding to this clause depends on the choice of a fixed
function P: #(w) — {0, 1}. We denote the resulting logic by #(P). Specifically,
we have the clause

*) MEpCeiew)) ff P{i:MEpo)) = 1.

Though the syntax of #(P) looks rather different, it is easy to see that £(P)is a
sublogic of £ . In fact, it is a sublogic of 2w, ,.

There is a natural proof system for #(P) which is obtained from the usual
Hilbert-style proof system for &£, , by adding the following axioms:

la. A({p;:ie X} U {ng;iew\X}) - Cp;:iew)),
for each X = w such that P(X) = 1;
1b. A({p:xeX)}u {¢;ie o\X}) > 1C(Kp;: i € w)),
for each X < w such that P(X) = 0;
2. N{pieogiiew) - (CKeit i€ 0)) o CKoj: i€ o)),
for each pair of sequences (@;: i € ), {p;: i € w) of formulas.

We write I p for provability in this system and reserve i~ for provability in our
standard system for &, ,. We use =p and = in a similar way for validity in the
two logics as well as for satisfaction. We say that P—or, more properly £ (P)—is
complete if for every sentence ¢ of L(P), p ¢ iff =5 ¢.

Just as for & ,,,,, since each rule of proof has only countably many hypotheses,
if - p @, then ¢ has a countable proof. This point will be essential for what comes
later and so we simply require that proofs be countable. As usual, one direction
in completeness is easy to verify, that is, that, - ¢ implies = ¢.

It will be necessary to consider partial proposition connectives, which are simply
(partial) functions from a subset of (w) to {0, 1}. If D is a derivation in the above
system, then there is a natural associated partial propositional connective Pp
defined so that P(X) = 1if some axiom of type 1a for X isused in D,and P(X) =0
if some axiom of type 1b for X is used. Otherwise, Pp(X) is undefined.

Very much as in Section 6.6, the general technique employed here will be to
treat the extra connective as a new atomic formula. Specifically, writing {(¢;> in
place of the longer C({¢,: i€ w)), for each {(¢;> we introduce a new relation
symbol R, of the appropriate number of places. Given a formula ¥ of #(P),
we define y* in such a way that y* =  for ¥ atomic, (C({@;: i € w)))* = Ry,
and so that * commutes with the other connectives and quantifiers. Notice also
that y* is always a formula in &, . A structure for the new relation symbols will
be called an expanded structure.

There is a small technical problem which must be overcome before we proceed:
Not every £, formula in the new symbols is of the form y*, for some formula
of Z(P) (in the original symbols). This arises because if, for example, R,,.,(x) is
1-place and 7 is a term we may form R,,,(t) and this will not be of the form y*.
However, R, (1) “ought to be equivalent” to R, .,(x). We make this official
by adding a set of axioms I' to this effect, for each R, and appropriate sequence
of terms. Then, relative to I, each ¢ in &, , is equivalent to some y*, where the
Z(P)-formula  is found by tracing back through the recursive definition of *.
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We denote this by ¢*; and, similarly, we let T* = {§*:0e T}, for a set T
of £, formulas. We use a similar convention for derivations.

By a fragment we will mean a subclass & of the formulas of #(P) that is closed
under subformulas such that if C({¢;: i€ w)) and C({@}: i € w)) are in &, so is
the corresponding axiom of type 2. Now, given a fragment %, we let S(%) be the
collection of all y* such that ¢ in & is an instance of the axiom scheme 2. An
expanded structure is called an & -structure if it is a model of S(%). If P is a partial
propositional connective, we let S(P, #) be the collection of all y* such that
in # is an instance of the axiom scheme 1. An & -structure M gives rise to a partial
propositional connective Py, as follows: Suppose M = ¢,[a] iff i € X. Then let
Py(X) = 1if M= R,,5(@), and let Py(X) = 0 if M = 1R ,,,,(@). Since M is an
F -structure, Py, is well-defined. The next result mentions some basic facts about
the notions we have just introduced. These facts are easy to check.

8.1.1 Lemma. Let % be a fragment and I an F -structure, then

(1) suppose T = & is a set of sentences and M (= T*. Then, for any proposi-

tional connective P 2 Py, M =5 T;

(i) if P is a partial propositional connective, then P and Py, are compatible;
that is to say, P U Py, is a partial propositional connective, iff M = S(P, ¥ );

(iii) for T < &, and P a partial propositional connective, if D is a derivation in
L o0 from T* U S(F) U S(P, F), then D* is a derivation from T in
ZL(P), with P} < P;

(iv) if D is a derivation in £ (P) using axioms dq, 04, . . ., then D* is a derivation
inL,,,froma§,af,....

8.2. The Main Lemma

The next result deals with #,, , and is the main lemma we will need to derive
the desired results about £(P). It mixes omitting types with X -saturated models
and its proof —which we will only sketch here—will nevertheless fill in some earlier
omissions.

8.2.1 Definition. Let A be an admissible structure and let ® be a type over L.
We say that @ is semi-complete over A iff ® U {T1¢: ¢ € D} is A on A.

It is obvious that complete types are semi-complete. If a semi-complete type
® is principal over a X ,-theory, then ® is A on A.

8.2.2 Lemma. Let N be a countable admissible structure, T a consistent X 4-theory,
and T a collection of L4 types, each semi-complete over A, such that no member of
Tis A on WA and |T| < 2%. Then there is a T s-saturated countable model of T
which omits all the types in T.

Proof. For each f € 2°, we build a countable X ,-saturated model M, of T such
that for f # g, the only semi-complete types realized in both M, and M, are A
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over A (and hence not in I'). Thus, since |I"| < 2% and any ® € I can be realized
in at most one M, some M, must omit all types in T

Let D be a countable set of new constant symbols to use in the ensuing Henkin
construction. For each o € 2=, we construct by induction a theory T, satisfying
the following conditions:

(i) T,isaconsistent X ,-theory, involving only finitely many constants from D;

(i) Ty=Tandfora < B, T, = Ty;

(iii) For each step of a complete Henkin construction, there is some n e w
such that for all o € 2", T, has carried out this step.

(iv) For each X ,-type ®(X) that mentions only finitely many constants from
D, there is an n € w such that for all « € 2", if T, U ®(X) is consistent, then
there are constants d,, ..., d; € D such that ®(d,, ..., d,) € T,.

(v) Foreach I € A4, q, and i as in Definition 7.2.3(ii), there is some n € w such
that for all a € 2", if for some i € I, T, U {/\ ¢;} is consistent, then there
are constants dy, ..., d, € D such that ¢d,,...,d,) = T,.

(vi) Foreach sequence of variables X = x;, ..., x, and collection F of formulas
in the free variables X closed under negation and A on 2, and each
€., €, dy,...,d, from D, there are infinitely many n € w such that
for all o, B € 2", if a # f, then either (1) forallp e F, T,= ¢ (¢cq, ..., Cy)
or T, = "1¢(cy,...,¢) or (2) for some @ € F, T, = ¢(cy,...,c,) but
Ty = 7oy, ..., dy).

Using the fact that T and the types in I" are X, Barwise completeness allows
us to carry through a construction with the above properties. Now, for each
f€2° | {T;,: n € } is a complete Henkin theory by (iii) and so gives rise to a
countable model M, of T. Conditions (iv) and (v) guarantee that My is X ,-
saturated. (Observe that to verify part (ii) in the definition of X ,-saturation, we
must appeal to some property of admissibility such as X-refection). Finally,
condition (vi) guarantees that if f # g, and 9, and M, realize some type ® semi-
complete over U, then ®is Aon A. 1[I

8.3. #(P)’s with Nice Properties

Armed with Lemma 8.2.2, we are now able to begin our construction of logics
Z(P) which are complete and enjoy other desirable properties. For P a partial
propositional connective and W = (4, €, P [ 4) a countable admissible structure,
Z(P) N Ais a fragment and S(Z(P) n A) and S(P | A, Z(P) n A) are each X.

8.3.1 Lemma. Let P be a partial propositional connective with |P| < 2%° and let
A = (A, € P [ A be a countable admissible structure. Suppose T is a set of £ (P)
sentences of A, X on W. Then either

(1) there is an £ (P) derivation D € A of a contradiction from T with Py, = P or
(ii) there is a countable Xo-saturated #(P) N A-structure M such that M = T*
and Pg and P are compatible.
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Proof. Suppose that the ZXy-theory T = T* U S(Z(P)n A)uS(P A4,
ZL(P) n A)is consistent. Let I' be the set of all types @ of the form @ = {p¥:ie X} U
{1¢¥*:iew\X} where X € (dom P\A4 and {¢;> € A. Then each ® is semi-
complete but not A on A, since X ¢ A. || < 2% since |P| < 2. Now, by
Lemma 8.2.2, we obtain 9 as in option (ii) since our choice of I" prevents Py, from
clashing with P.

If, on the other hand, T’ is inconsistent, then since T’ is just a X ,-theory of
& .0, We may apply Barwise compactness to obtain an %, ,-derivation D in
A of a contradiction from T'. Now, Lemma 8.1.1(iii) gives us option (i). [

8.3.2 Theorem. There is a complete £ (P).

Proof. We will build an increasing chain of partial propositional connectives P,
{ < 2% such that Py = ¢, P, =) {P;:{ <A} for A a limit, and such that
|P;| < |{ o|forall { < 2%. P will then be ) {P;: { < 2%}

First, we enumerate all sentences of £ (P) as {@y+,:{ < 2%0% Suppose we
have already constructed P,. Choose a countable A such that ¢,,, €4 and
(A, €, P, ' A) is admissible (this is no problem using, for example, the downward
Léwenheim-Skolem theorem). Now, applying Lemma 8.3.1 there is a partial
propositional connective P’ compatible with P, such that either P’ 2 Pj, for some
Z(P)-derivation D of —1¢,,,, or P’ 2 Py for some L(P) N A-structure M =
@+1- We then take P,,; = P, U P'. It is easy to see that P = {P;: { < 2801 will
be complete. [

8.3.3 Remarks. At each successor step { + 1 of the construction there would be
no problem in fixing P’ arbitrarily on some X not in the domain of P,. This would
allow us to construct 22" different complete Ps.

Now that we know complete P’s exist, the next result sheds a great deal of
light on the problem of characterizing %, as a maximal “nice” logic whose
syntax “lives”” on HC, a goal that we mentioned at the outset of this section.

8.3.4 Theorem. Let P be a complete propositional connective and let W =
(A, €, P | A) be a countable admissible structure. Then £ (P) N A satisfies each
of the following:

(i) Extended Barwise completeness.
(ii) Barwise compactness.
(iii) Interpolation.

Proof. Suppose T = #(P) n A is £, on A and inconsistent. Then, since P is
complete, there is some derivation D in #(P) of a contradiction from T. Now, if
we apply Lemma 8.3.1 to P [ 4 U P, then option (i) must hold, since otherwise
we have the contradictory situation that 9 = T* and Pj, and Py, are compatible,
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whence M = S(Pp, £(P) N A), and M = —1 /\ T* since D was a derivation of a
contradiction from T.

(ii) Barwise compactness for #(P) n A now follows immediately as usual
from extended Barwise completeness.

(iii) Harrington [1980] describes two different proofs of interpolation for
ZL(P) N A.

The first is via a cut-free proof system for #(P). The second also gives a new
proof of interpolation for &, as well. It makes heavy use of the details of the con-
struction of HYP(I) and so is beyond the scope of our presentation here. In
particular, it uses the fact that every element of HYP(9R) is denoted by some “term”
with parameters from M and, furthermore, that the behavior of Ay-formulas over
HYP(IN) is already “mirrored” back in 9. A rather detailed treatment of these
matters can be found in the final section of Nadel-Stavi [1977]. [

8.3.5 Remark. An alternate approach to .#(P) was given earlier (although not
published) by Kunen. It involves the notion of a selective ultrafilter on w which is
an ultrafilter % on w having the property that if f: @ —  then either f ~'(n) e %
for some ne w or f [ X is 1-1 on some X € %. Though the existence of selective
ultrafilters on w follows from the continuum hypothesis or Martin’s axiom, Kunen
has shown that it is independent of ZFC.

Given an ultrafilter % on w, we define a propositional connective Py by
P, (X) = 1iff X € %. Kunen strengthens the usual proof system for L,, ,, by adding
the following axioms where {¢;:i€ w) and {¢@!:i€ w) are any sequences of
Z(P) formulas:

V. (AN {VA{pl:j<n}:ieX}) > \/{CKoliicw)):j<n}, for each Xe¥
and n € w; and
2. 1CKp;iie w)) o C((T1o;: i€ w)).

Now, with respect to this proof system, Kunen shows that P, is complete iff %
is selective. Kunen is also able to prove a Barwise completeness and compactness
theorem, as well as interpolation for admissible fragments #(P) n A, but only
under the added hypothesis that every member of % that is X on 2 has a subset
in % that is A on . This extra hypothesis is actually necessary. Kunen’s proof is
naturally more set-theoretic, and we will not go into it here. It can, however, be
found in Harrington [1980].

8.3.6 Exercise. A good review of the material in this section, as well as of much that
is in the entire chapter, can be had by working out the following problems. It is
assumed that A is as in Theorem 8.3.4.

(i) Prove that the Hanf number for £(P) n A is J, 4.
(ii) State and prove an omitting types theorem for Z(P) n A.
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Appendix

In this short section we will briefly note some of the major omissions of our article
and give some references for each.

We have said nothing at all about the work done on categoricity theory for
2., The interested reader should consult Keisler [1971a], Kierstead [1980], and
Shelah [1975c].

Some work has been done on model-theoretic forcing in %, .. The reader who
is interested in this aspect of the subject might want to consult Keisler [1973] and
Lee—Nadel [1977].

Game sentences are closely connected to the subject of this article. Relevant
information is available in Vaught [1973b], Harnik—Makkai [1976] and, to some
extent, in Chapter X of the present volume. The reader should also be aware of
Makkai [1977a] in which game sentences play a very basic role in the presentation
of the general theory of admissible fragments. Another important connection
involved here is that between %, and descriptive set theory.

Venturing off more in the direction of recursion theory proper, we come to the
subject to inductive definability, the study of which could naturally be begun
with Chapter X of the present volume. More “classical” recursion theory on
admissible sets has become an object of much interest, and a study of this area
might well begin by consulting Barwise [1975] and Shore [1977].

Finally, information about the “soft model-theoretic” aspects of the logics
we have considered, including the relevant Lindstrom type results, can be found
in Chapters III and XVII of the present work.





