
Chapter 4

Finite Theories on Two Types

Moving up in types over the integers ω the notion of finiteness bifurcates. In
higher types one must carefully distinguish between a weak and a strong notion
(see Definition 3.1.2 and the connecting remarks). This was a phenomenon first
observed by Y. Moschovakis [111] in his study of the hyperanalytic sets. He
proved that the set of reals semicomputable (in the sense of Kleene) in 3E is not
closed under 3α, i.e. existential quantification over the reals. A further analysis
reveals that higher type theories can be captured as theories on "two types", i.e.
as computation theories on domains of the form A = S u Tρ(iS), where Tρ(S) =
ωs, and where S is strongly finite, but Tp(S) is only weakly finite.

The distinction between two types can already be found in Moschovakis [114],
viz. the notion of 2-point class. It was adopted by L. Harrington and D. MacQueen
[55] in their proof of the Grilliot selection theorem. A general development of
computation theories on two types was first presented by J. Moldestad [105].
His primary aim was to provide a "natural" setting for the general "plus-2"
and "ρlus-1" theorems (see Chapter 7). But the theory can also serve as a frame-
work for developing second-order definability results in general. A variant theory
is the theory of Spector second-order classes (see Section 4.4 below).

4.1 Computation Theories on Two Types

We will study theories Θ on domains of the form % = {A, S, S>, where S is some
infinite set, A = S u Ύρ(S), and S is a coding scheme for S, i.e.

where N ^ S and (N, s} is isomorphic to the integers ω with the successor func-
tion. M, K9 L are the usual pairing and projection functions on S. We assume
that N is closed under M, K9 and L. We also assume that Tρ(5) = αA

As usual we can introduce the functions and predicates associated with coding
of finite tuples (see the discussion in Section 1.5). In particular we define a predicate
Seq(r) by

Seq(r) iff 3n3r,... 3rn[r = <r l f . . . , rn>].

4.1 Computation Theories on Two Types 91

In the concrete case of higher types we can " b o u n d " the quantifiers in the definition
of Seq(r). In the general case we must hypothesize the computability of Ef

s so as
to handle Seq(r).

Let * be the injection S -> Tp^S) defined by

0 if s = r

1 if sφr9

and " a function A -> S defined by

r if x = r*

0 otherwise.

With the help of these functions any coding scheme S for S can be lifted to A,

e.g.

M(r9 a) = λs M(M(r*(s), a(s))9 M(0, 1))
M(a9 r) = λs-M(M(a(s)9 r*(s))9 Af(l, 0))
M(a9 β) = λs-M(M(a(s)9 β(s))9 M(l9 1)),

where a9βe Tp(5), r9seS.

K(a) = (λsK(K(a(s)))r if L(α(0)) = M(0, 1),
= λsK(K(a(s))) otherwise.

L(α) = (λs L(K(a(s))))- if L(α(0)) = M(l , 0),
= λs L(K(a(s))) otherwise.

With these definitions the associated functions and predicates can be extended

4.1.1 Definition. Let 31 = (A9 S9 S> be a computation domain. The class PRF
of primitive recursive functions is generated by the following schemes wherein σ
is always a finite list of elements from A.

1. We have a base of nine initial functions

(I) J(X9σ) ^ . f ^ ^

92 4 Finite Theories on two Types

(v) f(σ) = m meN.

(*) - <"<*» if *
(Vll) /(X, σ) = •< Λ
v ' JK ' ' \θ otherwise.

, ~ λ (L(x) if xeS,
(vm) f(x*) = {

(ix) / (, , 7 ^) | /
κ J JK '" J \θ otherwise.

2. We then have closure under the following schemes:

(a) Substitution: f(σ) = g(h(σ), σ).
(b) Primitive recursion: /(0, σ) = g(σ)

f(n+l,σ) = h(f(n9σ)9n9σ)9 neN
f(χ9σ) = 0, if xφN.

(c) Permutation: f(σ) = g(σ'), σ permutation of σ.

Let Rl9..., Rk be predicates, fl9.. .9fι total functions with values in S, i.e.
/ f : ^ n i - > 5 , and Fl9...9Fm total functional, i.e. each F» is total and has as
arguments total functions with values in S.

We can extend Definition 4.1.1 in the following way.

4.1.2. Definition. Let L be a list Rl9...9 Rk,fi, . . . , / i , F l 5 . . . , F m a s specified above.
The class of functions PRF(L) is obtained by adding the following initial schemes
to Definition 4.4.1:

^ ' - k

(Xi) / ί (σ , τ) = / i (σ) 1 = 1 , . . . , / .

(xii) flσ) = F{(λxg(x, σ)) i = 1,..., m.

We also add the following closure scheme (allowing us to substitute a function
for an element of Tp(S)).

(d) Substitution: f(σ) = h(λrg(r, σ), σ), where g takes values in N and
r ranges over elements from 5.

Note the following lemma.

4.1.3 Lemma. The graphs of the functions *, ~, and of the functions associated
with the extended coding scheme, and the extended predicate Seq are primitive
recursive in the equality relation on S and the functional Έ/s.

4.1 Computation Theories on Two Types 93

Note that E's is defined on total functions only, i.e.

0 if 3seS. f(s) = 0
if Vs G S. f(s) φ 0,

where/: A -> S is total. E s is the extension of E^ to partial functions.
We come now to the main notion of functions partial recursive in some list

L = R l 9 . . . , R k 9 ψ l 9 . . . 9 ψ l 9 F l 9 . . . , Fm9 w h e r e R l 9 . . . , R k 9 Fl9...,Fm a r e a s a b o v e ,
but ψl9..., ψι are partial functions with values in S. There are 17 clauses in the
definition of PR(L), which we give, with some reluctance, for the sake of com-
pleteness and explicitness.

4.1.4 Definition. Let 91 = (A9 S9 S> be a computation domain and L = Rl9...,

/̂» <Pi, 9 Ψh Fl9..., Fm a list on 21. The class PR(L) of functions partial recursive
in L is given by the following inductive definition:

Let Γ be the following inductive operator

II

III

IV

V
VI

VII

VIII

« 1 ,

(α
«2,
«2,
« 3 ,
« 3 ,

«4,
«4,
«5,
«6,

«6,
«7 3

«7,
«8,
«8,

n
n
n
n
n
n
n
n
n,
n
n
n
n
n
n

+
+
+
+
+
+
+
+

1>,
1>,
1>,
1>,
1>,
1>,
1>,
1>,

m>, σ

+
+
+
+
+
+

2>,
2>,
1>,
1>,
1>,
1>

x,σ,0)eΓ(X)
x,σ9l)eΓ(X)
X,σ,0)GΓ(Z)
X9 σ, 1) G Γ(Z)
x9σ9x)eΓ(X)
X, σ, 0) G Γ(X)

if
if
if
if
if
if

X9 σ, X + 1) G Γ(X)
X9 σ, 0) G T(X)
,m)eΓ(X) m
x9 y9 σ, M(x9 y)]
x9y,σ90)eΓ(λ
X9 σ, K(x)) G Γ(.
X9 σ, 0) G Γ(X)

GTV

xe
xφ
xe

xφ
xe

xφ
» if

if
.

)eT(X)

0
X)

x9σ9L(x))eT(X)
x9σ90)eΓ(X)

N,
N.

s,
5.

s,
5.

xeN,
xφN.

if x, y e
otherwise.

xeS,
otherwise.
xe s,
otherwise.

IX «9 5 « + 2),x,j;,
«9, w + 2>, Λ:, 7, σ, 0) G Γ(Z) otherwise.

X If 3y[(e, σ,y)eXΛ (e'9 y, σ, x) e X],
then «10, n, e, e'>, σ, x) ε Γ(Z).

XI If (^ σ, JC) G Z, then «11, n + 1, e9 e'}9 0, σ, JC) e Γ(X).
If 3j[«l 1, n+l,e, e'>, m, σ, y) ε X Λ (*', j , m, σ, x) ε X]
then «11, Λ + l,e, e'>9 m + 1, σ9 x) e Γ(Z).

XII If (e, σ'9 x) e X9 then «12, n9 e91>, σ, x) ε Γ(Z),
where σ; is obtained from σ by moving the / + 1-st object in σ to the
front of the list.

XIII If 0, σ, x) G X, then «13, n + 1>, e, σ, Λ:) G
XIV «14fy< + /i,/>,τ,σ,0)εΓ(20 if

(O^Λ + ^ i X ^ σ . O ε Γ W if
where lh(τ) = y'j.

94 4 Finite Theories on Two Types

XV (<15,y; + AM>,τ,σ, φ ί (τ))eΓ(r) if
XVI If Vx3y(e9 x, σ, j) £ Z, then «16, n9 e91>, σ, F,(/)) 6 Γ(20,

where /(*) = y iff (e, x, σ, j>) G X.
XVII IfVxeS9lyeN[(e9x9σ9y)eX] and (e'9z9σ9u)e X,

where z e TpίS) is defined by z(x) = y iΰ (e, x, σ9 y) e X.

We now let PR(L) = Γ Λ = the least fixed-point for Γ. PR(L) fa the set of func-
tions which are partial recursive in L. By dropping XIII we get PRF(L), the functions
primitive recursive in L.

As usual we define for (e, σ, x) e PR(L)

\e9 σ, χ | t = least ξ such that (e9 σ9 x) e Γ { + 1 .

Let ifc = sup{|e, σ, x^ : (*?, σ, x) e PR(L)}.

4.1.5 Remark. We see that clause XIII is the reflection scheme which leads from
the primitive recursive to the partial recursive functions. As before, we note that
the scheme XI for primitive recursion can be removed in presence of XIII.

The scheme XVII is an extended form for substitution, i.e. the scheme S8
of Kleene [83]. If λx-{e}(x9 σ) is total, then it is an element of Tρ(S) and hence
can occur as an argument for a function g. If this function g is computable, i.e.
g(α, σ) = {e'}(a9 σ), this means that given α, σ by some oracle, we then can compute
{e'}(α, σ). If a itself is not given by some oracle, but by a computation procedure,
a = λs'{e}(s, σ), we should be able to compute g on α, σ, not by appealing to an
oracle for both a, σ, but by using the computation procedure for a and the oracle
only for σ, i.e.

should belong to PR(L) with an index e" simply computable from e and e'. And
this is precisely the content of scheme XVII.

Let us fix some further terminology. Our computations are single-valued,
hence there is no loss of information in abbreviating (e9 σ, x) e PR(L) by <e, σ>.
In general we call (e9 σ, x) a computation. It is convergent if it belongs to PR(L),
we denote this by <e, σ> j . Conversely, <e, σ> f means that for no x is (e9 σ, x) e
PR(L), and we say that the computation <e, σ> diverges.

We note that given any pair <e, σ> we can start checking whether it is a con-
vergent computation or not. If <e, σ> ψ , then we can from Definition 4.1.4 define
a notion of immediate subcomputation and subcomputatίon exactly as in Definition
1.5.9. If <e, σ> f, then either e is not an index according to Definition 4.1.4, or
σ is not of the form required by e9 in this case we let <e, σ> be an immediate sub-
computation of itself. If <e, σ> " looks" like a convergent computation, we can
again define the immediate subcomputations of <e, σ>—in this case at least one
of them must be divergent.

4.1 Computation Theories on Two Types 95

In any case, for every <e, σ> there is a well-defined notion of immediate sub-
computation and of subcomputation. And we have the following simple, but
important theorem.

4.1.6 Theorem. For all <e, σ>, <e, σ> j iff the computation tree (i.e. the set of
subcomputations) is well-founded.

We shall state in the present framework the first and second recursion theorem.
First some definitions. Let

be a partial functional with values in S, i.e. F is partial and defined on partial
functions. F is monotone if whenever F(<p l 5... 9φk9 σ) ψ and q>t ^ φi9 i = \,.. .9 k,
t h e n ¥ (φ l 9 . . . 9 ψ k 9 σ) \ a n d ¥ (φ l 9 . . . 9 φ k 9 σ) ~ F (φ l 9 . . . , ψk, σ) .

4.1.7 Definition. A functional F is partial recursive in a list L if there is an index
e such that for all <pl9..., ψk9 σ

F(<Pi,. . ., ψk9 σ) ~ {έ?Ji,,Φl...φfc(σ).

F is weakly partial recursive in L if there is a primitive recursive function
/ (« ! , . . . , nk) such that for all el9..., ek, σl9..., σk9 where lhfo) = ni9i = 1, . . . , k9

, σO,. . ., λτk {ek}jίτk9 σn), σ)

~ {f(nl9 . . . , n ^ U β i , . . . , e k 9 σ l 9 . . . , σk9 σ).

(The reader should compare this with the distinction between weak and strong
computability in Section 1.1.7.)

4.1.8 First Recursion Theorem. Let F be monotone and weakly recursive in L.
Then there is a least ψ such that for all σ, F(ψ9 σ) ~ <p(σ), and this ψ is partial recursive
in L.

The proof is standard and therefore omitted, see the similar proofs in 1.7
and 2.3.

4.1.9 Second Recursion Theorem. For all indices e there is some x such that for
all lists L and all σ

The proof is again standard, see 1.2.6.

We will also need a fixed-point theorem for the class PRF, which is generated
by clauses I-XII of 4.1.4. Let {e}PΈLF be the primitive recursive function with index
e. We have the following result.

96 4 Finite Theories on Two Types

4.1.10 PRF Recursion Theorem. Letf(e, σ) be PRF. Then there is an index e such

that for all σ

It remains to verify that every F which is partial recursive in L also is weakly
partial recursive in L. This is an immediate consequence of the following lemma.
Note that the converse is not true, as a simple cardinality argument shows.

4.1.11 Lemma. Let <p = λτ {e}lXτ, σ). There is a primitive recursive function f such
that for all x,σ\ y:

W L > ') - ^ iff { / W I L K ^ J

We indicate briefly the proof: We define a primitive recursive function g by cases,
one for each clause in the inductive definition of {x^qfa'). Let lh(τ) = k, lh(σ) = /,
lh(σ') = n.

I. x = <1, n + 1>: Let g(x, t) = <1, n + / + 1>.

Clauses II-IX are treated similarly.

X. x = <10, n, e9 e'>: Let g(x, t) = <10, n + /, g(e, 0, g(*\ /)>.

We omit XI and XII.

XIII. x = <13, n + l>: There is a primitive recursive function h such that for

all t, r, σ", L: {h(t)Ur, σ") ~ {{OPBP^)}^")- Let g(,x, t) = h(t).
XV. (Introduction of ψ.) x = <15, A: 4- «, />. There is a primitive recursive

function ^ such that for all σ" of length n: {^}L(τ, σ) ~ {s(e, n)}^, d\ σ).
Let g(x, t) = 5(e, n), where w + A: = lh(τ, σ").

We now use the fixed-point Theorem 4.1.10 for PRF to get a t0 such that g(x, t0) =
{*O}PRF(*) for all Λ:. We define f(x) = g(x, to)9 and prove the equivalence of the
lemma by inductions on |{*}i,,<p(σ')k,φ and \{f(x)}i<(σ', σ)\Ώ, respectively.

4.2 Recursion in a Normal List

In the first section of this chapter we have constructed a computation theory
PR(L) on domains of the type 31 = (A, S, S>. In this section we shall study
computation theories which correspond to Kleene recursion in normal objects of
higher types. In Chapter 3 we studied the abstract version of recursion in normal
type-2 objects. The prototype for the following theory is Kleene recursion in 3E
on the integers and the reals.

4.2 Recursion in a Normal List 97

4.2.1 Definition. A list L is called normal if the functional E^ is weakly recursive
in L, the equality relation on S is recursive in L, and L contains no partial functions.
Remember that Έ'A is defined on total functions/: A^> S.

4.2.2 Remarks. 1. Usually "normal" is defined in a stronger sense, viz. by using
"recursive in L" in place of "weakly recursive in L". The proofs show that the
weak notion suffices in most cases; we shall note an exception below.

2. In the concrete setting of higher types one need not require that the equality
relation on S9 which in this case is Tp(0) U . . .U Tp(« — 1), is recursive in L.

3. We remind the reader that if L is normal, then the relations recursive in
L are closed under V and 3.

For normal lists L we have the basic prewellordering theorem and the selection
theorem as for Spector theories, see Chapter 3. The proofs are the same, hence
we only state the relevant results.

4.2.3 Theorem. Let PR(L) be a normal theory on 31 = (A, S, S>. Then PR(L)
is p-normal, i.e. there is a function p partial recursive in PR(L) such that

(i) x eCi or y e C
(ii) xeCj, and |x | L < 1 ^ => p(x9 y) = 0,

Here C^ = {<e, σ> : {e}jXσ) j } is the set of computations in PR(L).

4.2.4 Theorem. Let PR(L) be normal on 3ί = <4, S9 S>. There is a function
φ e PR(L) such that for all e9 σ: If

3n G N{e}j£n9 σ) φ => φ(e, σ) ψ and {e}L(φ(e, σ), σ) ψ .

Moreover if <p(e, σ) ~ n, then {e}L(«, σ) j . The index of φ is primitive recursive
in lh(σ).

4.2.4 is obtained by the standard argument from 4.2.3, see the proof of 3.1.6.
We have the usual corollaries, i.e. the PR(L)-semicomputable relations are closed
under v and 3n e N.

We shall now prove that the PR(L)-semicomputable relations are not closed
under 3x e Tp(S). An important result about normal theories PR(L) is that they
are closed under 3s e S; this will be the topic of the next section.

We first need more precise information about subcomputations and com-

putation trees.

4.2.5 Lemma. Let =s be recursive in L and Έ's weakly recursive in L. There is a
relation S(x9 y) semicomputable in PR(L), such that if xeCj, then

S(x9 y) iff y is an immediate subcomputation ofx.

The set {y : S(x9 y)} is recursive in x9 L when x e C t .

98 4 Finite Theories on Two Types

The proof of the lemma comes from an analysis of the clauses of the inductive
definition of PR(L); see Definition 4.1.4. The assumptions on L are required so
as to decide the form of x9 i.e. to decide the form of the index of the tuple. To do
this we need e.g. the predicate Seq., see Lemma 4.1.3. Otherwise the proof is
routine.

4,2.6 Lemma. Let L be normal If {e}jjCσ) \ , then the computation tree of <e, σ>
is recursive in L, σ.

Proof Let q be the least fixed-point for the monotone L-recursive functional F
defined as follows:

Έ{q9x9y)~0 if x e Q , and (S(x9y) V 3z[S(x9z)
Λ q(z9y)~0])

- 1 if JCGC L and (-iSfay) Λ Vz[S(pc9z)
-+q(z,y)~ 1]).

Note that the quantifiers in F can be handled by E^. We now appeal to the first
recursion theorem and obtain a solution q such that q(x, y)\ iff x e Cj,.

If x e C L , then λy q((e, σ\y) is the (L-recursive) characteristic function of the
computation tree of {e}jj(ci).

In connection with the coding functions on 31 we introduced two mappings
*: S -> Tρ(5) and ~ : A -> S. We shall need some further coding and translation
devices.

First let Y be a set of elements in Tp(S) indexed by 5, i.e. 7 = { α r : r e S}.
Then all elements in Y can be coded by one element in Tp(5),

For all reS9 λy α«r, s}) = αr.
Further there is a one-one mapping **: A -> Tρ(5) and a mapping ~ ~ : A -> A

such that the graphs of ** and " " are primitive recursive in = s and Es and such
that (x**)~ ~ = x, for all x e A. One way of defining ** and " " is as follows:

r** = <r*,0>
«** = <«, 1>,

where 0,1 e Ύp(S) are the constant functions. And

)Γ if W2(0) = 0.

4.2.7 Theorem. Let =sbe lu-recursive and Έfs weakly L-recursive. There is PR(L>
semicomputable relation R such that for all e, σ:

4.3 Selection in Higher Types 99

WiWt iff

/V00/: We use the fact of Theorem 4.1.6: {e}jXσ) diverges iff the computation
tree of <e, σ> is not well-founded. The condition for this is that we have an infinite
descending chain of immediate subcomputations of <e, σ>, i.e.

. . . 3αn . . . [aό ~ = <έ>, σ> Λ V/ S(ocf ", αf+

By the remark above the chain can be coded by one element of Tp^S). The sought
for relation R is then simply

Λ(«, <e, σ» iff α[0]" - = <β9 σ> Λ Vl S(a[i]~ ~, «[/ + 1]" ") ,

where 5 comes from Lemma 4.2.5 and a[r] = λs α«r, £ » .

4.2.8 Corollary. The relations which are ¥ΊK.QL)-semicomputable are not closed
under 3α e Tp(S') when L is a normal list.

4.2.9 Remark. So far we have needed only weak L-recursiveness. Here is one
example where (strong) L-recursiveness is necessary. Call a relation R ^ 2Λ x A
recursive in L if there is an index e such that AZAA:-^}^^ is the characteristic
function of R.

We have the following normal form theorem: Let L be normal and assume that
E'A is recursive in L. Let B ^ A: Then B is L-semicomputable iff there exists
R c: 2A x A which is recursive in L and such that for all x e A:

(*) XEB iff 3X(Xis recursive in x9 L Λ R(X9 x)).

Note that this is reminiscent of the Gandy-Spector theorem, but far weaker,
however. In the Gandy-Spector theorem the relation R is arithmetic over the
domain.

The proof is omitted, but can be found in Moldestad [105], page 40. We note
that the X on the RHS of (*) should be the computation tree of the computation
fcoJiX*) — 0> which asserts that xe B. This tree is recursive by Lemma 4.2.6.
And we need the strong recursiveness of E^ since in the analysis of the tree we
meet conditions of the form Vx(. ,.x9X9...). Weak recursiveness cannot handle
such clauses.

4.3 Selection in Higher Types

We now come to one of the most important results about PR(L), where L is a
normal list on a domain of two types 51 = {A, S, S>. As we remarked in 4.2.4,

100 4 Finite Theories on Two Types

PR(L) admits selection operators over N, hence the PR(L)-semicomρutable rela-
tions are closed under 3n e N. In 4.2.8 we saw that the class is not closed under
3α e Tp(S) In this section we prove that the class is closed under 3s e S.

4.3.1 Theorem. Let la be a normal list on 31 = {A, S, S>. There is a function φ
partial recursive in L with index e such that if

then φ«e, σ» j , and in this case

Conversely, ifφ((e, σ» ψ , then 3x e S φjix, σ) j .

This theorem immediately entails the closure of the PR(L)-semirecursive
relations under 3s e 5. As we have remarked before, the existence of a single-valued
selection operator is closely connected to the existence of a computable well-
ordering of the domain. The next best thing without going all the way to multiple-
valued theories, is to be able to compute something, in 4.3.1 φ((e, σ», which
effectively gives us a non-empty computable subset of a given semicomputable
set. (The reader should refer back to our discussion in connection with 3.1.10.)

We spell out the details: Let B be an L-semicomputable subset of S9 i.e.

We note that φ((e, σ» j iff B Φ 0. And if B Φ 0, then

Bo = {x E S : \ieMx, a) | t

is a non-empty L-computable subset of B. Obviously, an index for BQ can be
computed in PR(L) from the given data.

The selection principle involved in 4.3.1 was first stated by Grilliot [48] in the
context of a theory of inductive definability. His proof was, however, defective.
A first proof in the context of Kleene recursion in higher types was given in the
thesis of D. MacQueen [98], and was published in a somewhat abstract version
in L. Harrington and D. MacQueen [55]. A proof, based on MacQueen's thesis,
was worked out by Moldestad [105] in the framework of computation theories
on two types. It is this proof that we will present in this section.

The remainder of this section is devoted to a proof of Theorem 4.3.1. We make
one simple reduction. The set {<e, x, σ>** : x e S} is a family of elements of Tp(5)
indexed by S, and hence can be coded by one element a e Tp(*S). Then

3s 6 S {β}iXy, σ) j iff 3S G Sa[s]~ ~ G CL,

where Q, is the set of convergent computations, and as above a[s] = λr α«.y, r » .

4.3 Selection in Higher Types 101

4.3.2 Definition. For any β e Tρ(S) let ||j8|| = min{\β[s]-' l^'.se S}.

We see that in order to prove Theorem 4.3.1 it suffices to prove the following
lemma.

4.3.3 Lemma. There is an index m such that

(0 \
(ϋ)

The proof will use the recursion theorem. We shall, by induction on the norm
of β, i.e. on \\β\\, show how to define {m}jXβ). We assume as induction hypothesis

Assume that a e Tp(5) is such that ||α|| = μ. We shall show how to define {m}jXa).
Note that a is kept fixed for the rest of the proof.

Intuitively, α is meant to code a family of computations {<e, x9 σ) : x e S}.
In order to compute something which dominates some computation in this family,
we need to go into a detailed analysis of subcomputations. Lemma 4.2.5 tells us
that there is an L-semicomputable relation S(x9 y) such that if x e CL, then y
is an immediate subcomputation of x iff S(x9 y).

Except for substitution, the notion of immediate subcomputation is unprob-
lematic. In the following analysis we control the search for immediate subcom-
putations through the following "truncated" version of S(x9 y): Let R(x9 y9 w)
be a relation such that if w e C L :

1 If x is not a substitution, i.e. x is not of the form «10, n, e9 e'}9 σ>, then
{y : R(x9 y9 w)} = {y : S(x9 y)}.

2 If x is a substitution, i.e. x = «10, n9 e9 e'}9 σ>, then

{y : R(x9 y, w)} =

We see how we use a w e C L as a "cut-off" measure in searching for the immediate
subcomputations of x. Note that if x e CL, then there is some w e C L such that
R(x,y9w)iffS(x,y).

For σ < /cL we introduce a set

Tσ = {β : Vx e S.Λ(αM" ", j8[x]- ", w)},

where |v^|L = σ.

Note. At this point there is a contradiction in our notation. But don't make a
fuss! Even if our reader refuses to go into the details of the proof, he or she should
have no difficulties in correctly classifying the occurrences of the letter σ9 whether
it is an ordinal or an input sequence of a computation.

102 4 Finite Theories on Two Types

Any β e Tσ is intended to represent a family of computations which up to
the order of approximation σ = |w|L are "pointwise" immediate subcomputations
of the family α. Note that

βeTσ=> \\β\\ < H|
σ < T => T σ c Tχ.

We observe that Tσ is recursive in L, a, w where |w|L = σ.
It is clear that by searching through "enough" ordinals σ we can decide

whether any β codes a family of immediate subcomputations of α. What "enough"
means is made precise in the following lemma.

4.3.4 Lemma. Let λ be an ordinal such that S is not cofinal in λ. Let {σ(τ) : r < λ}
be an increasing sequence of ordinals bounded by K^. Then there exists an ordinal
T < λ such that

for all T satisfying T' < T < λ.

We postpone the proof of the lemma. We shall apply it in the following situation.
Let

W={γ: PWO(y) Λ dom(y) c S}.

W is recursive in L—we have prewellorderings of S, not of A = S u Tρ(5). This
is the point where an attempt to extend the result from 3x e S to 3x e A would
fail, and necessarily so as 4.2.8 shows.

For 8eW, let or(δ) = length of the pwo δ. Letting λ = sup{or(δ) :8eW},
we observe that S is not cofinal in λ.

We are now ready for the inductive computation of {m}j£a):

(i) There exists an index m± such

W L (" * , <*, HO I iff w e Q, Λ {m}i,(j8) φ , for all β s Γ M

and if w e C^, then

KwiJiXm, «, w)k > KwW)^, for all]8 e Γ|1B|.

We note that it follows from the induction hypothesis that \{rn^jjjn9 α, w)\ > \\β\\

(ii) There is an index m2 (using the recursion theorem) such that

{w2}L(m, «, γ) I iff y e fΓ Λ Vy' e ϊ*Ίpr(/) < or(y)
Λ {m^m, α, <W2,

4.3 Selection in Higher Types 103

m2 can be chosen such that for all y e W with or(/) < or(y) :

It follows from the induction hypothesis that |{m2}i//w, α, y)| > \β\ for all
0 e 7ϊ<m2,m,α,y,>,, provided or(y') < or(y).

(iii) There is an index m3 such that

W i / " * , a) j iff Vy e W{m^{m, a, y) j ,

and such that whenever γeW

By the recursion theorem we now find an index m such that

and

Part (i) of Lemma 4.3.3 now follows if we can show that |{w3}L(m, α)| ^ | |α||.
This will follow from Lemma 4.3.4 applied to the ordinal λ derived from the

set of prewellorderings W. In detail, define for each τ < λ

σ(τ) = infίlWϊXm, a, y) | L ; γ e W Λ or(y) = T}.

Then {σ(τ) : r < λ} is an increasing sequence bounded by \{m^jj[m, α) ^ < K^.
Lemma 4.3.4 applies, i.e. there is an ordinal r < λ such that Tσω = TσW) when-
ever T ^ T < λ. Let σ = sup{σ(τ); T < λ}. The induction hypothesis gives
|{W3}L(WJ α) | L ^ σ. The ordinal of a computation is determined in terms of the
ordinals of the immediate subcomputations. We have controlled the immediate
subcomputations of the family a by the sets Tσω and the ordinal σ, hence by the
computation |{m3}L(m, α) | L . So, we expect, and it only formally remains to verify:

4.3.5 Claim, σ ^ | |α||,

to end the proof of Lemma 4.3.3 (i). Part (ii) of the lemma will then be proved by
induction on the length |{/w}i,(α)|.

The reader who is not particularly interested in the fine details of this "cleaning-
up-business" may proceed to the next section.

4.3.6 Proof of Lemma 4.3.4. We proceed by contradiction, i.e. assume that VT' < λ
3τ(τ' < T < λ Λ Tσ{τΊ £ Tσω), and construct a function/: S-> λ such that λ =

104 4 Finite Theories on Two Types

Take T < λ and choose τ 0 minimal such that τ ^ τ 0 and TσiτΊ g Tσiτo).
Obviously τ < τ 0 . Choose w, W e C L such that τ = |w'| and τ 0 = |w|.

IfβeTσiτo)-Tσ<τΊ,then

VxeS R(a[x]--,β[x]--,w)

If —,^(«M " ", j8[x] " ~, wr) but Λ(«[Λ;] ~ ~, β[x] ~ ~, w), then α[x] ~ ~ is a substitution
«10,«,e,e'>,σ>, £ [*] " - = <β', M t (σ), σ>, and \w'\ < \{e}jiσ)\ ^ \w\. Hence
R(a[x]-~9 β[x]--9 w") for all |w"| ^ |w|.

Let

P(τ') = {x G S : 3)8 G Γσ(τo) - 7V) 5 - ,Λ(«M- ", j8[x]- ", w%

From the remarks above it follows that P(τ') Φ 0 , but P(τ') = P(v), r' <
v < τ o ; and that P(τ') n P(v) = 0 iΐv ^ τ0.

Let/: S-> A be defined by

_ ί l e a s t τ' s u c h that x G / > (τ /) ' i f x e U p (τ) ' τ < λ

~ \ θ , otherwise.

Clearly, sup{/(x) : Λ: G S} = λ.

4.3.7 Proof of Claim 4.3.5. We argue, once more, by contradiction, i.e. we assume
that σ < ||α||. We keep the notations from the claim: in particular, the ordinals
r and σ have their established meaning.

We make a preliminary remark: Let xe S. If a [x] " " is a substitution, then
either | M L (σ) | L ^ σ(τ') or σ ̂ |{^Mσ)| t. (For if σ(τ') < |M L (σ) | L < σ, take a
β G 7 V ; and let β'[y] = β[y] if y Φ x, βf[x]~~ = <e', ML(σ), σ>. Then β' e Γ f f (O.
But j8' G Γσ(τ) for σ(τ) > IMLCCT)^. This contradicts the fact that Tσiτ) = Tσ(τΊ.)

Using the assumption σ < \\a\\ we construct a j3 in the following way:
(i) If a[x]~ ~ is not a substitution, let β[x]~ ~ be such that S(a[x]~~9 β[x]~ ~)

and such that \β[x]~ ~\ ^ σ.
The inequality uses the fact that σ < ||α|| = min{|a[x]~ " | L : x G 5*}.
(ii) If α[x]" " is a substitution «10, n, e, e'}, σ> let

'ΛeU<>\σ> if | M L W | < σ(τ')

<9σ} if |{eMσ)| ^ σ

By construction β G 7V(T0.

We now claim that \\β\\ ^ σ: By definition ||]8|| = min{|β[jt]|~~ :xeS}. From
(i) and (ii) we see that |)S[ΛΓ] | ^ σ in all cases except possibly when IM^ίσ)^ ^
σ(τ'). But even in this case |]8[JC]""| = IW^de}^), σ)\ ^ σ, because otherwise
l α M " ~ | < σ, which contradicts the assumption σ < ||α||.

Combining this claim with the fact that β G Tσ{τΊ by construction, we derive
the final contradiction: Choose T such that τ < τ < λ. Choose γ',γeW such
that or(/) = T', or(y) = r, σ(τ') = K/WaW^^y')!. and σ(r) =

4.4 Computation Theories and Second Order Definability 105

By construction of m2, |{^2}L(m5 α, y) ^ | |0' | | for all β' e Γ,< m 2 > m,α, y O | . In par-
ticular, \{m2}It(m9a9γ)\ ^ \\β\\, since β e Tσ(τΊ = T\<m2>mt<XfV,>h contradicting the
fact that I WrX™, α, y)| = σ(τ) < σ < \\β\\.

Note how this proof bears out our remarks in connection with 4.3.5. We
have controlled the subcomputations of a by the ordinal σ, hence ||α|| ̂ σ. (See,
in particular, the verification that ||j3|| > σ.)

4.3.8 Proof of (ii) in Lemma 4.3.3. This is a standard inductive argument on the
ordinal of {w}L(σ).

Let {m}jJia) I and assume that 4.3.3 (ii) is satisfied for all β such that \{m}jjίβ)\ <
I M L O O I Since {w}iXα)|, we have {/w3}iM

 α H a n d IMt(«)l > I W L (™ > «)l
Further {m2}i(m9 α, y) j for all γeW and |{m3}(m, α)| > |{/w2}(/w, «5 y)| for all
such γ. Let the ordinals {σ(τ) : T < λ} be defined as above, and choose T' < λ as
before.

We recall that if a [x] " " is a substitution, then either |{e}L(σ)| < σ (τ') or σ ^
I M L W I see the proof of 4.3.5.

We argue once more by contradiction and so assume that |]α|| = KL, i.e. α[x]~ ~
codes a divergent computation for all x e S.

Construct a β as follows: If α[x]~~ is not a substitution, let β[x]~~ be a di-
vergent subcomputation of a[x]~". If α[x]~~ is a substitution let β[x]~~ be
constructed as in (ii) of 4.3.7. By construction β e Tσ(τΊ, and we see that \β[x]~ ~ | >
σ for all xeS; hence \\β\\ ^ σ.

Choose γ e W such that σ(τ') = \{m2}jj(m9 α, y')|, and pick a.γe W such that
or(y') < or(y). By construction of m2:

By construction of mx:

since j8 e TσiτΊ = Γ,< m j i i m i β r^>,. Hence |{mMα)| > |{w}L(iδ)|.
So by the induction hypothesis | |β | | < /cL. By part (i) of Lemma 4.3.3 it follows

that gin ^ |{m}χXjS)|. Hence

1101 < \{m2}(m,α9γ)\9

for all γe W such that or(y') < or(y). By definition of σ(τ), ||0|| < σ(r) when
τ < T < λ. Hence ||0|| < σ, which contradicts the fact that ||0|| ^ σ by
construction.

4.4 Computation Theories and Second Order Definability

We shall make a few brief remarks on second-order definability. But first we draw
the basic results of Sections 4.1-4.3 together in the following theorem.

106 4 Finite Theories on Two Types

4.4.1 Theorem. Let PR(L) be normal on A = S u Tρ(S). The following is true

(a) PR(L) is p-normal, hence admits a selection operator over N,
(b) A is weakly but not strongly Infinite, i.e. the \rsemicomputable relations are

not closed under 3x e Tp(S)9

(c) S is strongly lu-finite9 i.e. the L,-semicomputable relations are closed under

3s eS.

As we shall see in Chapter 7, properties (a)-(c) characterize Kleene recursion
in a normal object in higher types.

4.4.2 Remark. Let us be a bit more explicit about the relationship between
recursion on two types and Kleene recursion in higher types. If S = Tp(0) u . . . u
Tp(« - 1), n > 0, then Tp(S) can be identified with Tp(l) x . . . x Tp(«). If F
is an object of type n + 2, there is a list L such that Kleene recursion in F on
Tρ(0), . . . , Tp(n) is essentially the same as recursion in L on the structure 31 =
04, S, S>, where S is some standard coding scheme. A converse is also true.
Hence results about recursion in higher types can be deduced from the corre-
sponding results for PR(L) on 91. Thus in a quite precise sense, higher type theories
can really be captured as theories on two types. (A detailed exposition of the
connection between two types and higher types can be found in the book of
J. Moldestad [105].)

So far we have emphasized the connection between computation theories on
two types and the specific example of recursion in higher types. But the theory
has a wider scope and can serve as a framework for the study of second-order
definability in general. This is completely analogous to the case of finite theories
on one type where recursion in 2E was, in a sense, the paradigm, but the theory
had much wider connections with definability theory and inductive definability.

An alternate way of approaching second-order definability is via the notion of
a Spector 2-class. This notion is introduced in Moschovakis [118], a survey of
concepts and applications can be found in the lectures of A. Kechris [76]. There
is the same relationship between computation theories on two types and Spector
2-classes as there is between finite theories on one type {Spector theories) and
Spector classes (see Section 3.2).

We do not give a formal development of this relationship in this book, since
the applications of Spector 2-classes all fall under the scope of computation
theories on two types. However, we strongly recommend that the reader study the
lectures of Kechris [76]. And may we suggest that he or she tries to lift from
one to two types the development presented in Sections 3.2 and 3.3, i.e. explore
the relationship between computation theories on two types and Spector 2-classes
and see how the applications come out in the context of two types. The ground-
work is done in Sections 4.1 to 4.3, and we shall present selected applications in
Chapters 7 and 8.

