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Chapter 5

Admissible Prewellorderings

The precomputation theories of the first chapter were to a large extent patterned
on ordinary recursion theory, ORT. In part B we gave an analysis of "higher
recursion theory" through the notion of a finite theory which generalizes ORT
by moving up in types over the basic domain.

But there are different ways of extending ORT, e.g. from the integers to all
or part of the ordinals. Or ORT can be rephrased as a recursion theory on HF,
the hereditarily finite sets, and then be extended to other domains of sets, even to
the total universe. Both approaches were followed, and we duly got various notions
of ordinal and set recursion, leading to theories of primitive recursive functions,
to the rudimentary functions, and to admissibility theory.

We shall not in this book retrace in any detail the line of development from
ORT to recursion on ordinals and to the notion of an admissible ordinal The
literature on this topic is vast, but the reader would do well to consult one of the
classics in the field, the 1967 paper of R. Jensen and C. Karp, Primitive recursive
set functions [72]. From this one could go to the recent survey of R. Shore,
a-recursion theory [152], and the Short course on admissible recursion theory [156]
by S. Simpson, the latter being an advertisement—which we endorse—of a book-
length exposition to come.

Pure α-recursion theory was soon transformed into a general theory of admis-
sible structures. A thorough exposition of this field is given by J. Barwise in his
book, Admissible Sets and Structures [11].

Remark. The references above are strictly pedagogical and do not imply a history
of ordinal recursion theory and admissibility theory in any way—the names of
S. Kripke and R. Platek have not even been mentioned.

Barwise and Shore give some historical remarks in their respective introduc-
tions. It remains to be seen what Simpson will do with the history of the subject in
his book. We shall try to document the sources for those parts of the theory that
we discuss. The reader should in particular see Section 5.3.

The line between set theory and recursion theory is sometimes difficult to draw.
Admissibility theory on the ordinals is obviously recursion theory, but general
admissible structures may be too "short and fat" to support a reasonable recursion
theory. (For an example see F. Gregory [46].) We have decided to draw the line
at resolvable structures, our reasons are as follows.
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A basic result about admissible sets is

Gandy's Fixed-point Theorem. Let A be an admissible set and Γ a Σλ positive
inductive operator on A. Then the least fixed-point ofY is Σx on A.

A discussion and proof can be found in Barwise [11].
For resolvable structures there is a converse. We recall that an admissible

set A is resolvable if there is a total ^-recursive function p such that

(i) i ί U
yeA

(ii) the relation x < y iff x ep(y) defines a pwo of A.

Note that since a set is ^4-finite iff it is an element of A, the resolvability of A
means that there is an ^-computable pwo of A with ^-finite initial segments.

The following result was proved by A. Nyberg [132].

Theorem. Let 31 = (A9 e, Rl9..., Rky be a resolvable structure where A is transitive
and closed under pairing. If 31 satisfies ^-separation then the following conditions
are equivalent:

(1) 31 is admissible.
(ii) Every Σx positive inductive operator on 31 has a Σ x definable least fixed-point.
(iii) The length of a Σλ positive induction does not exceed the ordinal of%.
(iv) There exists a positive first-order inductive definition on 91 of length strictly

greater than any Σλ positive induction on 31.

To a recursion theorist this result is an excellent conceptual justification for
the following general notion of admissible prewellordering.

Definition (see 5.1.9). Let (31, < ) be a computation domain with a pwo < and
let R be a sequence of relations on the domain of 31. The structure (31, =^) is called
an R-admissible prewellordering if every Σ x ( ^ , R) positive inductive operator on
31 has a Σ ^ , R) definable least fixed-point.

Remarks. (1) The notion of R-admissible pwo was introduced by Moschovakis
[113] but without the conceptual analysis given by Nyberg's theorem. We like to
think that Moschovakis had the recursion theorist's natural faith in the first
recursion theorem. And it is nice to know that faith sometimes can be vindicated.

(2) Following Moschovakis we shall prove that admissible pwo's correspond
to a certain class of infinite computation theories. Previous to this work C. E.
Gordon gave a computation-theoretic analysis of admissibility in his thesis [45].
He showed that given an admissible structure 31, Σ± definability on 3ϊ corresponds
to multiple valued search computability (in the sense of Moschovakis [112]) in
the e-relation and the bounded quantifier

i f

if
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Search computability in e and bE is easily seen to take care of Σx definability.
For the converse one may use Gandy's fixed-point theorem.

We shall now proceed as follows. In Sections 5.1 and 5.2 we characterize
admissible pwo's in computation-theoretic terms. The associated computation
theory is the natural domain for degree theoretic arguments. In 5.3 we analyze the
"next-admissible set" construction and venture to make a few historical remarks
on how this idea developed. In the final section we apply the imbedding results
of Section 5.3 to study the structure of finite theories over the integers.

5.1 Admissible Prewellorderings and Infinite Theories

Having given our motivation we make a detour via a class of infinite computation
theories before developing the general theory of admissible prewellorderings. The
class is not entirely arbitrary since we will show in 5.2 that it suffices to characterize
the admissible prewellorderings.

So, let us start with a p-normal computation theory <Θ, <> on a domain
(91, =Q, where 9ί is a computation domain in which A = C (thus equality is
Θ-computable) and ^ is a prewellordering of A. As always, our theories are single-
valued.

5.1.1 Assumption A. The structure (51, ̂ ) is Θ-resolvable, i.e.

(i) The domain A is not Θ-finite.
(ii) The pwo =̂  is Θ-computable and the initial segments of =̂  are uniformly

Θ-finite.

The last requirement of 5.1.1 means that the functional E^ is Θ-computable,
where

i f $y<
if φy < x)[f(y) ^ I].

For the definition and simple properties of finiteness we refer back to Section 2.5.
See also Remark 5.1.4 below.

Our next assumption introduces the admissibility condition ||Θ|| = | ^ | , with
a suitable effective addition. Recall that

||Θ|| = suρ{|α, σ, z\θ : (α, σ, z) e Θ},

and K | is the length of the pwo < .

5.1.2 Assumption B. The assumption comes in two parts:

0) «Θ|| = \<\
(ii) The set Θ1™1 = {(a, σ, z) e Θ : |α, σ,z\θ = |w|^} is Θ-computable uniformly

in we A.
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Note that we can (due to the computability of E^) replace = by < or ̂  in
the definition of Θ1™1 and still obtain uniform Θ-computability.

We add one more assumption, the Grilliot selection principle, in order to close
the Θ-semicomputable relations under existential quantification over the domain
A. Since we insist on single-valued theories we forsake the option of adding
"multiple-valued" search.

5.1.3 Assumption C. There exists a Θ-computable mapping q(ή) such that for all
a, σ

3x {a}e(x,σ)~0 iff {q(nMa, σ) ~ 0.

And if 3X'{a}θ(x, σ) ~ 0, then

\q(n\ a, σ, 0 | θ > inf{|α, x, σ, 0| : {a}(x, σ) - 0}.

This means that the functional

E1 / 2(/, σ) - 0 iff 3xf(x9 σ) ~ 0,

is Θ-computable, i.e. "half" of the usual E functional on A is Θ-computable.

5.1.4 Remark. Assumption C together with the ^-normality of Θ gives a "n ice"
theory for en(Θ). From C follows the fact that the Θ-semicomputable relations are
closed under 3 and v . /7-normality implies selection over N, which entails that
R E sc(Θ) iff R, —ιR E en(Θ). Selection over N also ensures that the Θ-finite sets
behave well.

5.1.5 Definition. Let 91 be a computation domain with a pwo =̂  and Θ a computa-
tion theory on (91, =^). Θ is called an infinite theory on (91, = )̂ iff Θ satisfies axioms
A, B and C.

We give a few simple properties of infinite theories.

5.1.6 Proposition. Let Θ be an infinite theory on (91, =Q. A set B ̂  A is Θ-finite
iff it is ^-computable and ^-bounded.

We verify that Θ-finiteness implies =^-boundedness. Assume the contrary, then

A = \J{yEA:y<x}.

But this means that A is a Θ-finite union of Θ-finite sets, hence A is Θ-finite,
contradicting (i) of 5.1.1.
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5.1.7 Proposition. For each n there is a ^-computable relation Rn such that

{fl}θ(σ) ~ z iff 3wRn(a9 σ, z9 w).

We use the relation Θ|u?l of (ii) in 5.1.2.

Associated with the computation domain 9Ϊ, the prewellordering = ,̂ and a
sequence of relations R on 91, we have a language

As usual define classes Δ0(=^,R), Σ ^ ^ R ) , Π ^ ^ R ) , and ΔX(^,R) over the
domain A.

5.1.8 Proposition. There exist ^-computable relations R θ = Rl9 R2 on A such that

The axioms immediately entail that Σ ^ ^ , R) c en(Θ) for any sequence R
of Θ-computable relations on A. Conversely, let

Rλ(a9 x9 y9 w) iff \a9 x9 y\B < \w\*

R2{a9 b9 c) iff a = S{(b9 c).

A simple induction proof using Proposition 5.1.7 shows that en(Θ) ^ Σ^sζ, Rθ).
Let us note a version of "Δ0-seρaration": If 5 is Δ o(^, R), where R is ©-com-

putable, then the set

{yeA:y<x A S(y)}9

is Θ-finite, uniformly in x.

We now return to the conceptually important notion of admissible prewell-
ordering. First a notational convention, when we use Δo(=^, X, R) and Σ ^ ^ , X, R),
we always require that X occurs positively in the formulas. Such formulas 0(σ, X)
then define monotone operators

ΓΘ(X) = {σ:θ(σ9X)}.

As usual we let Γ^ be the least fixed point for Γθ and |Γfl| the ordinal of the
inductive definition.

5.1.9 Definition. Let (91, < ) be a computation domain with a pwo and R a sequence
of relations on A. The structure (9ϊ, =<) is called an ^-admissible prewellordering
if for every Σ x ( ^ , X, R) formula θ with parameters from A9 the fixed-point Γ*
of Γ0 is a Σi(^, R) relation.
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5.1.10 Proposition. Let Θ be an infinite theory on (91, =<) and R any sequence of
relations extending Rθ. Then the structure (91, =0 is R-admissible.

This is an immediate corollary of the first recursion theorem for Θ. Any
formula 0(σ, I J e Σ ^ , X, R) determines a Θ-computable functional

φ ( / , τ ) ~ 0 iff 0(τ,{σ|/(σ)~O}).

Let/* be the fixed-point of φ. Then Γ w = { σ :/*(σ) ~ 0}. Thus ΓM is Θ-semi-
computable, hence Σ ^ , R) by Proposition 5.1.8.

We thus see that infinite theories Θ on a structure (21, =Q give rise to admissible
pwo's. We promise a converse. As a first step we shall, in a rather crude way,
associate a recursion theory H with an R-admissible pwo = .̂

5.1.11. Let (91, < ) be R-admissible. Define

where E1/2 is the functional from Assumption C (5.1.3).
The following properties of H are immediate:

1. H is a computation theory on (91, =<) satisfying axioms A and C.
2.

We make just one comment on 1 and 2. By the construction of H we see that
Σx(=^, R) c en(i/). To prove the converse we give a Σ x (^ , X, R) inductive defi-
nition of en(if), and use the admissibility of the pwo to conclude that en(/f) is

5.1.12 Proposition. Lei (91,= )̂ be R-admissible and assume that ΣX(^,R) —
, R)Φ 0.Let θbea Δ0(=<, R) formula. Then

(Vx < u)(3y)θ(x, y) => (3HO(V* < ύ)(3y < w)θ(x9 y)

(Σ^collection principle).

The assumption that Σx — Δx Φ 0 is not serious. Indeed, the results of Section
5.2 can be used to show that it can be omitted.

For the proof we need a sublemma:

5.1.13 Sublemma. Σ ( ^ , R) = Σ ^ , R) = en(#).

We need to show that every Σ relation is in en(if). As a typical case take

Vx<u3yR(x9y),
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where R is Δ o . By assumption there exists an //-computable function / such that

R(x,y) iff f(x,y)^0.

Hence 3yR(x, y) iff {3/}(jμ) ~ 0, where 3/ is computable from/and the given index
for E1'2 in H. Let g be introduced by g(y) ~ 1 iff{3f}(y) ~ 0. Then

Vx -< u3yR(x, y) iff E^(g, u) ~ 1.

The construction is uniform in the parameters, and thus we can proceed by
induction.

Back to the proof of 5.1.12: Ghoose a Σ ^ , R) relation U(σ) such that —}Uφ
, R). We note that | ^ | is a limit ordinal, otherwise A would be //-finite.

Assume now:

(yx<u)(3y)θ(x,y).
w)^θ(x9 y).

This means that for all w we must have some x -< u and some y =̂ w such that
0(Λ:, y). This is used in proving the equivalence in 4 below:

3. U(σ) iff lzU0(σ,z),

where Uo e Δ o « , R).

4. -πC/(σ) iff (yz)^U0(σ9z)
iff (Vx ^ W )(3^)[^,y) A (yt< y)-,U0(σ, t)].

From 4 it follows that —\U is Σ(^, R)—a contradiction that proves Proposition
5.1.12.

Above we showed that en(/Γ) is Σ x (^, R) by constructing a Σi-inductive
definition for en(//). If we are going to prove axiom B, in particular, the admis-
sibility condition \H\ = |=^|, we need to have an estimate of the ordinals of
inductive definitions on (% < ) in terms of the ordinal of the pwo =<. We should
expect that |Γ0| < \^\ for all Σ ^ , X, R) inductive operators, which we indeed
will prove in 5.1.15 below. In order to prove the equality \\H\\ = | ^ | , we must
be able to carry out the construction of H = PR[. . .] in sufficiently many steps.
And then we must verify that the equality is "effective" in the sense of axiom B,
5.1.2. But that is the topic of the next section. Here we start by proving an auxiliary
lemma.

5.1.14 Lemma. Let (% = )̂ be R-admissible and let θ(σ, X) define a monotone
Σi(^, X, R) inductive operator. The relation

P(σ,x) iff α e Γ w ,
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is Σ - ^ , R). (Note that Γlx{ is the x9th stage of the inductively defined set Γ^.) If

θ is Δo(=^, X, R), the relation P is Δ ^ , R).

The proof is carried out inside the associated theory H = PR[E^, =^, R, 31 / 2].

First we construct a code p such that

{p}(σ9x)~0 iff P(σ9x).

If θ is Δo, we also get a code q such that

{q}(σ, x) ~ 0 iff -iP(σ, x).

We start the construction of p (and q) by rewriting:

P/^. TΛ iff ~ t- Γ1

.f (̂7, Λ^ in σ 1 1 î i

iff σeΓe

iff %{α':(]^ X )P(σ', j)}) .

Let /be the function denned by

/(/>, σ, x) ~ 0 iff
We see that / is //-computable, since {p}(σ'9 y) ~ 0 is /Γ-semicomputable and
0(σ, X) is positive in X.

By the second recursion theorem there exists a code p such that {p}(σ, x) =
(/?, σ, x). By induction we now verify that

{p}(σ9x)~0 iff α e Γ w .

Assume this true for all j -< JC:

σGΓ |x | iff θ(σ,W:(3y<x) σfeΓ]y]})

iff θ(σ,{σ':(iy<χ)'{p}(°',y)-θ})
iff / ( ^ , σ, X) ~ 0
iff

If θ is Δo, then

^ P ( σ , Z ) iff

is by Proposition 5.1.12 a Σ^^, R) relation. Hence there exists an //-computable
g such that

g(q9σ9x)~0 iff
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We may then proceed as above to produce a code q such that {q}(σ, x) ~ 0 iff

5.1.15 Proposition. Let (31, =<) be R-admίssible and let 0(σ, X) define a monotone
Σ x ( ^ , X9 R) inductive operator. Then

Γe w fλe inductive operator associated with Θ.

Since |=^| is a limit number, we must be able to show that σ e Γ0(Γ,m) implies
that 3x[σeΓθ(Γlxl)]9 i.e.

0(σ, {σ' : 3*i>(σ', X)}) => 3χ 0(σ, {σ' : P(σ', *)}).

Or, more generally, we show that if Θ'(X) is Σ x ( ^ , X, R) (in parameters from A)9

then

0'({σ : 3^P(σ, X)}) => 3x fl'({σ : P(σ, jc)}).

But this follows since θ' is positive in X, hence the 3-quantifier can be advanced,

e.g.

(fy < z)(βx)P(σ9 x) => (βwWy < z)(3x < w)P(σ, x)
z)P(σ9 w),

because of the monotone character of P.

5.2 The Characterization Theorem

We saw in Proposition 5.1.10 that if Θ is an infinite theory on a domain (31, ==Q
and R is any sequence of relations extending the relations Rθ of Proposition 5.1.8,
then (31,=^) is R-admissible. In 5.1.11 we made a few steps toward proving a
converse. We constructed a theory H = PR[E^, <, R, 31/2] which by the very
construction satisfied Assumption A of 5.1.1 and Assumption C of 5.1.3. We
further noted that en(ϋf) = Σ ^ ^ R ) . And it is a consequence of Proposition
5.1.15 that \H\ ^ |=^ | , which goes some way toward verifying Assumption B
of 5.1.2. Our program is now to make a more refined construction of H9 in fact,
slowing up the construction of H, so as to obtain the converse inequality | =̂  | ^
\\H\\. And by a careful analysis of the construction we shall be able to get the
"effective" content of the equality ||JζΓ|| = | < | , i.e. Assumption B.

Let (% =Q be a computation domain with a pwo =^. We assume that the code
set of 31 is equal to the whole domain and that 3ί includes a pairing structure. We
start from the following basic assumption:
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5.2.1 Assumption. Let R = Rl9..., Rk be relations on A such that (51, < ) is
R-admissible.

We shall now construct a theory Θ = PR[[=^,R]] which in many respects
equals the prime recursion theory H = PR[E^, = ,̂ R, 31/2].

Our main problem in constructing PR[[=^, R]] is to "delay" the definition of
the inductive operator Γ such as to get in the end the inequality ||Θ || = | Γ| ^ | ̂  |.
We use the following trick.

5.2.2 Definition. For every set Δ of tuples on A of length ^ 2 we set

A + = {x : (V« < x)[«12, 0>, u, u) e Δ]}.

The intention is that <12, 0> will be a special index for the identity function.
Δ + will always be an initial segment of A, and, in particular, 0+ = {x e A : |JC| = 0},
where |JC| is the ordinal of x in the pwo ̂ .

5.2.3 Construction of the Inductive Operator Γ. We give a few but typical cases:

1. Successor function: If <1, 0>, x, s (x)eθ + , then

«l f 0>,x, j(x))eΓ(θ).

2. Substitution: If <6,0>,/, g9 σ, z e Θ + and 3u e Θ + [(/, w, σ, z) e Θ Λ (g, σ, ύ) e Θ],
then

«6,0>,/j ,σ,2)eΓ(θ).

(The indices <2,0>,..., <5, 0> are used for introducing the pairing structure and
definition by cases. In the same way <7, 0> is used for P and <8,.. . > for the
s-m-n function.)

3. Introduction of =< and R: We let

=< have the code <9, 1>
Ri have the code <9,1 + />,

and add the obvious inductive clauses.

4. Closure under ^-quantification: If <10,0>,/, σ, 0 e Θ+ and if (3xeΘ+)
[(/, x, σ, 0) e Θ], then

«10,0>,/,σ,0)GΓ(Θ).

5. Introduction of the functional E<: If <11,0>,/, x9θ G Θ + and (3y<x)

[(/,Λθ)eθ],then
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If <11, 0>,/ x, 1 e Θ+ and φy < x)[(f9 y, 1) ε Θ], then

(Recall that Θ + is always an initial segment.)

6. The identity function: If y e Θ+, then

Note how this clause differs slightly from the previous ones but, as subsequent
lemmas will show, the difference is important.

The operator Γ is monotone, we define as usual

\v<ξ

and can now introduce the associated theory.

5.2.4 Definition. Let R be introduced by Assumption 5.2.1 and Γ constructed
by 5.2.3. We define

Θ = PR[[<, R]] = θ β = \J Θξ.
ξ

And for (a, σ, z) e Θ we set

\a9 σ, z | θ = least ξ such that (a, σ, z) e &ξ.

5.2.5 Lemma. «l290>,y9y)eΘ*iff\y\ < ξ.

The proof is by induction, so assume that the lemma is true for all η < ξ.
Let «12, 0>, y, y) e Θξ - \Jn<ξ Θv. By 6 of 5.2.3 this means that

i.e.(Vw -<^)[«12,0>, u, u)e{Jv<ζ®η But this in turn means that (iu<y).
(3n < ξ)[\u\ ̂  y]) i e Î 1 < ί The argument also works in reverse which proves
the lemma.

5.2.6 Lemma. If aφ <12,0> and (a, xl9..., xn9 z) e Θξ, then \a\, |jCi|,..., |^n |,
\z\ < ξ.
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From the assumption that (a, xl9..., xn9 z) e T(\Jη<ξ Θ") and a φ <12, 0>, it
follows that a, xl9..., xn9 z e (Un<ξ ®η)+ B u t f o r any y e (Uiκ« 0 7 ? ) + w e h a v e

the truth of

(VII -< y)@η < 0[«12, 0>, w, K) e θ"].

By Lemma 5.2.5 this means that (Vw -< y)(3η < ξ)[\u\ < η]9 i.e. | j>| < f.

5.2.7 Lemma. PR[[=^, R]] with the given length function is ap-normal computation
theory on (% = )̂ in which =^, R, and E^ are computable. en(PR[[^, R]]) is closed
under ^-quantification.

This lemma is a direct consequence of the construction. For ^-normality we
can use the proof of Proposition 3.1.12 of Section 3.1, replacing the functional ΈA

of that proof by the functional E 1 / 2 and E^ introduced in 4 and 5 of Construction
5.2.3.

5.2.8 Lemma. en(PR[[^, R]]) = Σ ^ R ) .

There are two things to verify:

(i) The inductive operator of 5.2.3 is of Σ x ( ^ , X9 R) form, hence by R-admis-
sibility of (% < ) , has a Σ x ( ^ , R) least fixed-point; it follows that en(PR[[^, R]]) c
Σ^.R).

(ii) A simple analysis of Δo(=^, R) relations shows that they are computable in
PR[[< 5 R]]. Closure under 3-quantifier shows that Σ ^ , R) c en(PR[[^, R]]).

We also note that sc(PR[[=^, R]]) = Δ ^ s ^ R ) , this being a consequence of
/^-normality (see Remark 5.1.4).

From what we have proved so far we see that PR[[=^, R]] satisfies Assumptions
A and C. And it follows from Lemmas 5.1.15 and 5.2.5 that | |PR[K, R]]|| = | ^ | ,
which is the first part of Assumption B. We proceed to a more detailed analysis
of the construction.

5.2.9 Definition. To the operator Γ(Θ) we associate an operator Γ(w, Θ) obtained
by relativizing the quantifiers in Γ(Θ) to " = ^ H > " and replacing " x e Θ + " by
"JC G Θ + Λ x =̂  w". (Note that <12, 0> is exempted from this restriction.) ΘJ, is
defined as usual.

5.2.10 Lemma. If ξ < |w|, then Θξ = Θ*.

The proof is by induction on subcomputations using Lemma 5.2.6 in an
essential way.

5.2.11 Definition. Let Θ be a computation theory on (91, ̂ ) . Set

X(&) = {(m, x):meNΛm>2Λ φc)l9..., (x)m) e Θ}
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Introduce the following operators:

The corresponding stages Xξ and X£ are defined as usual.
Note that we have the following equalities:

x* = χ(&ί) χξ

i.e. coding and decoding are carried along the stages.

5,2.12 Lemma. PR[[=^, R]] satisfies Assumption B of 5.1.2.

We first note that the operator T(x, X) is defined by a Δo(=^, X, R) positive
formula, hence by Lemma 5.1.14 the relation

(m, x) e A™,

By Lemma 5.2.10 we have

iff ( 3 w ) b < w Λ (m,x)e

iff (Vw)b < w -> (m, x) G

so the relation (m, Λ:) e Xlyl is Δ ^ ^ , R).
Since Γ is defined by a Σ ^ ^ , X, R) formula, we get |Γ | < |=^| by Proposition

5.1.15. Hence if (m, x)eX(Θ), there is a w such that [m, x] = \w\, where [m, x]
is the ordinal of the coded computation tuple (m, x). But

[m, x] = \w\ iff (m, JC) e Z 1^ 1 Λ (Vw -< w)[(m9 x) φ X™],

so the relation [m, x] = |w| is A ! ( ^ , R ) , i.e. PR[[<, R]]-cpmputable, which is
the substance of (ii) in Assumption B.

5.2.13 Theorem. Let (% =Q be an ^.-admissible prewellordering. There exists a
p-normal computation theory Θ = PR[[=^, R]] on % satisfying A, B, and C such
that en(Θ) = Σ ^ , R) and sc(Θ) = Δ ^ , R).

The development of Sections 5.1 and 5.2 is patterned on Section 10 of
Moschovakis [113]. There are many differences due to the fact that he uses multiple-
valued theories whereas we have insisted on single-valued ones. But many of the
key technical points are taken from his paper.

We stop short with Theorem 5.2.13. One could go on to investigate to what
extent an infinite theory is characterized by its associated pwo: If we start with an
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infinite theory Θ and construct the associated pwo (5.1.10) with respect to the
relations R θ and then pass to the theory PR[[<, RΘ]L are then the two theories
equivalent? The answer is "almost", we need to be more careful in the construc-
tion of PR[[<, R θ]]; the interested reader may consult theorem (xx) of Section
10 in Moschovakis [113] for technical inspiration and then prove a similar result
in the present framework.

5.2.14 Remark. If a multiple-valued theory Θ has a pmv selection operator
q(a, σ), we get a "n ice" theory for en(Θ) in a straightforward way, see Section 1.3.

It could have been the case that multiple-valued selection was necessary for
theories associated with an admissible pwo. In a set-theoretic context we assume
computability of the union operator, i.e. if x e A, then f(x) = (J x is also an
element of A (/is a rudimentary operation). And if x is a unit set, then/(x) = (J x
is the unique element of x, i.e. we have a special kind of selection operator. This
is precisely what we need in proving that R(σ) is computable if both R(σ) and
—iR(σ) are semicomputable. We are led to the construction of a set Bσ (uniformly
in σ) which has 0 as its only member if R(σ) and 1 as its only member if —,i?(σ).
f(Bσ) = U Bσ would then be the characteristic function of R(σ), proving that it
is computable.

Over an arbitrary R-admissible pwo (91, =Q the operation (J makes no sense.
So we use multiple valued search: q(a, σ) selects a set of elements satisfying a
condition {a}(x, σ) ~ 0. And if for all σ there is a unique x satisfying the condition,
then q(a, σ) defines a single-valued mapping. (The reader should at this point look
back at the proof of Theorem 1.3.4.)

The union operator leads to a new element of the domain, multiple-valued
selection leads to a subset. It is an interesting and important technical point that
one can extend the formalism of recursion theory to include pmv functions. They
can even be made to work in the context of priority arguments, see Stoltenberg-
Hansen [163]. But we may have conceptual doubts, strong enough to resist a
technical point, however ingenious and elegant.

5.5 The Imbedding Theorem

The interplay of recursion theory and set theory has been a rich source of ideas
for the general theory. In this section we shall analyze the "next-admissible"
set/ordinal construction. We start by tracing some of the history.

"Higher" recursion theory started in the mid 1950's with S. C. Kleene's work
on the analytic hierarchy, constructive ordinals, and the hyper arithmetic sets [79-81].

This work was followed by a number of basic contributions by Clifford Spector
(1930-1961).

(i) In his paper of 1955, Recursive wellorderings [158], he introduced and used
as a basic tool the boundedness theorem for hyperarithmetic theory (i.e. every
Σ{ subset of 0, the set of ordinal notations, is bounded by some recursive ordinal).
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(ii) In his 1959 paper Hyperarithmetic quantifiers [160] he proved that Πϊ equals
Σ{ on HYP, i.e. every Π{ predicate P(a) can be written in the form

P(a) iff 3α(α e HYP Λ R(a9 a)),

where HYP is the set of hyperarithmetic functions and R is an arithmetic relation,
(iii) In his study of Ordinals of inductive definitions in [161] he established a

number of basic results, in particular, that

|Π}-mon| = |Π?| = ωl9

ωλ being the first non-recursive ordinal.
(iv) Less known, and published only as an abstract, is a paper from the 1957

Cornell Summer Institute for Symbolic Logic, Recursive ordinals and predicative
set theory [159], Restated in modern terminology he proves thatL ω i is the collection
of hereditarily hyperarithmetic sets. (See also Hao Wang's contribution [171] to
the same meeting where, in particular, the connection with GodeΓs notion of
constructibility is emphasized.)

Writing history is not easy. Too often one restates and interprets the past
from our present and "correct" point of view. As a result one is often amazed at
the lack of insight sometimes shown by our predecessors.

Thus from our "correct" point of view it is remarkable that Spector did not
put the pieces together and arrive at our way of looking at general recursion
theory. From (ii) and (iv) he "knew" that ΠJ corresponds to Σ x on Lωi. From
(iii) he " h a d " the connection with inductive definability. And a basic tool in the
proofs was the boundedness theorem of (i), which is the clue to the set-theoretic
description of Lωi, i.e. to admissibility theory. It was all in his hands!

Perhaps, not. The paper referred to in (iv) was related to Hao Wang's program
for building a constructive or predicative foundation for mathematics. At the
time it could be described as an example of "applied" recursion theory. Today
it can be viewed as a central piece of the " p u r e " theory.

But Spector, who died 31 years old, had some of the basic technical results
which we have exploited over and over again in arriving at our present "correct"
version of the theory.

Remark. In his paper of 1959, Quantification of number-theoretic functions [84],
Kleene proves that the ramified analytic hierarchy up to ωl9 Rωi, equals Δ{.
There is no reference to Spector's Cornell paper [159]. Did one not see any
connection?

We have briefly focused on the work of Spector. It soon flowered into a rich
general theory. KreisePs and Sacks' 1965 paper, Metarecursive sets [91], marked
an important stage. It gave both a conceptual analysis of the fundamental notions,
in particular, of the notion of finiteness (see the introduction to Chapter 3), and
contributed significantly to the techniques of ordinal recursion theory. At the
same time, S. Kripke [92] developed the more general theory of recursion on an
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arbitrary admissible ordinal. A topic developed independently by R. Platek in his
1966 Stanford thesis [133], where also the theory of admissible sets is studied as
an important part of the general theory.

In all this work the connection between hyperarithmetic theory and Lωi was
of central importance. The metarecursion theory of Kreisel and Sacks was in a
sense "constructed" out of hyperarithmetic theory and notations for recursive
ordinals. And what had been a guiding principle was soon made into a precise
theory: the "next-admissible" set/ordinal construction.

The basic reference is the 1971 paper of Barwise, Gandy, and Moschovakis,
The next-admissible set [14]. Let A be a transitive set closed under the formation
of unordered pairs. Define

A+ = P | {M; Mis admissible and A e M}.

The first basic result in their study is:

(1) A + is admissible, in fact,
Λ+ =LK(A),
where K = sup{|Γ| : Γ is first-order positive inductive operator on A}.

This result was proved using the theory of hyperprojective sets of Moschovakis
[112]. A further result is

(2) A subset S of A is hyperprojective iff S e A + .

In the context of hyperarithmetic on ω hyperprojective theory is the same as
Δ^. In this case (1) constructs Lωi and (2) asserts that a subset of ω is Δ} iff it is
an element of Lωi.

Hyperprojective theories are a special class of Spector theories. The above
results immediately call for a generalization. This was provided in the context
of Spector classes over transitive sets by Moschovakis in Chapter 9 of his book
[115] on elementary induction. We discussed the problem in the context of Spector
theories over general computation domains in our On axiomatizing recursion
theory [26]. A proof of these results would use the theory of admissible sets with
urelements, which was developed by Barwise [10] at the same time.

The "next-admissible" ordinal construction was carried out by P. Aczel [5]
at the same time, formalizing the construction of metarecursion theory from
hyperarithmetic theory.

It is time to be technical. Let Θ be a Spector theory on a computation domain
9Ϊ. There are two basic objects associated with Θ. First, an ordinal |]Θ|| =
sup{|α, σ, z\ (a, σ, z) e Θ}. And next a relation R defined by

R(x, a) iff J C G Θ Λ \x\θ = a.

These two objects are the essential ingredients in the "next-admissible"
construction.
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If we want to construct the next-admissible set, we should look at L||θ||[^4; R],
where A, the underlying set of 21, is a set of urelements. If we want to construct
the next-admissible ordinal we should look for a two-sorted theory (A, ||Θ||), i.e.
an admissible ordinal with urelements.

Both approaches are possible. But we shall follow a third way, and look for
an i^-admissible prewellordering above the given Spector theory Θ on 21. There
is an immediate candidate.

Let Θ be a Spector theory on 21 = (A, A9.. .>. Define the ordinal ||Θ|| as
above. Let us be a bit more careful with the relation R:

R(χ9a) iff x = < « , < * ! , . . . , * n » Λ ( * i , . . . , X Λ ) e Θ Λ \xl9. . ., X n | θ = a.

5.3.1 Definition. We define a prewellordering (21*, < ) by setting

A* = A x | |Θ||,

and

(x9a)^(y9β) iff a^β.

For (21*, =Q we construct an appropriate language L*(^9R) and introduce as
usual classes Δo(=^, R) and Σ±(^9 R).

5.3.2 Lemma. Let B ^ A. Then B e en(Θ) iff B is Σ ^ , R).

(We use the simple imbedding x -> (x, 0) of A into A*.) For the proof assume
first that B is Θ-semicomputable, i.e. for some code a9

xeB iff ( α 5 x , 0 ) G θ
iff 3y e A*[(y)0 = <3, <α, x9 0 » Λ R(y)].

Remember that we have coding-decoding in a pwo.
Conversely, assume that B is Σ ^ , R). Then for some Δ0(=sζ, R) formula Φ,

XEB iff lye A x ||Θ|| Φ((*, 0), y)
iff 3β, z, w e A[(a9 z9 0) e Θ Λ Φ((x, 0), (w, |β, z, 0|))].

Here the matrix is Θ-semicomputable. Note that bounded quantification in Φ
can be handled by finiteness and prewellordering, the characteristic properties of
a Spector theory.

It remains to show that the pwo (21*, =<) is ^-admissible. So let θ(x9 X) be a
Σ 1 ( ^ , X9 R) formula in which X occurs positively. We must show that the least
fixed-point of the associated inductive operator Γθ is Σ x ( ^ , R). In view of Lemma
5.3.2 all we need to do is to use the first recursion theorem for the underlying
Spector theory.
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With Θ we associate a Θ-computable functional <p in the following way (here
we think of a as (al9 a2)):

φ(f9 a)~0 iff α 2 G θ Λ θ((al9 \a2\)9 {(bl9 \b2\) : 3b[R((b9 \b2\)
Af((bl9b))~0]}).

By necessity there is some coding involved!
Let/* be the least—and Θ-computable—fixed-point for φ. Define X* by

xeX* iff 3b[R(b, x2) Λ f*((xl9 b)) ~ 0].

By Lemma 5.3.2 X* is Σ ^ , R). Assume now that θ(x9 X*) is true, we must
verify that x e X*. Now x will be of the form (xl9 a) where xλ e A and a < | |Θ||.
Let x' be (xl9 b) where | 6 | θ = α. We then get ψ(f*9 (xl9 b)) ~ 0, from which we
conclude f*((xl9 b)) ~ 0. But then it follows that 3b[R(b9 a) Λ f*φcl9 b)) ~ 0],
i.e. x E X*9 which was what we had to prove. And minimality of X* follows from
the minimality of/*. QED.

5.3.3 Theorem. Let Θ be a Spector theory on a computation domain St. Let (51*, ̂ )
be the p w o introduced in Definition 5.3.1 and let R(x9 a) be the relation: X G Θ Λ
|x | θ = α. Then

(i) (31*, =<) is R-admissible:
(ii) A subset B c A is θ-semicomputable iff it is Σ x ( ^ , R) under the imbedding

This is our version of the "next-admissible" construction. And we feel that
our analysis has isolated the crucial recursion-theoretic content: the first recursion
theorem.

Adding Theorem 5.2.13 to the above construction yields a good infinite theory
Θ* over Θ. And, as we will show in the next chapter, it is this infinite theory Θ*
which will be the setting for "post-Fridberg" recursion theory, i.e. priority
arguments and fine structure theory, which by "pull-back" should yield informa-
tion about the given theory Θ.

5.3.4 Remark. A similar point of view was taken in Chapter 6 of Barwise, Admis-
sible Sets and Structures [11]. He used his construction HYPan, the "next-admis-
sible" over 9K, to develop the theory of inductive definability over 9Jt. (See a
remark on this in connection with Example 3.3.7.)

5A Spector Theories Over ω

Two important examples of Spector theories over ω are: (i) prime recursion in a
total, normal tyρe-2 functional, and (ii) prime recursion in 2E and a consistent
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partial functional F$, derived from a monotone quantifier Q (see Example 3.1.3).
From the representation Theorem 3.2.9 we know that these examples are exhaustive.
One question remains: Can we characterize those Spector theories which are
equivalent to prime recursion in some total and normal type-2 functional?

In discussing this question we shall have more to say about the interplay
between set theory and recursion theory, thus continuing the discussion of the
last section.

Let Θ and Ψ be Spector theories on ω. Theorem 3.2.8 tells us that Θ ~ Ψ iff
en(Θ) = en(Ψ) and that Ψ ^ Θ iff en(Ψ) c en(Θ). We shall introduce a special
notion for "strictly less than". But first a piece of notation: For any theory Θ
we shall use «θ for the ordinal ||Θ|| of the theory. If F is a normal tyρe-2 functional
over ω we use aF to denote the ordinal of the theory PR[F].

5.4.1 Definition. Let Θ and Ψ be Spector theories over ω. We define

Ψ < ! Θ iff en(Ψ) c en(Θ) Λ αΨ < αθ.

5.4.2 Remark. We note the obvious consequences of the definition: If Ψ < Ψ',
Ψ' < ! Θ\ Θ' ^ Θ, then Ύ <± Θ. And Ψ < x Θ implies that en(Ψ) £ en(Θ).

We remind the reader that a functional F is Θ-computable if it is weakly
Θ-computable, i.e. F(g, σ) is Θ-computable if for some primitive recursive
f: ω —> ω

F(λτ {e}θ(τ, σ,), σ) ~ {/(«)}θ(e, σl9 σ).

5.4.3 Remark. The following facts are immediate

(i) If F i s Θ-computable, then PR[F] c Θ.

(ii) If Θ is Spector and Θ ~ PR[F], then F is Θ-computable.

If Θ is a Spector theory and F is a Θ-computable total functional such that
aF = αθ it could still happen that en(F) (i.e. en(PR[F])) was strictly contained in
en(Θ). F could be too " t h i n " to code up all computations in Θ. What the next
result shows is that we can use F to construct another normal and total G such
that PR[G] - Θ.

5.4.4 Fattening Lemma. Let Θ be a Spector theory and F a total ^-computable
functional such that aF = αθ. Then there is a total normal G such that Θ ~ PR[G].

For the proof we first pick an index ex such that {e^{e) j iff λx{e}e(x) is total,
in which case |{e}θ(*)| < |{^i}©(^)|5 for all xeω. We further define f o r / a total
function from ω to ω:

5.4.5 Definition. Ord(/) = inf{|{ί?1}β(e)|β:/= λχ.{*}Θ(x)}.

Using Ord(/) as a "cut-off" we construct a functional Go as follows:
If Ord(/) is defined, then
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re σ > ) = ίWβW + 1 i f IWβWI < Ord(/)

where </, <?, σ> = λx •</(*), e, σ>. To make Go total we set G0(g) = 0 if g is not
of the form </, e, σ>, or if g = </, e, σ> and Ord(/) is undefined.

We note first that Go is Θ-computable. We have the following instructions for
computing Go on a function φ with index e': First use 2E to check if φ is total. If
φ is total, check if ψ = </, e, σ> for some /, e, σ. If not, let G0(φ) = 0. If ψ =
</, e, σ>, then Ord(/) j since φ is Θ-computable. It remains to check if |{e}Θ(σ)| <
Ord(/). But since Θ is Spector, the relation

VA(/= λx{h}θ(x) => |{^}©(σ)|θ < |{̂ i}β(Λ)|β)>

is Θ-computable. Hence we have Θ-computability of Go. To ensure normality,
take the join of Go and 2E, which we denote by G'Q. To ensure that G'o does not
close off too soon, take further the join of Go and the F we started with, denote
the result by G.

One half of the lemma is now immediate, en(G) £ en(Θ). The converse needs
more work. First define

K = suρ{Ord(/) :/ i s computable in G}.

Claim, K = α θ .

Granted this claim the "fattening lemma" follows immediately. Suppose
{^}θ(σH By the claim there is an index m such t h a t / = λt {m}G(t) is total and
|{έ?}e(σ)| ^ Ord(/). Hence Go«λf.{/w}G(0,έ?,OΓ» ^ WβOO + 1. Since PR[G] is
Spector we have a selection operator v(e, σ), and we can define

^ , σ)}G(ί), e, σ» - 1.

Thus en(Θ) c en(G).

To prove the claim we first note that if/is G-recursive, then/is Θ-computable,
hence O r d ( / ) | and < α θ . Therefore, K ^ αθ.

To prove the converse we use the fact that aF = αθ. Hence aG = αθ, since
obviously aF < aG < αθ. Thus we have to prove that aG ^ /c. Since αG is the
supremum of the lengths of G-recursive prewellorderings on ω, it suffices to prove
that for each such prewellordering there is a G-recursive/such that Ord(/) ^ the
length of the prewellordering. This is an exercise in the use of the second recursion
theorem, which we omit. However, we shall in Chapter 7 return to this point in
the context of computation theories on two types.

5.4.6 Definition. A Spector theory Θ on ω is called Θ-Mahlo if for all normal
Θ-computable F there exists a Spector theory Θ' such that
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(i) θ'<iθ,
(ii) F i s ©'computable.

Below we shall comment on the relationship of this notion of Mahloness to
the notion of Mahloness in ordinal recursion theory. Here we have the charac-
terization theorem.

5.4.7 Theorem. Let 0 be a Spector theory on ω. Then 0 is equivalent to PR[G]
for a normal, total type-2 GiffΘ is not Θ-Mahlo.

We have here restricted ourselves to ω as domain. A more general result is
valid. We return to this in Chapter 7 in the context of recursion theories on two
types.

Half of the theorem is immediate: Let Θ ~ PR[G], then, using G in Definition
5.4.6, we see that there is no Θ' satisfying (i) and (ii). Conversely, assume that
Θ is not Θ-Mahlo. Hence there exists a normal Θ-computable F such that, in
particular, PR[F] is not < x than Θ. Since by Remark 5.4.3 en(F) ^ en(Θ), this
means that aF = αθ. Hence, by the "Fattening Lemma" 5.4.4 there exists a total,
normal G such that Θ - PR[G].

"Mahlo is Mahlo", we shall prove that the definition of Θ-Mahlo in 5.4.6 is
the same as the ordinal-theoretic notion of Mahloness. And this will give us an
opportunity to elaborate further on the relationship between Spector theories on
ω and admissibility theory.

From a Spector theory Θ we derive an ordinal αθ = ||Θ|| = sup{|α, σ, z | θ :
(a, σ, z) G 0} and a relation Rθ(x, a) iff x e 0 Λ \x\e = α. From αθ and Re we
can construct the admissible set Laθ[Rθ]. And we know from the imbedding
theorem that if 0 is Spector, then αθ is i^-admissible. (We shall further discuss
this in connection with the one-section Theorem 5.4.24.)

As a variant of the standard procedure we shall now look at admissible ordinals
from the standpoint of Spector theories. 0 is given. For τ < αθ introduce

Θτ = {(*, σ, Z) : {β}θ(σ) ~ z Λ |{fl}e(<0|e < T }

5.4.8 Definition, r is called ^-admissible if 0 τ is a Spector theory.

5.4.9 Definition, (i) A relation R on ω is called Θτ-semicomputable if there exists
an index e such that

R(σ) iff |M θ (σ) | < r.

(ii) Let 7r: τn -> r be a (partial) function, π is called 0^computable if the relation

{(x,...9y): | x | Θ , . . . , b | θ < r Λ 7Γ( |Λ: | Θ , . . .) - \y\β}9

is θτ-semicomρutable.
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(iii) π is called ©-computable if it is Θαθ-computable.

5.4.10 Definition. An ordinal r ^ αθ is called Θ-Mahlo iff

(i) r is Θ-admissible.

(ii) Every normal ©^-computable function π has a Θ-admissible fixed-point

less than r.

We use standard set-theoretic terminology: π as a function from ordinals to
ordinals is normal if it is strictly increasing and continuous at limit ordinals.

We give two simple results to show that the above definitions are the standard

ones.

5.4.11 Proposition. Let Θ be a Spector theory on ω. Let v < α θ and π a partial
©-computable functional If π(ξ) φ for all ξ < v, then there exists a v < αθ such
that π(ξ) < v',for all ξ < v.

For the proof note that the set

{(x,y) : |x |β, |>>|θ < αθ and <π(\x\) ~ ]j;|},

is Θ-semicomputable. Being in the Spector case, we have a selection function
v(x) such that if 3 J K | X | ) ~ \y\], then v(x) | and π(\x\) ~ \v(x)\. It is not difficult
to construct a computation x0 such that |v(x)|θ < |Λ:0 |Θ for all x such that |jc|β < v.
Let v' = |xo |β.

5.4.12 Proposition. Let F be a total, normal type-2 functional on ω. Then aF is the
least F-admissible ordinal.

F-admissible is, of course, the same as PR[F]-admissible. For the proof let
r be a limit ordinal such that ω < τ < aF. We must show that τ is not F-admis-
sible. Since r < <χF there must be F-computations of length r, and since τ is a
limit ordinal this computation must be an application of F to some function
λx{e}F(x,σ), where the function is total and r = sup{|{e}F(x, σ)|F + 1 :xeω}.
Define π as π(ή) = \{e}F(n, σ)\F. Then r = sup{π(«) : n e ω } . I f τ were F-admissible,
then π would be Fτ-computable. 5.4.11 would then tell us that suρ{τr(n) :neω} < r,
a contradiction.

5.4.13 Remarks. These results should convince the reader that we are just looking
at admissibility theory from a different point of view. We can even prove more:
If a is admissible and projectible to ω (i.e. there is a one-one mapping π from a
into ω which is α-recursive in constants less than α) then there is a Spector theory
Θ on ω such that α θ = a. We shall return to this point below in connection with
the one-section result.

We claimed above that "Mahlo is Mahlo":
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5.4.14 Theorem. Let © be a Spector theory on ω. Then Θ is Θ-Mahlo (in the sense
of Definition 5.4.6) iff α θ is ©-Mahlo (in the sense of Definition 5.4.10).

The proof is split into two lemmas.

5.4.15 Lemma. Let © be a Spector theory on ω and F a normal ©-computable
type-2 functional There exists a ©-computable normal function π with no ©-admis-
sible fixed-points < aF.

5.4.16 Lemma. Let © be a Spector theory on ω and π a normal ©-computable
function. There exists a ©-computable normal F such that aF is ©-admissible and a
fixed-point for π.

The theorem is a simple combination of the lemmas. Let first αθ be Θ-Mahlo
and F SL normal Θ-computable functional. By 5.4.15 there is a π with no Θ-admis-
sible fixed-points < aF. But αθ is Θ-Mahlo, so π has Θ-admissible fixed points < αθ.
Thus aF < αθ, and Θ is easily seen to be Θ-Mahlo. Conversely, let Θ be Θ-Mahlo
and π a normal Θ-computable function. By 5.4.16 we have a Θ-computable F
such that aF is Θ-admissible and a fixed-point for π. Since Θ is Θ-Mahlo, aF < αθ.
Thus aβ is Θ-Mahlo.

It remains to prove the lemmas; the reader not interested in the technical
details may move on to Remark 5.4.17.

For Lemma 5.4.15 we first note that since Fis Θ-computable there is an index
t such that

xeCF iff <f,x>eC e ,

where C θ is, as before, the coded set of convergent computations. Use now
Proposition 5.4.11 to prove the following two facts:

If v < αθ, there exists μ < <χθ such that for all x,

\x\F < v=> |<f,X>|β < μ.

If v < αθ, there exists μ < αθ such that for all x9

\<t,x)\e <v=> \x\F < μ.

This done, define π as follows: τr(0) = 0 and π is continuous at limit ordinals.
π(v + 1) is the least ordinal μ such that

(i) π(v) < μ.

(ii) For all x, \x\F < v => |<ί, x>| θ < μ,
(iii) For all x, \(t, x>|θ < v => \x\F < μ.
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Using the second-recursion theorem we see that π is Θ-computable. π is normal
by construction, and π(y) < α θ whenever v < αθ. It remains to verify that π has
no Θ-admissible fixed-points < aF.

Assume that T < aF, τ a limit ordinal, and τr(τ) = r. As before we have an
index e such that the function λx-{e}F(x, σ) is total, |{e}ir(x, σ)\F < τ for all x, and

(iv) sup{|{<?}F(x, σ)|F : x e ω} = r.

From (ii) we conclude that |<ί, <e, x, σ » | β < ττ-(τ) = r, all x. Whence,

(v) sup{|<ί, <e, x, σ » | θ : x e ω} = r,

viz. if the sup in (v) was τ < T, then by (iii) \{e}F(x, σ)\F < π(τ' + 1) < τr(τ) = r,

contradicting (iv) above.
If T was Θ-admissible, then p(x) = |<f, </o, x, σ » | θ , x e ω, would be Θτ-com-

putable. By 5.4.11 this would give sup{/>(x) : x e ω} < T, contradicting (v) above.
Hence TΓ has no Θ-admissible fixed-points < aF.

The proof of Lemma 5.4.16 necessitates a few preparatory remarks. First of
all we need to keep track of how ordinals of computations in Θ grow. If v < α θ

by virtue of 5.4.11 there exists an ordinal μ < αθ such that:
(i) (substitution) If there exists an u such that {e}θ(σ) ~ u and {/}θ(w, σ) — x

and |M θ (σ) | θ , |{/}θ(w, σ) | θ < v, then \{gi(e,f9ή)}β(σ)\ < μ, where n = lh(σ) and
gx is an index for substitution.

(ii) (prewellordering) If |x | θ < v or \y\θ < v, then |{£}β(*,}0l < H-
(iii) (application of Eω) If for some x, {e}θ(x9 σ) ~ 0 and |{e}θ(x, σ)|Θ < v,

then \{g2(n)}e(e, σ) | β < μ, and if for all x there is some y φ 0 such that {e}θ(x, σ) ĉ
y and |{^}θ(x, σ)| < v, then |{g2(i)}e(«» σ )U < μ, where « = lh(σ) and g2(ή) is an
index for Eω.

We have similar clauses for other functions and functionals entering into the
axiomatic description of Θ. Let piγ) be the least μ satisfying the conditions above.
p is seen to be Θ-computable.

We now start the proof of Lemma 5.4.16. Recall from 5.4.5 the notion Ord(/),
defined whenever/is a total Θ-computable function.

Let / be total and Θ-computable. Let v = Ord(/) and set μ = sup(τr(v), p(v)).
Then

\ l otherwise.

i { n = <e> σ> y>> Mβ( σ) - y> IWβWlβ < /*,
otherwise.

Let F0(g) = 1 if g is not Θ-computable, or g is not of the forms </, n, 0>, </, n, 1>.
FQ is easily seen to be Θ-computable. Let F be the join of Fo and E.
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We note that if/is F-recursive and total, then/is also Θ-computable, hence
Ord(/H.Let

(a) λ = sup{Ord(/) :/is total, F-recursive}.

L e t / = λx-{e}F be total and v = Ord(/). We see that λ« F 0 « / n, 0» is the
characteristic function of the set

B e = {<* ' , * , y > : {e'Uo) ~ y Λ \{e'}θ(°)\e < "}•

In the same way λw F0«/, «, 1» is the characteristic function of

Ce = {<*', σ, y> : {e'}β(σ) ~ y Λ |{e'}θ(σ)|θ < /*},

where we remember that μ = sup(ττ(ϊ/), />(V)). Thus Be, Ce are F-recursive, uniformly
in e.

Also remember that if inf(|x|θ, |>>|θ) < v then \{β}e(x,y)\e < p(v) < μ> The set

{(*, y) : |x|θ < v or \y\Q < v, and <£ Λ:, >;, 0> G Ce},

is a prewellordering of length v and is F-recursive, since Be and Ce are F-recursive.
Any F-recursive pwo has length < aF. Hence v < aF.

Since v above is of the form Ord(/), where/is total and F-recursive, it follows
that the ordinal λ introduced in (a) satisfies λ ^ aF. If we had equality, λ = aF,
Lemma 5.4.16 would immediately follow:

(1) To prove that aF is a fixed-point for TΓ, it suffices to prove that v < aF

implies π(v) < aF. So let v < aF and choose an e such that / = λx{e}F(x) is total
and Ord(/) = v ^ v. Such an e exists since λ ^ aF. Let μ = sup(π(v'), p(v')). Ce

is F-recursive and from it we can construct a total and F-recursive / ' different
from all / " with Ord(/") ^ μ. Thus μ < Ord(/') < λ ^ aF. Since v ^ v' the
desired inequalities follow.

(2) To prove that aF is Θ-admissible it suffices to prove that if |{e}θ(*, σ)|θ < aF

for all x, then there is an ordinal μ < aF such that |{e}θ(*, σ)|θ < μ for all x. But
up to length aF enough information about Θ-computations is coded into Fo. In
fact if |MΘ(*> <ή\ < «F for all x then it is possible to construct an index e' such
that {e}θ(x9 σ) - {e'}F(x, σ) and \{e}θ(x, σ)|θ < l^'}^^, σ)\F for all x. Then let μ
be the length of the computation E{\x{e}F(x, σ)).

We know that λ ^ aF. It remains to prove equality. (And, note that equality
was used in (1) above.)

We do this by constructing a function σ: λ^aF such that σ is F-recursive
and cofinal in aF. Admissibility, i.e. 5.4.11, then implies that λ = aF.

Replacing Θ by F we introduce a notion OτάF{f), for/total and F-recursive.
A simple diagonal construction will tell us that
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(b) aF = suρ{OτdF(f) :/is total, F-recursive}.

From (a) and (b) there is a short step to a suitable function σ, viz. for v < λ set

(c) σ(v) = inf{OrdF(/) : Ord(/) > v}.

We must prove cofinality and F-recursiveness.
The F-recursiveness of σ is obtained by a painstaking analysis of the definition,

writing out each part in its ultimate recursion-theoretic details (Moldestad [105],
pp. 106-107). For cofinality, assume to the contrary that

SUp{σ(v) : v < λ} = μ < aF,

which means that sup{Ord(/): OrdF(f) < μ} = λ. This, however, contradicts the
following fact: If μ < aF, then

(d) v = sup{Ord(/) : OrdF(f) < μ} < λ.

For the proof of (d) let μ and v be fixed. The set D = {e: {^Me)^ < μ} is F-
recursive, where eλ is the index used in the definition of OτdF(f). Note that
OτdF(f) < μ iff 3e e D [f = λx {e}F(x)]. Let

B = U Be.
eeD

This set is F-recursive since Be is F-recursive uniformly in e. And we observe that

<β\ σ,y}eB iff {e'Uσ) - y A \{ef}θ(σ)\θ < v,

where v is the ordinal introduced in (d). Now, if/is a total Θ-computable function
such that Ord(/) < v, then there is an index e such that / = λx-{e}B(x) and
Vx3y(e, x, y} e B. Hence the set

which is F-recursive, contains Θ-indexes for all total Θ-computable functions /
with Ord(/) < v, in particular, E contains Θ-indexes for all/such that OτdF(f) <
μ. Once more, a diagonal construction will yield a function/' which is F-recursive
and different from all total Θ-computable functions with Θ-index in E. Hence,
v < Ord(/') < λ, which concludes the proof of (d).

5.4.17 Remark. We add a brief remark on the sources for the theory of Section
5.4 up to this point. The fact that Θ is equivalent to a theory PR[G] for a normal
type-2 G iff the ordinal αθ of Θ is not Θ-Mahlo is due independently to S. Simpson
and to L. Harrington and A. Kechris, see [58] and [56]. The notion of Θ-Mahlo
(5.4.6) can be found in the seminar report of A. Kechris [74], where Theorem
5.4.7 for both one and two domains are proved. Implicit in this work are both the
Fattening Lemma 5.4.4 and the fact that "Mahlo is Mahlo". We have followed
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Moldestad [105] in our exposition. In particular the detailed and explicit construc-
tions in Lemmas 5.4.15 and 5.4.16 are taken from his study.

We have now successfully characterized those Spector theories which are
equivalent to prime computability in a normal type-2 functional over ω. Restricting
ourselves to sections we can go further and show that for every Spector theory Θ
on ω there is a normal tyρe-2 functional F such that sc(Θ) = sc(F), but in general
the envelopes will be different. This is the "plus-one" theorem of G. E. Sacks [142].

5.4.18 Definition. Let M be a non-empty transitive set. M is called an abstract
1-section if it is closed under pairing and union and satisfies the following axioms:

(1) Local countability: Vx [Λ: is countable].
(2) ΔQ-separation: 3xVy[y e x <-* y e a A φ(y)].
(3) ^-dependent choice: Vx3yφ(x, y) -> 3hVnφ(h(n), h(n + 1)), where φ(x) and

φ(x, y) are Δ0-formulas (with parameters) and A is a function from ω to M.

The reader will note that if M is an abstract 1-section, then M is an admissible
set and each element of M is hereditarily countable.

This leads to the topic of codings: Each set x e HC (the hereditarily countable
sets) can be encoded by an a e ωω. If a is a code, let m(a) e HC be the set encoded
by α. By induction on the set theoretic rank of x we can define a relation :

(i) a is a code and m(ά) = x9

a is a code for the set {m(an) :neω}, an being the usual projection of α. The set
of codes is ΠJ, i.e. semicomputable in 2E.

5.4.19. Proposition. Let a be a code and <p(x) a Δ0-formula. The relation P(β) iff
3n[β = an Λ ψ(m(β))] is recursive in a, 2E.

By now this is familiar: bounded quantification corresponds to number
quantification over ω.

So we come to our main construction. Let Θ be a Spector theory on ω. Let
m(sc(Θ)) be the set of all sets in HC with code in sc(Θ).

5.4.20 Proposition. Let Θ be a Spector theory on ω. Then m(sc(Θ)) is an abstract

I-section.

We verify Δ0-separation and Δ0-dependent choice. For Δ0-separation let φ(y)
be Δo and a e sc(Θ) be a code. We must find a code α0

 e sc(Θ) such that

Vy[y e m(a0) iff ye m(a) A φ(y)].

By Proposition 5.4.19 the relation P(β) is Θ-computable. Let aQ be an enumeration

of ally's that satisfy P(β).
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Turning to Δ0-DC let <p(x, y) be a Δ0-formula such that

(ii)

is true in m(sc(Θ)).
Let {a}θ be a code in sc(Θ). Define a set

Qa = {neω: {ή}B is a code Λ φ(m({a}θ), m({n}θ))}.

Qa is Θ-semicomputable uniformly in a. We now use a selection operator v(a)
such that whenever {a}θ is a code then v(μ) e Qa. We then define a function h by
recursion

λ(0) = Ho> W e a code for 0 .
h{n + 1)

Then, clearly, Vwφ(m({Λ(w)}θ), m({A(w + 1)}Θ)).

5.4.21 Remark. In the proof of 5.4.20 we asserted that the relation P(β) is Θ-
computable. Strictly speaking this makes no sense: Our Spector theories are the
"light-faced" version of hyperarithmetic theory and P(β) is a "bold-faced"
relation. But using essentially Proposition 3.1.12, we can pass from the "light-
faced" to the "bold-faced" version as in hyperarithmetic theory.

#i(sc(Θ)) can be given a more precise description. It is in fact equal to LaQ[RΘ],
where αθ and Rθ have their usual meaning. And αθ = m(sc(Θ)) n On. In this
setting the imbedding theorem of Section 5.3 asserts that Θ-semicomputability
corresponds to Σ^L^IRQ], e, Rθ}). We shall not prove this in detail, for it is
not needed in the actual proof of Sack's "plus-one" theorem.

This theorem asks if it is possible to define a normal type-2 F such that sc(Θ) =
Laθ[Rβ] π 2ω = sc(F) for any Spector theory Θ on ω.

The answer is yes, but there are several stumbling-blocks in the proof. Theorems
5.4.7 and 5.4.14 should warn us that there is no trivial way of pulling RQ back to
a functional over ω. One point is that the notion of code involves the notion of
well-foundedness, and well-foundedness is not computable in every Spector theory.
This is the first obstacle to get around.

A second obstacle comes from Proposition 5.4.12. It is not at all obvious (in
fact, it may be false) that αθ is the least i?θ-admissible ordinal, which it should be.

But here is a lead: use forcing. Given any abstract one-section M we can
generically construct an R such that M = La[R], where a = M n On, and a is
the least iΐ-admissible ordinal. In particular, a will not be i?-Mahlo. And this is
a result we can apply. But let us first digress and make some historical remarks.

Forcing was rather soon applied to problems in arithmetic and recursion theory,
some of the early and influential papers are Feferman [24], Gandy-Sacks [43],
and Sacks [141]. In the context of admissible sets Jensen included a section on
forcing in his lecture notes [70], proving, characteristically, some very deep
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theorems. Unfortunately Jensen's lecture notes have remained unpublished. Our
next result is, in fact, a simple version of a result of Jensen. We follow the ex-
position in Normann [121], who saw how to apply this result to the "plus-one"
theorem, avoiding the somewhat complicated hierarchy for recursion in higher
types introduced by Sacks.

5.4.22 Proposition. Let M be an abstract l-section and a = M π On. There exists
an R c a such that M = La[R] and a is the least R-admissible ordinal.

Introduce the conditions P as follows:

(1) p e P iff p c a and no ordinal <sup/? is /7-admissible.
(2) p ^ q iff q = p n rnk(g).

The forcing relation will be defined directly for Δ0-formulas and then extended
to all formulas in the usual way.

(3) pti-qfau ...,Xn,p) iff ^ . . . ^ n e I
and <Lrnk(p)[/>L e, p} N φ(xl9..., xnp).

Here φ ( x l 5 . . . , xn9p) is a Δ0-formula containing the symbol p to be interpreted
by the set p. To be really careful (or pedantic?) we should also have distinguished
between the variable xt in φ(xl9 ...,xt9...9xn9p) a n d t h e set jcf e Lrnlί(p)[p]. We
also remind the reader that rnk(x) is the usual set-theoretic notion of rank.

From (3) we see immediately that lhΔo is Δi-definable. Let R be generic with
respect to <P, ̂ >. We want to show that

(4) M = La[R].

The part of (4) that requires some work follows from the following lemma.

5.4.23 Lemma. For all conditions p and all x e M there is an extension q ^ p such
thatxeLrnUq)[q].

Actually it is sufficient to prove the simpler result that there exists a q <, p
such that the code for x belongs to LrnK(q)[q], since a set belongs to an abstract
1-section iff its code, which is a subset of ω, belongs to the 1-section. And it is
easy to extend p to a q encoding the code of x9 viz. put q = /? u {rnk(/?) + n;
n belongs to the code of JC}.

The main thing to verify is Δ0(Λ)-collection. And as usual assume the contrary.
Then there is some Δ0-formula φ and a set u e M such that for some p £ R

(5) p\\-(

(6) Pn-W

We can rewrite (5) and (6) in the following forms
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(7) (V? < pWxXβr < q)(3y) r Ih Ψ(x9 y9 A).
(8) (V? < p)(Vv)(3r ̂ q)'r\\-3xeuVye v-,φ(x9 y9 A).

From (7) we can derive

(9) (V? < p)(3r ^ q)(yx eZ,rnk(g)[<?])(3j; eL r n k ( r ) [r]) .r Ih φ , y, A).

This is obtained in the following way. Let r0 < q take a wellordering of type ω
of L rnk(<z)[#] inside the model. By Σi-DC we may choose a sequence <ri>ieω (here
is a point where the definability of the forcing-relation enters) such that if r =
Uieω ru then η + ! is of minimal rank such that ri + 1 < r4 and if x* is element number
i + 1 in Lrnk«z)[tf] ^ e n ri + 1 lhφ(Xi, yi9 R), for some element yt. rnk(r) is not
r-admissible, hence r e P and (9) is verified.

Wellorder u = {x{\ie ω) inside M and use (9) to get a sequence <#i5 #> such
that

(i) qt ^ p and u e LrnK(qo)[qo].

(10) ^
(iii) (Vx G Lrnk(Qi)[^i])(37 e L r n k ( ς i + υ [ ^ + J ) g, +1 Ih φ(x, ̂ , R).
(iv) (Vi e ω) >qt + x Ih φ(^, ̂ , ^ ) .

Let g = Uieω ̂ t We must first verify that q is a condition. First observe from
(iii) that Lττ^{q)[q] Ih Vx3yφ(x, y). Suppose that 3v eLrnUq)[q] such that for
(Vi G ω)(3^ G v)φ(Xi, y). Since ^ = (J ^fc, there must be some qk such that i? e
Lrn}ί(qk)[qk]. Then ^fc Ih (Vx G W)(3^ G ϋ)φ(;c, y9 R) (recall the definition (3) of the
forcing relation). But this contradicts (8), hence q is a condition.

The same type of argument applied once again will finish off the proof of
Δ0(i?)-collection. Let s ^ q be such that <j>i>feω, v = {y{: ie ω} GjLrnk(s)[.s]. Then

£rnk(S)[s] 1= (V* G U)(3y G v)φ(x9 y, R).

But this contradicts (8). Putting things together we now have a full proof of
Proposition 5.4.22.

We are now ready for the main result supplementing the characterization
Theorem 5.4.7.

5.4.24 Plus-One Theorem. Let Θ be a Spector theory on ω. There exists a normal
type-2 functional F on ω such that sc(Θ) = sc(F).

Let Θ be given and construct its associated one-section τw(sc(Θ)) = La[R]9

where a = ||Θ|| and R obtained as in Proposition 5.4.22. a is the least Λ-admissible,
hence not i?-Mahlo. Σ1«Lα[Λ], G, R}) defines a Spector class, hence a Spector
theory on ω, call the theory Θ*. This theory is not Θ*-Mahlo, hence by Theorem
5.4.7, it is equivalent to a Spector theory PR[F], for some total, normal type-2
jpover ω. Since it is easy to see that sc(Θ) is determined by m(sc(Θ)), it follows that
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sc(Θ) = sc(F). But note that en(Θ) may differ from en(Θ*). The latter corresponds
to Σ1«Lα[i?], G, R}) restricted to ω, but since R is obtained by a forcing argument,
which does not preserve Δi-definability, this may differ from Σ 1«Lα[i?θ], G, RΘ}).

5.4.25 Example. (This is a simple version of a result in J. Bergstra [15].) There
exist two normal type-2 functional Fl9 F2 such that

(1) en(fi) Φ en(F2)
(2) sc(F1? a) = sc(F2, α), for all a e ωω.

The envelope cannot be reconstructed from its section.
We let F± = 2E and F2 the recursive join of 2E and a functional Fao9 where

a0 φ l-sc(3E) and

F (β\ = Il ί f a° = P
aoKP) \ θ otherwise.

To verify (1) assume that Fao ^ 2E. Then l-sc(F2,
 3E) c l-sc(2£, 3E) = l-sc(3E).

But this is a contradiction since α0

 e l-sc(F2,
 3

JC) but does not lie in \-sc(3E).
Let a be given. If a0 is ΔJ α, then F α o is recursive in 2E, a; hence l-sc(F2, α) c

l-scί2^, α). If α0 w «oί Δ{t0C, we will show that Fao has no effect on the 1-sections,
and (2) will again follow.

So suppose that we are making a calculation

{έ?}(0 = Fao(λv'{e'}(v, t))9

where for some ίo> M(^o) = 1 (otherwise λt {e}(t) would just be the characteristic
function of ω) and λt-{e}(t) is total. And suppose that this is the "first" (in length
of computations) where we are breaking out of l-sc(2is, α). This means that
λv-{e'}(v, t0) G lsc(2E, α). But this is impossible since {e}(t0) = 1 implies that

α0 = λv {e'}(v,to)9

and we had assumed that a0 is not in ΔJ α.




