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Chapter 3
Finite Theories on One Type

This chapter develops a general theory abstracting the central features of hyper-
arithmetic theory or, equivalently, recursion in the functional 2E. ‘Higher”
recursion theory started in the mid 1950°s with S. C. Kleene’s work on the analytic
hierarchy, constructive ordinals, and the hyperarithmetic sets ([79-811]). A number
of important contributions were at that time made by C. Spector, to which we
shall return later. The theory of functionals and the connection between hyper-
arithmetic theory and recursion in 2E was developed by S. C. Kleene in 1959
([83]), and the technique of comparing length of computations, the prewellordering
property, was introduced by R. Gandy in 1962 ([38]) and used by him to prove
the basic selection principle for recursion in a normal type-2 functional.

The early work did not pay proper attention to the notion of finiteness. It was
G. Kreisel in [89] and [91] who stressed the importance of this notion for general-
ized recursion theory (in particular, in the context of meta-recursion theory,
see Chapter 5). Y. Moschovakis [113] gave the definition of finiteness which is
now considered to be the appropriate one for the general theory (see Definition
2.5.3).

Prewellordering and finiteness are the two key concepts in the general theory.
In the first section of this chapter we make some general remarks on notions of
finiteness, but concentrate mainly on the effect of the prewellordering property
for computations. In the second section we single out the important class of
Spector theories, which is the “correct’ generalization of hyperarithmetic theory.
In a final section we tie up the present study with current work on inductive
definability.

3.1 The Prewellordering Property

Let <O, <> be a computation theory on a domain A = {4, C, N;s, M, K,L>.
We shall not in the sequel distinguish between the set of computations ® and the
coded set {{a,0,z):(a,0,2)€@®}. For xe® let |x|e be the ordinal of the
computation x, i.e. the ordinal of the set S, = {y€®:y < x}.

In Section 2.7 we called a theory ® s-normal (subcomputation normal) if the
sets S, are uniformly ©-finite for x € ®. In many cases the related notion of
p-normality (“p”’ for prewellordering) turns out to be more useful.
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3.1.1 Definition. The theory @ is called p-normal if there is a ©®-computable
function p such that p(x, y) | if x€® or ye ® and

x€e® and |x|e < |y|e = p(x,») =0
|xle > |yle = p(x,y) = 1.

This means that if y € @, then the set {x € @ : |x|¢ < |y|o} is ®-computable.
It is easy to organize ordinary recursion theory over w in such a way that the
resulting theory is p-normal but not s-normal.

Conversely, s-normality always implies a “weak’’ form of the prewellordering
property: There is a ®-computable function g(x, y) such that if x, y € ©, then

q(x,y) =0 iff [x|e < [yle.

Since we can computably quantify over finite sets we have the following recursion
equation for g

|xle < |yle iff Vx'€S,3y €S,|x'|e < |V]e

If we assume that ® has selection operators and that there is a ®-semicomputable
extension of the relation < to all tuples (a, o, z), s-normality implies p-normality.
In this case we have the following recursion equations for the function p:

pix,») =0 if Vx'eS, [y <y A p,y)=0]
px,y) =1 if IX[x" <x AV EeS, plx,y)=1]

These assumptions are satisfied in many cases. But we should note that the usual
proofs of the existence of selection operators proceed via the prewellordering
property.

To conclude this discussion we remark that if the domain 4 is ®-finite then
p-normality and s-normality lead to essentially the same class of theories, viz.
the Spector theories of the next section.

We return to the general discussion. In Definition 2.5.3 we called a set S < 4
O-finite if the functional

0 if IxeS[f(x) ~ 0]

ESU):{1 if VxeS[() ~ 1],

is weakly ®-computable. We now introduce a notion of weak ®-finiteness, and
refer to the old notion as strong @-finiteness.

3.1.2 Definition. A set S < A is called weakly @-finite if the functional

, 0 if VxeS[f(x)|{]A IxeS[f(x) ~0]
Es(f) ~ :
1 if VxeS 3Ty #0[f(x) ~y]
is weakly ®-computable.
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3.1.3 Examples. We list some familiar examples:

(1) Let ® = ORT on the integers w. Then © is p-normal and a subset S S w
is ®-finite iff it is finite in the ordinary sense. Hence the domain w is neither strongly
nor weakly O-finite. .

(2) Let ® = {(a, 0, 2) : {a}(o, F) ~ z, o and z integers} where F is a normal
type-2 functional over w and {a}(s, F) =~ z is defined by Kleene’s schemata S1-S9.
(See either Kleene’s original treatment in [83] or the more general development
of recursion in a normal list in Chapter 4.)

@ is p-normal and the domain is strongly ®-finite. The proof of p-normality
is based on the following recursion equations: (i) if x € ®, then |x| < |y| iff for
all subcomputations x’ of x there exists a subcomputation y’ of y such that
|x'| < |y|; @) |x| > |y| iff there exists a subcomputation x’ of x such that
|x'| > |y'| for all subcomputations y* of y. Normality of F (i.e. the fact that
2E is Kleene recursive in F) allows us to “compute’’ the quantifiers in (i) and (ii)
and hence to define a function p(x, y) with the properties of Definition 3.1.1.
(For technical hints see the proof of Proposition 3.1.12.)

(3) Let A = U;<» Tp(¥), where Tp(?) is the set of objects of type i. Let F be
normal of type > n + 2. Let ® = {(a, 0,2) : {a}(0, F) ~ z, z€ w and o a list of
arguments from A}. {a}(o, F) ~ z is again defined by Kleene’s formula S1-S9.

@ is p-normal and for all i < n Tp(¥) is strongly ®-finite. If F is of type n + 2,
then Tp(n) is weakly but not strongly ®-finite. If F is of type > n + 2, then
Tp(n) is strongly O-finite. (Proofs can be extracted from Chapter 4, where the
basic references for this example are given.)

(4) As remarked in Section 2.7, computing relative to a partial type-2 func-
tional is problematic even over the integers w. Here is one case where we have
p-normality. The example is due to P. Hinman [59], see also Aczel [3].

Let Q be a monotone quantifier, i.e. Q < 2° and 4 € Q, 4 = Bimplies B€ Q.

The dual of Q is defined by 6 = {w — 4: A4 ¢ Q}. Associated with Q is a partial
type-2 functional F§ defined by

0 if {x[fx) =0}eQ
1 if {x[f(x) > 0}eQ,

where f is a partial function. It is easy to see that E,, i.e. the extension of 2E to
partial objects, is nothing but F¥,, i.e. Q = {w}.

The basic fact now is that recursion in 2E, F§ is p-normal. For an application
see Example 3.3.7 below.

The choice of terminology ‘“weak’ versus ‘“‘strong” is justified by the
following simple proposition.

ﬁm:{

3.1.4 Proposition. Let (O, <) be a computation theory on Wand S < A. If S is
strongly ®O-finite, then S is weakly ©-finite.

Proof. The domain of definition of Es may be larger than the domain of Eg.
We cut it down to the right size by the following simple trick. Let ¢ be the constant
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function 1. Then Eg(Ax-t(f(x))) is defined iff f is defined on all of S. And if
Es(Ax-1(f(x))) | , let Es(f) = Es(f).

In Section 2.4 we discussed various closure properties for the class of ®-semi-
computable relations. We note that if the domain A is strongly ®-finite, then the
class of ®-semicomputable relations is closed under 3-quantifier. From Section
2.4 we further conclude that if N is strongly @-finite, then the ®-semicomputable
relations are closed under v. The following simple observation shows that weak
O-finiteness suffices to prove the closure of the ®-semicomputable relations under V.

3.1.5 Proposition. Let the domain A be weakly O-finite. YxR(x, o) is @-semi-

computable if R(x, o) is, and an index for VxR(x, o) can be found uniformly from
an index for R.

Proof. Let e be an index such that R(x, o) iff {e}(x, o) = 1, and {e}(x, o) is un-
defined whenever —R(x, o). Then VxR(x, o) iff Ej(Ax-{e}(x, 0)) = 1.

We noted in Section 2.4 that if ® has a selection operator over N, then a
relation R is ®-computable iff R, —R are ®-semicomputable. We shall now prove
that p-normality of ® gives us selection operators over w, see Definition 2.4.3.

3.1.6 Theorem. A p-normal theory @ admits selection operators over N.

The following proof should be compared with the definition of the u-operator
in 1.4.1. (See also the discussion in Section 1.8.) Let e’ be an index (computable
from e) such that {e'}(r) ~ 0 iff {e}(r)| and such that |e’, =,0|¢ > |e, 7, }]es
where y ~ {e}(7). Use the fixed-point theorem to define a function {e} by

n, if |a,n,0,0le <l|e,n+ 1,a,0,0|e
{e}(n + 1, a, 0), otherwise,

a0 >
p-normality is used in stating the condition on {e}. Let

g9(a, o) ~ {e}(0, a, o).

Then g is an n-ary selection operator over N, n = lh(s). For the proof of this
we first note:

i If {a}(n, o), then p(Ka,n,o,0><e',n + 1,a,s,0)) | . Hence
{e}(n,a, o).
ii If{e}(n +1,a,0)|,then{e}(n,a,0)|.

From i and ii it follows that if 3n-{a}(n, o) | , then g(a, o) | .

Suppose next that g(a, o) ~ k. We will prove that {a}(k, o) ~ 0. First observe
that for some n, |a,n,0,0|e < |¢/,n + 1,4a,0,0|; otherwise {e}(n,a,os) ~
{e}(n + 1, a, o) ~ k for all n, hence we would get an infinite descending chain
le,0,a,0,kle > |e,1,a,0,kle > ....

Let k, = least n such that |a, n, 0, 0]e < |€',n + 1, @, 0, 0|e. Then {a}(k,, o) =
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0 and {e}(ko, a, o) ~ k,. Working backwards we get ko, = {e}(ko, a,0) =...=
{e}(0, a, o) = k. Thus {a}(k, 0) ~ 0.

It is possible to arrange the construction so that if {a}(n, 0) ~ 0 and q(q, ¢) ~ n,
then (a,n,0,0) < (4,a,0,n). In particular, |a,n,o0,0|e < |4, a, o, nle. This
concludes the proof.

3.1.7 Corollary. Let ® be p-normal. Then the ®-semicomputable relations are closed
under disjunction and 3-quantification over N. A relation R is ©®-computable iff R
and —R are O-semicomputable.

3.1.8 Remark. We will not always spell out the uniformity involved in the various
constructions. To be explicit in one example: There is a ®-computable mapping r
such that if R;(c), Ry(o) are ®-semicomputable with indices e,, e,, respectively, and
| = Ih(o), then r(e,, e,, 1) is an index for R,(¢) V Ry(c). And if {r(e,, e5, )}(c) ~ O,
then

Ir(eh 92’ l)a o, OIO ? inf{ieh o, 0'9’ Iez, o, 0]8}

Such extra information is often necessary when one is doing iterated constructions.
But we will seldom make the details so explicit. Writing about recursion theory
one must try to strike a proper balance between completeness in notations and
exposition versus an attention to the mathematical core of an argument.

We shall digress for a moment to discuss further the relationship between
strong and weak finiteness. The equivalence between the two notions is tied up
with the existence of some sort of selection principle. Over w we have as a con-
sequence of p-normality the existence of selection operators. As we shall see in
the next chapter, in higher types we have only the following selection principle:
Let B be a non-empty ®@-semicomputable subset of the domain. We can effectively
compute from the index of B an index of a ®-computable non-empty subset
B, = B. 1t is precisely this principle which allows us to go from weak to strong
finiteness.

We start by formulating the principle more carefully. Let S < A4:

™ There is a ®-computable mapping r such that for all z,r: If B =
{xeAd:{z}(x,7) ~ 0}, B< S, and B # @, then Ax-{r(z, Ih(7))}(x, 7) is
the characteristic function of a non-empty subset B' < B. If B = @, then
Ax-{r(z, Ih(v))}(x, 7) is totally undefined.

3.1.9 Remark. If S satisfies the condition (*) it is possible to choose r such that,
whenever B # &,

inf{|r (z, Ih(7)), x, 7, O]¢ : x € B’} > inf{|z, x, 7,0|e : x € B}.

3.1.10 Proposition. Let ® be p-normal and assume that A = C. Then for all S < A,
S is strongly ©-finite iff S is weakly O-finite and satisfies condition (*).
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Proof. (1) Suppose that S is strongly O-finite. From 3.1.4 we know that S is weakly
O-finite. It remains to verify (*): Let B be a non-empty ©-semicomputable subset
of S, B = {x: {z}(x, 7) ~ 0}. Eg is @-computable and by assumption

Es(Ax-{z}(x, 7)) ~ 0.
Let es be a @-index for Eg; we may define
B = {x: fZ, X, T, 0'8 < Ies, 2y 0'8}:

where z, is an index for Ax-{z}(x, ) computable from z and r. p-normality shows
that B’ is ©-computable, and we may easily construct the function r(z, n) as
required by (¥).

(2) Let S be weakly O-finite and satisfy (*). The functional Eg is ®-computable
and S, being weakly finite, is ®-computable. The following instructions give a
procedure for computing Eg(Ax-{e}(x, 7)):

Choose an index e’ such that

{e}(x,7) if xeS§

e, ) = {1 if x¢s.

Let B={x:{e'}(x,7) ~0}; B< S and if B # @, then Ax-{r(e’, n)}(x, 7) is the
characteristic function of a non-empty subset B’ < B. We now consider the follow-
ing ®-semicomputable relation

R(t,e,7) iff (Es(Ax-{r(¢’,Ih())}(x,7)) =0A1=0)
v (Es(x-{e}(x, ) =1 At =1).

By 3.1.6 we have a selection function g*(e, 7), and we see that
q*(e,7) =0 iff 3Ixe S[{e}(x, 7) ~ 0],

and
qg*e, =1 iff ¥YxeS 3y +# Of{e}(x, ) ~ y].

We may therefore set Eg(Ax-{e}(x, 7)) = g*(e, 7).

3.1.11 Corollary. If © is p-normal, then N is strongly O-finite iff it is weakly
O-finite.

The proof is immediate since p-normality of ® gives us selection operators over
N, hence the validity of (*).

Let us at this point make the following methodological remark : From the above
corollary we see that it does not really matter whether we use Ey or Ey = 2E
in defining recursion over N.
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We shall include one more ““useful’’ technical result. Let ® be a computation
theory on a domain Aand R = R,, ..., R, alist of relations on 4. As in Definition
2.2.1 we can construct a theory O[E,, R], where E, is the strong quantifier on 4.

Since E, is a consistent partial functional on the domain, it is better to use
the length function instead of the subcomputation relation, for reasons discussed
in connection with Definition 2.2.3. We therefore assume that we have given a
theory <®, | | e, and we construct the set ®[E,, R] with the naturally associated
length function.

From the general theory of Chapter 2 we know that the relations R are
O[E,, R]-computable and that the domain A is strongly ®O[E,, R]-finite. ® is
imbeddable in O[E,, R], and the imbedding function r(a, n) can be chosen such
that

las o, Zlo = |r(a, lh(O')), o, ZIG[EA.Rla

whenever (a, 0, z) € 0.
We add the following complement to these results.

3.1.12 Proposition. If © is p-normal, then so is O[E,, R].

Note that if ® = ORT over w, then this result shows that Kleene-recursion
in 2E over w is a p-normal theory, hence by Theorem 3.1.6 has selection operators.

The idea behind the proof is described in example (2) of 3.1.3. We must analyze
the construction of ®[E,, R] from ®. The function p will be defined by cases via
the fixed-point theorem. It will be convenient to omit the argument z from a
computation tuple (a, o, z). This implies no loss of information since our theories
are single-valued. We comment below on why the omission of z is convenient,
even necessary.

As a typical example let x = (x,, f, 8, ¢) be an “abbreviated’’ substitution and
y = (¥o, h) an application of E,.

We define two auxiliary functions for this case

‘Pl(ﬁa X, y) = EA(At{pA}((g’ 0)9 (E’ t)))
7’2(13’ X, y) = EA(At{pA}«ﬂ {é}(a), a)’ (ﬁ’ t)))

(Here is one reason for the abbreviated computation tuple. If in ¢, we had a
Sprart (ga g, {g}(o))3 q’l(ﬁ, X, y) would be undeﬁned lf {g}(a) T . But ¢1(ﬁ, X, y)
shall be defined if y is defined.)

Define a function g3 by primitive recursion

(Pa(oaﬁ’ X, y) = ?2(}39 X, y)
ps(n + 1, p, x, ) ~ 1.

Finally, let

'/‘(p" x,¥) ~ 9’3(‘P1(ﬁ, X, y), P> X, »)-
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¥ must also be defined for all other possibilities. This done we apply the recursion
theorem to obtain a function p with @[E,, R}-code p such that p(x, y) ~ (5, x, y).

By induction on min{|x|, | y|} one shows that p satisfies the requirement in the
definition of p-normality. As an example let us verify that

xeO[E, R] A |x] < [y] = p(x,y) =0,

in the case considered above.
From the assumption x € O[E,, R] we conclude that (g, o), (f, {&}(o), 0) e
O[E,, R] and have lengths less than |x|. By the induction hypothesis

(& o), ),  p(f{8)0), o) (B, 1)}

for all ¢. Since |x| < |y| we must further have
3t-1g,0] < |ht] and 3t {g}), o] < Ih,1),

i.e.3r-p((¢, o), (h, 1)) ~ 0and 3t-p((f, {g}(e), o), (h, 1)) ~ 0. But then ¢, (5, x,y) ~
0 and ¢,(p, x, y) ~ 0, and

p(x’ y) = l/‘(ﬁ’ X, y) = <P3(0a ﬁ, X, y) = 0

Thus the proposition is verified in this case.

This concludes our general discussion of the prewellordering property. Theorem
3.1.6 is the important result. The rest are necessary and sometimes useful house-
cleaning results. But now on to more substantial matters.

3.2 Spector Theories

The prewellordering property and finiteness of the computation domain come
together in the notion of a Spector theory. This important class of computation
theories was introduced by Y. Moschovakis in [113]. The name was chosen as
a tribute to Clifford Spector’s many and important contributions to hyperarith-
metic theory, of which these theories is an appropriate general version. (We shall,
as remarked above, return to Spector’s work in connection with the imbedding
theorem of Chapter 5.)

In this section we develop some basic “internal’’ results about Spector theories
which lead to a general representation Theorem, 3.2.9. This theorem comes as a
natural continuation of the Representation Theorems 1.6.3 and 2.7.3 of Part A
and represents a theme which will be taken up again at several points in the
further development of the theory, see, in particular, the discussions in Sections
5.4,7.2, 7.3, and 8.3.

As a preliminary we shall introduce some suitable notations and terminology
for the ®-computable and ®-semicomputable relations.

3.2.1 Definition. Let ® be a computation theory on L.
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sc*(®) = {S < A : there exists an index e and constants a,,...,a,€ 4 such
that Ax-{e}e(x, ay, . . ., a,) is the characteristic function for S}.
sc(®) = {S < A : there exists an index e such that Ax-{e}q(x) is the characteristic
function for S}.

Note, that if the constant functions are computable in ©, then sc*(®) = sc(@).

en*(0®) = {S < A4 : there exists an index e and constants a,, ..., a, € 4 such
that x € S iff {e}e(x, ay, . . ., a,) ~ 0}.
en(®) = {S < A4 : there exists an index e such that x € S iff {e}o(x) ~ 0}.

One question we may ask is to what extent the section sc*(®) and the envelope
en*(0) of a theory ® determines the theory. We show in this section that the
envelope determines the theory for the following class.

3.2.2 Definition. Let ® be a computation theory on the domain U. O is called
a Spector theory if

(H)A=0¢C,
(2) E, is ®-computable, i.e. 4 is strongly ©-finite,
(3) O is p-normal.

There are a number of remarks to make. First, from (1) it follows that =,
is ®-computable and that all constant functions are ®-computable. We could,
however, for the results of this section, only require that =, belongs to sc(®) and
that 4 might differ from C.

Next, the assumption that A is strongly ®-finite means that en(®) is closed
under A, V, 34, and V.

Finally, p-normality implies that ® has a selection operator over N. This means
that we have a “good”’ notion of ®@-finiteness and that sc(®) = en(®) N —en(®),
where —en(0) consists of the complements of sets in en(®).

We now spell out in more detail the properties of en(®):

3.2.3 Definition. A class I" of relations on 4 is called a Spector class if it satisfies
the following six conditions:

1. =,el'n—T.

2. I' is closed under substitution, i.e. if R(xy,...,X;,...,x,)€ and ae 4,
then R(xy,...,a,...,x,) €.

3. I is closed under A, Vv, 3, and V,.

4. A has a TI'-coding scheme. This means that there is a coding scheme
{N, €, <>) such that (N, <) is isomorphic to the natural numbers with the
usual ordering and <> is an injection of |J, A™ — 4. Associated with
{N, €, <>)is a relation Seq which is the range of <> and functions lh, g where

0, if xé¢Seq
n, if x=<x1,.--,xn>,

Ih(x) = {
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and

x i)_{O, if —(xeSeq AieNA1<ic<Ih(x)
751 = X, if x={,.., x> A1<ign

The coding scheme <N, <, <>) is called a I'-coding scheme if the relations
xe N, x <y, Seq(x), Ih(x) = y, and g(x, i) = y all belong to I' " —T".

5. T' is parametrizable, i.e. for each n there is an n + l-ary relation U,e I’
such that if R(xy, ..., x,) € T, there is an a € 4 such that

R(xy,...,x,) iff Uya, x4, ..., x,).

6. T' is normed, i.e. every relation Re T has a I-norm, where o: R—>0n is a
I-norm on R if the associated prewellorderings:

x <,y iff xeRA (yeR = o(x) < o(p)
X<,y if xeRA (yeR = o(x) < o(»)

belong to I'.

Note in connection with 6 that if y e R and —(x <, »), then (y <, x). We
also note that the weak substitution property in 2 is sufficient to show, in conjunc-
tion with 1 and 3, that T is closed under *“trivial combinatorial substitutions’’ in
the sense of Moschovakis [115, p. 165].

3.2.4 Proposition. If' @ is a Spector theory, then en(®) is a Spector class.

The proof is immediate from the remarks made in connection with Definition
3.2.2

3.2.5 Remark. The notion of a Spector class is a natural companion to the notion
of a Spector theory, and was introduced by Y. Moschovakis in Chapter 9 of [115],
to which we refer the reader for the elementary structure theory of these classes.

Here we only list a few of the classic, but elementary, consequences of the
prewellordering property 6 of Definition 3.2.3. Assume that I' is a Spector class
on A.

(A) Reduction Property: Let P and Q be sets in I, there exist Py, O,
in I" such that P, <P, 9, < Q, P ,NQ,=¢g,and P,U Q; =
PuU Q.

(B) Separation Property: For any disjoint pair of sets P, Q in —I’
thereisan SeA=T"'Nn—I'suchthat P< Sand SN Q = &.

(C) Selection Principle: Let R(x, y) be in I'. There is a set R* = R in
A such that

AYR(x, y) = IyR*(x, y).
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Note that R* is not necessarily the graph of a function.
We now prove the converse to Proposition 3.2.4.

3.2.6 Theorem. Let I be a Spector class on A. There exists a Spector theory ® on
A such that T' = en(0).

The proof should by now be entirely standard and we restrict ourselves to
some brief remarks. The theory ® will be defined by the usual kind of inductive
clauses, not forgetting to include the appropriate clauses for the functional E,.

In this inductive definition the class I' will be built in as follows: For each
n > 0,let U, eI be an n + 1-ary relation enumerating all the n-ary relations in
. Let o, be a -norm on U,. The appropriate inductive clause is now

* If (a,0)e U, and Va',d'[(d, o) <, (a,0) = ((ny, @', o', 0) € X],
then (<n0’ a>’ o, O) € A(X)a

where A is the inductive operator being defined, and n, is some suitable natural
number index for U,. Note that this clause allows us to prove in the end that

(a,0)e U, iff ((no,a),0,0)€0
(a,’ al) < On (a9 0') lﬁ |<n0a al>a 0", Ol < |<n0a a>s o, OI

@ is now the least fixed-point for A, and comes with the length function inherited
from the inductive definition.

The inclusion I' < en(®) is immediate from the construction of ®. The converse
inclusion follows from the first recursion theorem for Spector classes:

3.2.7 First Recursion Theorem for Spector Classes. Let ® be a monotone operator
and assume that T is uniformly closed under ®. Then ®* € T..

This is proved in Moschovakis [114]. T' is uniformly closed under the operator
® if the relation

O(x,y) iff xe®{x":P(x, »)),

is in T" whenever P is in T'. Since from our point of view a Spector class always is
the envelope of some Spector theory and we do have the first recursion theorem
for Spector theories (Theorem 2.3.1), we omit the proof of 3.2.7.

With 3.2.7 at hand it is easy to see that the set

B={x:Seq(x) A In[n =1h(x) A x =<x,..., %> A (x1,...,%,) €0

is in T', hence en(®) = T.

The proof of p-normality of ® follows in the same way as in Proposition 3.1.12.
There is, however, one new and important point to observe. In clause (*) we seem
to refer to the relation <, negatively. But this can be circumvented by the remark
immediately following Definition 3.2.3,i.e. whenever (g, o) € U,, then —((@’, ¢’) <,,
(@, 0)) can be replaced by (a, 0) <,, (@, o).
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A final remark on the proof: The reader may be worried by the infinity of
clauses introduced through the scheme (*), one clause for each U,,n = 1,2, 3, .. ..
But T has a coding scheme, so we may in (*) just take Uj.

This ends our remarks on Theorem 3.2.6.

Proposition 3.2.4 and Theorem 3.2.6 show that Spector theories and Spector
classes are for most purposes interchangeable. The following result shows that the
Spector class determines the theory up to equivalence.

3.2.8 Theorem. Let ®, and ®, be Spector theories on A. Then en(®,) = en(0O,)
l:ﬁ‘ @1 ~ @2.

Equivalence obviously implies equality of envelopes. A proof of the converse
can be based on the representation Theorem 2.7.3. Adapted to Spector theories

with length instead of subcomputations we now have a ®-computable functional
F such that

F(f,<a,0)) ~z iff (a,0,2)€0 A
V(b’ T, W) € S(.:,o,z)[f(<b, T>) tad W],

where (b, 7, w) € S& ,.., now means that |b, 7, w|e < |a, 0, z|e. The same proof
now shows that ® ~ PR[F].

Let us now start with ®; and construct the corresponding F. One now shows

that since ©, is a Spector theory and en(®,) < en(0,), F will also be @,-computable.
Hence, 0; < 0,.

We conclude the discussion of this section by developing a general representa-
tion theorem for Spector theories. Since a Spector theory is s-normal we know
from Theorem 2.7.3 that it can be written in the form PR[F#], where F# is a
consistent partial functional of type 2 over the domain. But this result is not

entirely satisfactory for not every consistent partial F# is s-normal. In the Spector
case we can go one step further.

Let us start by analyzing the proof of 2.7.3. In the case of domain w we define
the representing F# by the equation

F#(f,<a,0,2)) 20 iff (a,0,2)€0 A V(b, 7, W)[(b, 7, W) € S0
= f({b, 7, w)) ~ 0].

F# is an inductive operator @, viz.

)] ced(X) iff ce® A Vy[y <gx=>yeX]

It is well known that @ has an associated monotone quantifier Q,

) XeQ iff 3Ja[3b-<a,bp>e X A ae O(X,)],

where X, = {b:<a, b) € X}. Conversely, ® can be recovered from Q,

3) ac®X) iff <a, X>eQ.
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According to (4) of Example 3.1.3 we can pass from Q to a consistent partial
functional F§ :

[0 if {x:f(x) =0}eQ
@ F#m—{l if {x:f(x) > 0}eQ.

We know that PR[2E, F&]is a Spector theory. Could we not obtain a satisfactory
representation theorem for Spector theories by starting with the F§ provided by
2.7.3 and going through the construction above? It is, indeed, trivial to see that
from a Spector theory ©® we get a F§ such that ® < PR[2E, F{], but we have
problems in proving the converse reduction, that F§ is ®-computable. Our trouble

stems from the Q-clause in the definition of F§.

Using a construction due to L. Harrington it is possible to get around this
difficulty. In the construction of 2.7.3 we cared only about the *“positive’’ part,
building up the computation set ® in stages through the inductive operator
F# = ®, Now we have to be more careful.

Let ® be a Spector theory, let I' = en(®) be the associated Spector class, and
let P be universal in T', e.g. let P be the coded computation tuples. Define a set

R=1{0,a,b5:beP A a<ob}U{(1,a,by:beP A b <qa}

As usual let R, = {a, b):i,a,bpe R}, i =0,1. From a norm on P we can
introduce anorm | | on R. We now introduce the following inductive operator @,

%) ce®(X) iff [XonXi#3]V [ceR A V'eR(c| < |c| - '€ X)].

Note the similarity to (1).

From ® we can construct a functional F§, see (2) and (4). The only difficult
point in proving that ® ~ PR[E,, F§] is to verify the ®-computability of F§.
This reduces to an analysis of the é-clause of (4), or, equivalently, to an analysis
of the dual operator ® of ®. By definition

6) ced(y) iff c¢d4 - Y)
iff YouY =4 A [c¢R vV ICeR(c| <]|c|] A eI

(Recall the meaning of Y, and Y;.)
Let Y eI be such that Y, U Y; = A. If we can in a ®@-computable way obtain
from a code of Y an element d € P such that

@) ceR A V' eR[|c'| < |c| = ¢’ ¢ Y] implies |c| < |d],

then we can replace the clause ¢ ¢ R in (6) by ¢ ¢ R'% and conclude that &( Y)

is ®@-semicomputable. This will take care of the Q-clause in (4) and prove the
following result.

3.2.9 Theorem. Let © be a Spector theory on A. Then ® is of the form PR[E,, F§]
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for some monotone quantifier Q on A. Conversely, PR[E,, F§] is always a Spector
theory.

The last part follows from (4) of Example 3.1.3. It remains to prove (7).
Let ¢ = <, a, b) be an element of R satisfying the premiss of (7). Introduce
the sets

T;={Ka',b"):a <eb’ <ob},
TS = {Ka',b'): b’ <eb,b' <ea'}.

Remembering that Y e I' is such that Y, U Y; = 4, it is not difficult to verify
() TS = Yy, (i) TS = Yo, and (iil) T§ N TS = . We may now use the reduction
property, 3.2.5 (A), to obtain sets X,, X; such that X, U X; = Y, U Y; = 4,
X, N X; = @, and such that

®) Téc Xoc Y, and TSS X, € Y,

Note that both X,, X; are ®-computable and that an index for X, can be ®-effec-
tively computed from an index of Y as a ®-computable set. Further, note that
(8) is true of all ¢ satisfying the premiss of (7). It remains to compute an element
from X, which can serve as a bound for the conclusion of (7).

To this end introduce a set

W(Xo, by) = {<a', b : ¥, a"> ¢ Xo A <b', by) € Xo}.

W(X,, b,) is O-computable, and it is easily seen that if b; <gq b, then W(X,, b,) =
{a', b’y :a <¢b' <gb,}is a well-founded set. From this we conclude that

Q) |6] < sup{|W(Xq, b1)| : W(X,, b,) is well-founded}.

Here we seem to run against a serious obstacle, the notion of well-foundedness
is not ®-computable in every Spector theory ®; recall that over w well-foundedness
means the @-computability of the functional E; which is the restriction to total
arguments of the functional EF discussed in Example 3.3.7 below.

However, independently of Theorem 3.2.9, we will prove in Section 5.4 that
a Spector theory is of the form PR[2G] for a total, normal type-2 G iff ® is not
®-Mahlo (see Definition 5.4.6). So we may assume in the proof of Theorem 3.2.9
that ® is ®-Mahlo. If this is the case the notion of well-foundedness is weakly
®-computable. Thus we can compute within ® from the inequality in (9) an
element d € P giving a suitable bound for (7).

This completes the proof of Theorem 3.2.9. We should perhaps add an ex-
planation as to why well-foundedness can be handled in the ®-Mahlo case. Given
a relation S we can easily construct a consistent partial functional F3f, uniformly
in S, such that if f5 is the least fixed-point of F& then S is well-founded iff £;(0) ~ 0.
(Hint: Brouwer-Kleene ordering.) If S is ®-computable, which is the case if S =
W(W,, by), then F¥ is weakly ©-computable, hence by ©-Mahloness F§ is
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®’-computable in some theory ®" <, ® (see Definition 5.4.1). But then the graph
fs of the least fixed-point of F§ is ®-computable, since en(®’) < sc(®). This is
exactly what is needed to continue from (g).

3.2.10 Remark. We have regarded Theorem 3.2.9 as a natural extension of
Theorem 2.7.3. Historically, this is not correct. Theorem 3.2.9 is due to L.
Harrington who, working in the context of inductive definability and Spector
classes, proved that every Spector class is of the form IND(Q). We see from
Example 3.3.7 below that this is equivalent to the computation-theoretic version
presented in 3.2.9. Harrington did not publish his proof, we have followed the
exposition in A. Kechris [75].

3.3 Spector Theories and Inductive Definability

In recent years there have been several proposals to develop definability theory
(descriptive set theory) and generalized recursion theory on the basis of a general
theory of inductive definability. Strong advocates for this approach have been
Robin Gandy, see e.g. his [39], and Yiannis Moschovakis, see in particular his
book [115] and the papers [116] and [117]. The reader should also consult the
work of Peter Aczel [4, 6], and [7].

We discussed in the introduction computations versus inductive definability as
a foundation for general recursion theory, and shall not repeat that discussion
here. Our aim in this section is to make a connection between computation
theories, in particular Spector theories, and inductive definability.

3.3.1 Remark. For a general account of descriptive set theory the reader should
consult the recent book of Moschovakis [118]. It follows from the results of this
and the next chapter that the theory can be developed in the framework of
computation theories, i.e. as finite theories on one or two types.

We assume that the reader is familiar with the basic facts of the theory of
inductive definability. However, to fix notation we recall some of the definitions.

Let 4 be a set and I' an operator on A, i.e. a map from 24 to 24. I' defines
inductively a set I', = A by the following equation, where o € On:

I, = (J (T,

¢(<a

so that 'y, = Useon I's. The T',’s are called the stages of the inductive definition,
and

IPI = least (l'y41 = T'p),

is called the ordinal of the inductive definition. The operator I' is called monotone
if X < Y implies that I'(X) = I'(Y).
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An inductive definition is classified by the complexity of the relation x € I'(X).
In order to obtain a reasonable theory over arbitrary structures % we assume that
A has a coding scheme (see clause 4 of Definition 3.2.3) and that the language
of U includes the relations and functions of the coding scheme. In this way we
have the usual X7, II%, and A? classification of the relation x € I'(X).

3.3.2 Definition. Let C be a class of operators on a structure 2A. Let C,, denote
the class of fixed-points I',, of operators I' € C.

IND(C) = {R:3a3l' e C[x € Riff (a, x) € T, ]}.
IND(C) is the class of C-inductive relations. The associated ordinal is
|C| = sup{|T'| : T' e C}.

For every operator I' on A we define —I' by —I'(X) = 4\I'(X) and —C =
{—I': T eC}. We set

IND(—C) = {4 — R: Re IND(C)},

and call this the class of C-coinductive relations. Finally, set
HYP(C) = IND(C) N IND(—C),

this is called the class of C-hyperdefinable relations on .

We list some of the basic examples from which the general theory has been
abstracted and developed.

3.3.3 Example. Positive X? inductive definitions over w.

This is a well-known way of developing ORT over w, due to E. Post. We know
that recursively enumerable is the same as Z9. Hence the first recursion theorem
gives the equivalence between recursively enumerable and positive ¢ inductive
definability. This is a theme to which we will often return.

3.3.4 Example. II? inductive definitions over w.

General, i.e. non-monotone, I1¢ inductive definability gives us already the
class of II1 sets. This was first proved by R. Gandy, but remained unpublished
by him (see, however, [39]). A proof in the setting of a-recursion theory was pub-
lished in W. Richter [134]. A proof is also contained in Grilliot’s [49]. Grilliot’s
work clearly brings out the important role of reflection principles in the theory of
inductive definability. We shall in many connections return to this theme, e.g.
in the study of finite theories on two types (e.g. recursion in 3E). The present
version reads as follows.

3.3.4.1 Z-Reflection. Let B be a 11} set and T'(X) a X3 relation. If T'(B), then
there exists a hyperarithmetic By, < B such that T'(B,).
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We indicate a proof assuming that the reader has some basic knowledge of
ITi-theory. First we note that B can be obtained by an approximation B,, ¢ < w,
(= the first non-recursive ordinal), where each B, is hyperarithmetic. Let T'(X)
be of the form 3yVzI(y, z, X). Since we have I'(B), fix a parameter b such that
VzI'«(b, z, B).

The heart of the argument is a boundedness property: From VzI'y(b, z, B)
it follows that Vz3B < w,I'o(b, z, Bs). We want to conclude that there is an ¢ < w,
such that VzI'y(b, z, B,).

The details are as follows. Naively we would like to set « = sup, uB[To(b, z, By)].
But T'y(b, z, B;) for some B < « does not necessarily imply Ty(d, z, B,). Hence,
we have to complicate the construction a bit. Choose the «,’s such that

sz > Sup BB > o A Tu(b, 2, Byl

Then for every z there is a sequence 8, such that o, < B, < «,4; and T'y(d, z, B,)).
Let o = sup «,. Now we get I'y(, z, B,) for all z, since B, = \J By,.

A recursion-theoretic analysis of the construction (including notations for
ordinals etc.) and an application of the Spector boundedness principle, shows
that ¢ < w;.

The application to IND(IT?) is immediate. Let I',, be a fixed-point for a II9
operator I. It is not difficult to show that I', eII{. Consider the relation
xeTy .1 = I'(T,,). By Lemma 3.3.5 there is some « < w, such that x e T(T,) =
IFyy1. Hence I'y =T, from which we conclude that IND(II) = II] and

lﬂgl = wj.

3.3.5 Example. 1} monotone inductive definitions over w.

The basic analysis of this case is due to C. Spector [161]. Today this part of
the theory is best viewed from the standpoint of admissibility theory. Monotone
I11 is the same as positive. And II] on w corresponds to X, on the next admissible
set, in this case L,,. Z; positive inductive operators have fixed-points and the
length of the inductive definition is at most the ordinal of the admissible set.
Translating back one sees that if I" is IT{-monotone, then I', € I11 and |T'| < w;.

If one wants to prove this in the setting of hyperarithmetic theory, the basic
fact to verify is that if I' is II}-monotone and B e I13, then x € I'(B) iff there is
some hyperarithmetic (i.e. “finite’”) B, & B such that x € I'(B,).

3.3.6 Example. Positive elementary inductive definitions on a structure 2L.

Over w we know that II? positive and II1 monotone give the same class of
relations, viz. the II? relations. Hence the class of positive elementary operators
also gives the same inductively defined relations. (Elementary here means first-
order in the language of the structure.)

Moschovakis developed in his book Elementary Induction on Abstract Struc-
tures [115] the theory of positive elementary inductive definability over arbitrary
structures U (equipped with a suitable coding scheme) as a general approach to
definability. Barwise obtained the same theory in his book Admissible Sets and
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Structures [11] from the standpoint of the theory of HYPax, the ““next admissible’
set.

In our approach we note that if C = the class of positive elementary operators,
then IND(C) is the “least™ Spector class on the structure. Hence we view the
theory as part of the development of Spector theories, see Section 3.2 of this
chapter.

The HYPm—or imbedding aspect will be treated in full in Chapter 5.

3.3.7 Example. X! monotone inductive definitions and generalized quantifiers.
This example is due to P. Aczel [3] and has been the source of much of the
work on generalized quantifiers in the context of general recursion theory; see
Aczel [4, 6], Moschovakis [115], Barwise [13], and Kolaitis [87].
Let EF be the partial functional given by the equation

0 if Vedn-f(a(n)) =0

EF () = {1 if Ja¥n-fam) > 0,

where f is a partial function from w to w. Aczel’s main result in [3] states that if
A S w, then A is semicomputable in EF iff 4 € IND(Zi-mon).

The proof is not difficult. An analysis of recursion in E shows that it is given
by a 3} monotone operator. Conversely, if I' is a £} monotone operator, i.e.

xel'(n:a(n) =0}) iff R(e, n),
where R is X, then we can write, using the monotonicity of T,
xe(X) iff JaVn[(e(n) =0 — ne X) A R(e, X)),

which has the form

xeD(X) iff JaVn[(Ry(a(n)) v g:(@m) € X) A Si(@(n), x)],

where R, S,, g, are recursive.
Introduce the functional F by

F(f,x) =21 iff 3aVn[(Ri@M) v f(g1(@@) =1) A Si(@@), x)].

Then one sees that F is Eff-computable and monotone. Let g be the least fixed-
point of F, g is semicomputable in E}* by the first recursion theorem. Hence T,
is also semicomputable in EF, since evidently x € ', iff g(x) ~ 1.

This example can be generalized to arbitrary monotone quantifiers Q. A
monotone quantifier Q is a family of subsets of w (or some other suitable domain
in the generalized versions) such that 4 € Q and 4 = B implies B € Q. The dual

of Q is defined as () = {w — X; X Q}. In the example above Q = {4 S w;
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JaV¥n-a(n) € A}. Analogous to EF* we have an associated functional F§ defined by

{0 if {x:f(x) =0}eQ
FE() = {1 if {x:f(x) >0}eQ.

The main result above generalizes: Given 4 < w, then 4 is semicomputable in
F§ iff A e IND(Q), see Aczel [3].

The reader will have noticed the dramatic difference between the strength of
non-monotone versus monotone inductive operators, e.g. both IND(I1}-mon)
and IND(II}) leads to the same class, viz. the II1 sets over w.

We shall present a few basic results on the connection between Spector classes/
theories and non-monotone inductive definability. Some of the first and basic
results are due to Grilliot [49]. Aczel and Richter in their joint paper [135] em-
phasized the importance of reflection principles and developed a general theory
over w. Aanderaa [1] solved a fundamental and long-standing open problem about
the size of ordinals of inductive definitions. And in the paper [116] Moschovakis
brought the various developments together and presented a unified approach.
The reader should also consult Cenzer [18]. Finally, we should mention the work
of Harrington and Kechris [57] on the relationship between monotone and
non-monotone induction.

Here is the appropriate definition to get the theory off the ground (see
Moschovakis [116]).

3.3.8 Definition. C is a typical non-monotone class of operators if it satisfies the
following six conditions:

A. C contains all second-order relations on A which are definable by (first-
order) universal formulas of the trivial structure <4).

B. Cis closed under A and V.

C. Cis closed under trivial, combinatorial substitutions.

Remark. From these conditions we already have a large part of the structure
theory for Spector classes, see Moschovakis [116, §3].

D. C contains all second-order relations definable by existential formulas of
the trivial structure {4).

E. There is an ordering < < 4 x A isomorphic to the ordering on w and a
1-1 function f: A x A — A which belong to HYP(C).

F. For each n > 1 the n-ary IND(C) relations are parametrized by an
n + l-ary IND(C) relation.

From these conditions on C it is not surprising that the following result holds.

3.3.9 Theorem. If C is a typical non-monotone class of operators on A, then IND(C)
is a Spector-class.
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We can add various refinements, e.g. |C| = supremum of the length of com-
putations in the associated Spector theory. And every second-order relation in C
is “A on A”.

The notion “A on A’ was introduced by Moschovakis in the setting of Spector
classes. Working with the associated Spector theory seems to simplify the
conceptual set-up.

Let C be a typical non-monotone class of operators. Theorem 3.3.9 says that
IND(C) is a Spector class. Associated with IND(C) is a Spector theory ©(C),
see Theorem 3.2.6. With every operator I' in C there is associated a functional
F;. defined as follows

1 if xeT(set,)
Frle, %) = {o if x¢ D(set,).
« is here supposed to be total, and set, = {x: o(x) = 0}. It is immediate that
Fr. is O(C)-computable for every operator I' € C.

We further notice that in the Spector theory ®(C) we have 4 = C and the
relation set, € sc(®(C)) is O(C)-semicomputable. We say that C is ®-computable
if Fr. is ®-computable for every operator I' € C. This is our notion “A on A”,

The crucial point in proving that IND(II$) = I1} was to establish the Reflection
Property 3.3.4.1. We state a general definition.

3.3.10 Definition. Let C be a class of operators and ® a Spector theory. ® has the
C-reflection property if whenever R e en(®), I'e C, and R, < R belongs to sc(®),

I'(R) = there exists R* €sc(®), R, © R* < R, and I'(R*).
We showed in 3.3.4.1 that II} as a Spector theory has the Z3-reflection property.

The following result of Moschovakis [116] is a general statement of these
facts and provides a converse to Theorem 3.3.9.

3.3.11 Theorem. Let ® be a Spector theory and C a typical non-monotone class
of operators such that

(i) O is C-reflecting, and
(i) C is O-computable.

Then IND(C) < en(@).
The idea of the proof is simple. We use the fact that C is ©®-computable to
carry out the inductive definition inside en(®), and conclude from the C-reflecting

property of © that the inductive definition closes at a stage <|[@].

3.3.12 Remark. We should supplement Theorem 3.3.9 by noting that the Spector
theory ®(C) associated to a typical non-monotone class C is C-reflecting: For
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simplicity set R, = @ in 3.3.10 and assume R €en(®) = IND(C), i.e. x € R iff
(a, z) € T, for some I e C. Let A € C and assume that A(R) is valid.
Choose an element b and let

¥(X) = I'(X),
O(X) = {b: A({x: (a, x) € X})}.

This is a simultaneous inductive definition in the class C. Obviously, ¥, = T,;
hence, {x:(a,x)e¥,} = R and thus b e ®,. But then there is some ¢ < |C|
such that b€ ®,,;. This means that we have A(R*) for R* = {x:(a, x) e ¥}
But the latter set belongs to sc(®) = HYP(C) by the usual boundedness argument.

We mention one result on the relative size of the ordinals of inductive defini-
tions. The reader should recall the notations of Definition 3.3.2. The following
general result is due to S. Aanderaa [1].

3.3.13 Theorem. Let C be a typical non-monotone class of operators. If C has the
prewellordering property, then

IC| < |=C.
In particular, |I1}| < |Z}| and |2}| < |IIE].

Recall that a class C has the prewellordering property if every relation in C
has a prewellordering in C.

Note that beyond the second level of the analytic hierarchy the prewellordering
property depends upon the axioms of set theory, see Aanderaa [1] for complete
statements.

We shall give a brief outline of the proof, following the original exposition
closely, but correcting several minor mistakes along the way.

Fact 1. There exists ' € C such that |I'| = |C|.

This is an easy consequence of the w-parametrization property of the class C.
So let us start with a I € C such that |[I'| = |C|. We must produce a A € —C such
that |I'| < |A].

Fact 2. Given I'e C and I" e —C such that whenever I'(S) — S # @, then @ #

I'(S) — § = I'(S). Then there exists A €—C such that |T| < |A|. (In fact, we
construct a A € —C such that |A| = |T| + 1.)
Let us postpone the proof of fact 2 for a moment and see how we produce a

suitable I' e —C from the T given in fact 1.

Fact 3. Let T' e C and assume PWO(C). Then there exist ['e C and I' e —C such
that whenever I'(S) — S # @, then @ # ['(S) = I'(S) < I'(S).
This proves the theorem.
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Let us first give the proof of fact 3. Let I'(S) = I'(S) — S, then IV € C. From

the assumption PWO(C), let || -|| be a norm on the class 4 = {(x, S) : x € I"(S)}.
Define

P(S) = {x:xeT'(S) A V¥(ly, S| < |Ix, S|
= (Ix S| < 17,8 A x <y

Clearly I'e C. And if I'(S) # @, let As be the least ordinal of the form |x, S|,
where x € I'(S). Finally, let x be the least element x of w such that ||x, S| = As.
Then we see that I'(S) = {x;}. Let now

xel(S) iff Vy(yel(S) = y = x).

I clearly satisfies the requirements of fact 3.
The construction of A in fact 2 uses the operator I’ and the fact that o #

I'(S) — S < I'(S). This is an exercise in constructing an inductive definition. We
outline one possible way.
Let

HES)={u:3w( v +2,udD¢S A {0,v)eS)},

and define

AS) = {0, x) : x e T(H(S))}
Uz +2,x>:2eT(H(S) A z¢ HS) A x ¢ T(H(S))

A x ¢ H(S)}
U {1, 0> : Vx(x € T'(H(S)) — x € H(S))}.

Finally let f(») = <0, y>. By simultaneous induction on the ordinal A one may now
prove

@ I = H(A* and f~%(AY) < I

(ii) T(H(AY) < TA+1

(iii) M+l T2 g = g # i"‘(H(AA)) — H(AY c 1
(iv) M+1 = H(AM1Y) and f-3(AM1)  TA+1,

Clearly, A € —C, and |A| = |T'| + 1 since {1,0) € AlFI+1 — AlFI,

We started our discussion of non-monotone inductive definability by pointing
to the striking difference between IND(II1-mon) = IND(I1?) = I1} and IND(I1}).
The ordinal e.g. of the latter class is enormously larger than |II}-mon| = w,, the
first non-recursive ordinal. This is the situation over the integers. There are,
however, cases where the difference disappears. If the notion WF of wellfounded-
ness is elementary over a structure U (i.e. is first-order definable in the relations
of the structure), then the classes of elementary monotone and elementary non-
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monotone coincide. This is a corollary of a more general result due to L.
Harrington and A. Kechris [57].

To obtain a sufficiently general result they call a class C of operators on a
domain A adequate if it contains all operators defined by a universal formula of
the structure, is closed under A, v, 3, and trivial combinatorial substitutions
and contains a coding scheme. The reader may want to compare this in detail
with Definition 3.3.8.

3.3.14 Theorem. Let C be an adequate class of operators on A. If —WF € C and
—C < IND(C-mon), then IND(C) = IND(C-mon).

Here —WF is the negation of the relation of wellfoundedness, and —C <
IND(C-mon) means the usual thing: if I'(a, S) is an operator in C, then there
exists in C an operator I'*(e, a, R, S) which is monotone in R such that for a
suitable choice of parameters e,

—I'(a,S) iff T'%(ec, a, S).

We conclude our excursion into the theory of definability by relating the
classes IND(Z3) and IND(II9) over an acceptable structure % to the notions of
strong and weak finiteness, respectively. (Recall that a structure U is acceptable
if it has an elementary coding scheme, see Moschovakis [115].)

Let us call a theory ® a weak Spector theory if we relax the condition of strong
finiteness of the domain to weak finiteness (see condition (2) of Definition 3.2.2).
The following results are essentially due to Grilliot [49].

3.3.15 Theorem. Let A be an acceptable structure.
(1) Let ©® be a Spector theory on U:

a IND(ZI) < en(0),
b O ~ PRI[E, =] iff en(®) = IND(Z2).

(2) Let © be a weak Spector theory on U:

¢ IND(II?) < en(®),
d © ~ PR[E}, =] iff en(®) = IND(II).

(Here E} is the functional of Definition 3.1.2.)

The proof of (1) is essentially contained in the proof of 3.3.4.1, rephrasing the
argument inside an arbitrary Spector class on U rather than in terms of I1. Recall
also from 3.2.7 and 3.2.8 that there is a one-to-one correspondence between
Spector theories and Spector classes, and that a Spector theory is determined by
its envelope.

The proof for II? is a bit more subtle. Obviously, we cannot substitute I19-
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reflection for TY-reflection in the proof for (1), since II%-reflection implies Z3-
reflection and there exist weak Spector theories which are not strong, e.g. Kleene
recursion in 3E over the reals R.

The difference can be traced to another fact, which we shall elaborate on in
later chapters, that whereas Spector theories correspond to admissible structure
weak Spector theories do not. Any weak Spector theory @ has an associated family
of (non-transitive) admissible sets, Spec(®), see Chapter 8 in particular. The
reflection argument to follow is really the argument for case (1) localized to
components of Spec(0).

We give a sketch of the non-trivial part of (2), adapted from Grilliot [49]:
Let S be a I1¢ fixed-point, defined from an inductive operator

xel'(X) iff VzP(x,z X),

where P is quantifier-free. Let m(o) be the supremum of lengths of computations

in ® with ¢ as input. We want to show that x € S implies x € S, Which yields
that

S = Sueor = Ses

where « is the ordinal of 0, i.e. the supremum of all computations in ®. A recursion-
theoretic analysis will show that S = S, € en(®) (similar to the analysis in 3.3.4
showing that T, € II). Thus IND(II?) < en(®), proving ¢ of (2).

It remains to verify that x € S implies x € S,,. For x € S let |x| be the first
stage at which x occurs in S. As induction hypothesis we assume that whenever
|| < |x|, then yeS,,. We also assume that =(x) < |x|, since otherwise
X € S|x|+1 = Sn(x)'

As in the proof of 3.3.4.1 we can show that VzP(x, z, S,) is true when « =
sup «,, where the «,’s satisfy

ape1 < SUp pfB[B > @, A P(x, 2, Sp)].
2

It remains to get « < #(x). This is where “‘admissibility’’ enters the proofin 3.3.4.1.
Here we must argue more carefully.

Suppose that we can compute in ® an ordinal «,, uniformly in n. We show
how to compute in ® an ordinal uniformly in » and z larger than

I“ﬁ[ﬁ 2 oy A P(x9 zZ, SB)]'
Case 1: |x| < m(x, z). This is immediate since |x| > «, and P(x, z, S|))-
Case 2: =(x, z) < |x|. We first note that if a clause b € X occurs in P(x, z, X),

thenb € S|, iff b € Sy,,). If b € S|, then |b| < |x|, hence by induction hypothesis
b e S, S Sux,» The last inclusion follows since b is computable in x, z.)
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From the assumption P(x, z, S|,,) we may therefore conclude P(x, z, Sy, ),
hence also P(x, z, S;) for some B immediately below =(x, z). This follows since
P is 11§ and =(x, z) is a limit number.

In both cases we can compute some vy, larger than uB[B > «, A P(x, z, Sp)].
Simple recursion theoretic properties give us an «,,; > Sup,y,. and finally
« = sup, o,. Since the constructions are computable in x, « < #(x). This completes
the proof of c.

We make a remark on how to prove the converse inclusion that en(®) =
IND(IT?) if ® ~ PRI[E}, =). This follows from a careful analysis of the inductive
definition of the theory PR[E}, =].

The clauses of the “usual” inductive definition of the relations {€}pgrpg/,, =1(x) |
and {e}pr,, -1 ~ z are all of the IIj form except substitution and application of
E}. The trick is to replace these parts of the inductive definition by non-mono-
tonic clauses. We take first the case of substitution, {e}(x) ~ {e;}({e2})x), x). We
will introduce a new inductive operator I' such that in the end (0, e, x) e 'y
iff {e}(x)| and (1, e, x,2) e T, iff {e}(x) ~ z. For substitution this is obtained
by the non-monotonic clauses:

0,e,x)e'(X) if (0,e;,x)e X A Vu[(1,e5, x,u)e X
— (0, ey, u, x) € X1.
(l,e,x,2)eT(X) if (0,e5,x)e X A Vu[(l, €5, x,u) € X
- (1, ey, u,x,2) e X].

Application of E} is a bit more involved. In this case we have to build the
function

{e}(x) ~ E4(y-{e}(», %)),

into the operator I'. This will be done by the following clauses using two auxiliary
tuples (a;,...) and (ao,...)

(a, e, x)e(X) if Vy-(0,¢e,y,x)e X
0,e,x)eN(X) if (a,e,x)eX.
(az, €, x)eD(X) if Vy-(0,e',y,x)eX A Vy-(1,€,y,x,0) ¢ X.
(l,e,x,)e(X) if (aze,x)eX
(L,e,x,00e(X) if (a,e,x)eX A (age,x)¢ X.

(The definition is arranged so that the ordinals of (0, e, x) and (1, e, x, z) are the
same. This is necessary for the inductive proof that (0, e, x) € I', iff {e}(x) | and
(1-e-x-2) ey iff {e}(x) ~ z.)

3.3.16 Remark. In Corollary 3.1.11 we saw that o is strongly ®-finite iff it is
weakly O-finite. Hence on w IND(Z2) = IND(II9) = IIi.





