Chapter XII
Initial Segments of 2[0, 0]

Having embedded minimal degrees below 0', it is natural to try the embed other
uppersemilattices as initial segments of 2[0,0"]. We prove such embedding
theorems in this chapter. In the first four sections, we present a detailed proof of the
embeddability of an arbitrary finite lattice as an initial segment of 2[0,0'].
Extensions of this result to other usls or to embeddings below degrees other than 0’

are discussed in Sec. 5. These results are applied to prove theorems about & and
2[0,0].

1. Weakly Uniform Trees

Let % be a fixed finite lattice, with elements 0 = ug, uy,...,u, = 1. Fix a weakly
homogeneous sequential table @ for .# as in Appendix B.2. @ is then the union of
an increasing sequence @, = O, < - - - of finite sets of n + 1-tuples. @ gives rise to
a recursive function f defined by f(k) = |@,] for all ke N, and hence to the set of
strings % = {oe ¥ : Vie N(o(i) < f(i))}.

It is tempting to try to embed .# as an initial segment of 2[0,0'] by combining
the proofs of Theorems VII.4.1 and IX.2.1, and so, to use partial uniform trees to
construct the desired initial segment. There are severe problems, however, in
carrying out such a program. For suppose that an attempt is being made to
construct a uniform (binary) e-splitting partial subtree of Id,. Let us suppose that
T(0), T(0) and T(1) have been defined. The partial trees of Chap. IX now require

T(0)*ao

T(1)

Fig. 1.1
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that an appropriate e-splitting of 7(0), if found, be erected on T, independently of
what is happening above 7(1) (see Fig. 1.1). Uniformity, however, ties the branches
above T(0) and above T(1) together. We cannot wait to place T(0) * 6, and T(0) * 5,
on T while we search for e-splittings which are compatible both above T(0) and
above T(1), (i.e., to and t; such that {T(i) * 7o, T(i) * 7, y is an e-splitting fori = 0, 1)
since we may never find an e-splitting of 7(1) on Id,. Yet if we erect 7(0) * o, and
T(0)* o, on T and 7(1) must later be extended on T (due to a diagonalization
requirement), then 7(1) * 6, and 7(1) *xo6; must be erected on T to preserve the
uniformity of T, even though they may not e-split 7(1) and even if there are other
e-splittings of 7(1) on Id,.

There are several ways to circumvent this problem. The one which we adopt
here is to use weakly uniform trees in place of uniform trees. Such trees were
discussed in the exercises for Chap. VII, where it was shown that they could be used
to embed finite lattices as initial segments of 2. Weakly uniform trees differ from
uniform trees in that the condition which requires a local isomorphism of
extensions of any two strings of the same length is dropped. This enables us to build
modified e-splitting trees; the definition of e-splitting trees is also weakened to
require that there be infinitely many levels at which all strings which reach that level
and do not satisfy a certain congruence relationship, form an e-splitting. (The
previous definition required that all levels have this property.) Weak uniformity
allows for proofs of interpolation lemmas without causing too much damage to the
ability to prove a computation lemma. Total weakly uniform trees are defined
below.

1.1 Definition. For all o, 7€ ¥} and all i < n, define ¢ =, 7 if 6¥'}(x) = tl')(x) for all
x < min({lh(e), lh(7)}).

1.2 Definition. A weakly uniform f-tree is a function T: % — &; which has the
following properties:

(i) (Well-defined levels): Yo, 1€ % (lh(c) = lh(t) - 1h(T(0)) = 1h(T(1))).

(i) (Congruence preserving): Yo,17e % Vi < n(o =;7 < T(0) =, I(1)).

In order to embed initial segments below 0, we will work with partial weakly
uniform f-trees. Such trees are obtained by weakening Definition 1.2 so that 7 need
not be a total function ; but we must be careful to make the domains of the resulting
trees relatively nice. We will require that the levels of the trees be nicely organized
into plateaus. Levels and plateaus are best defined in terms of interval notation.

1.3 Definition. Let 7 be a partial f-tree satisfying 1.2(i) on its domain. Level i of T'is
the interval I 1, Where I, . = [lh(o), Ih(z)) and ¢ and 7 are strings in the domain
of T such that Ih(¢)=i=1h(n) — 1. If T(Q) # 0, then I, 1, is level — I
of T.

Certain levels of T are special in that only one string which is not terminal on T
ends at the top of the level. These levels give rise to the focal lengths of the tree,
which, in turn, determine the plateaus of the tree.

1.4 Definition. Let Tbe a tree and let 0 = T'be given. o is a potential focal point of Tif
thereisnot = T'such thatlh(s) = lh(7), T # 0,and tisnot terminal on 7. g is a focal
point of T'if ¢ is a potential focal point of 7' and ¢ is not terminal on 7. r is a focal
length of T if r = lh(c) for some potential focal point ¢ of T.



1. Weakly Uniform Trees 223

It follows easily from Definition 1.4 that no two focal points of a tree have the
same length, and that the set of focal points of a tree is linearly ordered by =. Also,
if the tree T'is finite, then all strings on 7 of greatest length are potential focal points
of T, and each has, as its length the greatest focal length of T. A tree with focal
points is pictured below.

__________ level 2 = plateau 1
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S~< level O
level —1 = plateau —1
Fig. 1.2

Focal lengths determine plateaus of a tree as follows.

1.5 Definition. Let T be a partial f-tree satisfying 1.2(1) on its domain. Let
0<ry<ry < ---bethefocallengths of T. Plateau i of T'is the interval [r;, r; 1) (if
ri+1 1s defined). If ry # O then [0, 7o) is plateau — 1 of T. The height of plateau i is
ri+1. The height of T is the height of the last plateau of T if there is such a plateau,
and is undefined otherwise. We write ht(7") for the height of T.

The ability to prove interpolation lemmas will come from the fullness of
plateaus in weakly uniform trees.

1.6 Definition. The interval [s, ) is full on T if there is no terminal ¢ on 7 such that
s < lh(o) < t, but there is a string © = T such that lh(z) > .

Figure 1.2 pictures a tree whose plateaus are full. Figure 1.3 below pictures a tree
in which plateau 0 is not full.
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Fig. 1.3

The partial trees with which we will be working will have only full plateaus.
They are now defined.
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1.7 Definition. A partial f-tree T: & — ; is weakly uniform if it satisfies:

()  (Well-defined Levels): Vo, e %(T(0)] & T(x)| & Ih(c) = Ih(z)
- Ih(T(0)) = Ih(T())).

(i) (Congruence Preserving): Vo,7e % Vi < n(T(0)| & T(1)| &
o =1 1(0) =, T(1)).

(iii) (Fullness): Every plateau of T is full.

Henceforth, we will use tree to denote a weakly uniform partial f-tree.

The function g such that 2[0, g] ~ & is chosen to lie on infinitely many trees,
each of which forces the satisfaction of a requirement. Two properties which these
trees may possess are now defined. Recall the definition of ¢¢” from VI.2.10.

1.8 Definition. A tree T'is <e, i, j >-differentiating if there is an x < Ih(7(@)) such that
®IO(x)| # TO)O(x)].

1.9 Remark. If T is {e,i,j)-differentiating and g is an infinite branch of T, then
(pg<j> £ g<i>'

1.10 Definition. A tree T is {e, k)-divergent for k < n, if there is an x € N such that
for all ¢ = T, ®2’(x)1.

1.11 Remark. If T'is <{e, k)-divergent and g is an infinite branch of T, then <Dg<k> is
not total.

The most important trees for the construction of any initial segment of & are the
e-splitting trees. These trees are always the most difficult ones to construct. We will,
in fact, weaken the notion of e-splitting tree and use this weaker notion for the
constructions of this chapter. The weaker notion will require that certain levels of
the tree be designated as e-splitting levels. The existence of infinitely many
e-splitting levels will allow us to prove a computation lemma. But we will be able to
extend many strings on T without having to make pairs of extensions form an
e-splitting.

1.12 Definition. Let 7 be a tree and let k < nand ee N be given. Level i of T'is an e-
splitting level of T for k if for all &, ne ¥ satisfying 1h(§) = lh(n) =i + 1, T(¢)|,
T(n)|, and & #,n, it is the case that {T(¢), T(n)) e-splits T(().

1.13 Definition. Let £ < n and e, s* € N be given, and let {T: s > s*} be a recursive
sequence of weakly uniform finite trees which approximates to the partial recursive
tree T = U{T;: s = s*}. Then T is a weak e-splitting tree for k generated by {T:
s = s*} if the following conditions hold:

(i) There are no e-splittings mod & on T.

(ii) The last level of every plateau of each T is an e-splitting level of T for k.

Whenever we refer to a tree T as a weak e-splitting tree for &, there will be an
implicit underlying approximation {7: s > s*} to T which generates T as a weak
e-splitting tree for k. We now prove a computation lemma for trees which are weak
e-splitting for some k < n.



1. Weakly Uniform Trees 225

1.14 Computation Lemma. Let k < n and e N be given, and let T be a partial
recursive tree which is weak e-splitting for k. Let g be an infinite branch of T such that
¢ is total. Then @7 =1 g».

Proof. We first show how to compute @%(x) recursively from g<¥*. Search forg = T
such that ¢ =, g and ®J(x)|. Let T < g be given such that 1 = Tand ®¥(x)|. Such ¢
and 7 must exist since @7 is total. Since ¢ =, 7 and there are no e-splittings mod k on
T, 92(x) = P%(x) = PY(x). Since P?(x) was computed following a procedure which
is uniformly recursive in g*’, @9 < g<®.

We now show how to recover g¢** recursively from @9. The reader may find Fig.
1.4 helpful for following the proof. In that figure, T, appears in solid lines, and its
extension to T'is denoted by a dotted line. We proceed by induction on j, finding, at
step j, 0; = T such that o; = T(¢;), Ih({;) = j, and ¢; =, g. When j = 0, we choose
oo = T(0).

Atstepj + 1, expressing T as U{T: s > s*} as in Definition 1.13, find the least
s = s* and the smallest level r of T such that:

1 Level r = [u,v) is an e-splitting level of T for k and v > lh(g;).
) 3t < T(lh(r) = v& 1 =4 0)).

Such r and s can be found because of Definition 1.13(ii). Note that since each T is
weakly uniform, each plateau of each 7 is full, so by Definition 1.13(i1), the interval
[lh(s;),v) is full on T;. Fix T(n) = p < t such that lh(p) = lh(g;). If u, v = T are
such that p = u, p S v, lh(y) = lh(v) = v and p #, v, then by (1), {u, v) e-splits on
some x. Hence @7 can be used to eliminate at least one of y and v as a potential
candidate for a string ¢ such that lh(¢) = v and ¢ =, g. Complete this elimination
process, ending with u. (If no string remains at the end, choose u arbitrarily.) Let
u= T(n+*05). Choose o;+; = T({;+,) such that ¢;,;, € pu and 1h(;,;) =/ + 1.
Since 6, ; = i, it suffices to show that pu =, g. Fix «, f € ¥ such that lh(x) = lh(r),
1h(B) = lh(y * d), and T(a) = T(P) < g. Let f = a*y. Since [lh(g;),v) is full on T,
T,(n*v)|. By the choice of s satisfying (1) and (2), T(x *y) cannot be eliminated
during the above process since, by 1.7(ii), 7 = g;and there are no e-splittingsmod &
on T, hence on T;. Thus p =, T(n*y) =, T(P) =,g9. |

The types of tree mentioned in this section can be used to embed .# as an initial
segment of & as follows.

u=T(n*d) T T(n*y) T(B) = T(oxy)
///
//
0] ///
T(n) = ~*1
14 /// ((:3)
//

”~

T(¢)

Fig. 1.4
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1.15 Proposition. Let g: N — N be given. Assume that:

(i) For all ee N and i, j < n such that u; £ u;, there is a partial recursive tree T
such that g = T and either T is {e, i, jy-differentiating or {e, j)-divergent.

(ii) For all ec N, there is a partial recursive tree T such that g = T and either T is
e, ny-divergent or there is a k < n for which T is a weak e-splitting tree for k.
Then ¥ ~ 9[0,g].

Proof. By the properties of tables, if #; < u; then g¢” <1 g/”. Suppose that u; £ u;.
Then by (i), Remark 1.9 and Remark 1.11, g & g¢”. Hence the map ;- < isa
poset isomorphism. It therefore suffices to show that 2[0,g] = {g<”: i < n}.
Assume that 4 < g. Then there is an e€ N such that ®¢ = h. Since @? is total g
cannot be on an {e, n)-divergent tree. Hence by (ii) and the Computation Lemma,
h =79 for some k <n,s0o he{g¥:i<n}. I

1.16 Remarks. Our first proof embedding .# as an initial segment of 2[0, 0"] used
quasi-uniform trees in place of weakly uniform trees. These trees were sparse rather
than full, and really consisted of a pair of trees, a tree T* whose range was the
difference of recursively enumerable sets sitting inside a partial recursive tree T. T*
was uniform, allowing proofs of interpolation lemmas, and T carried just enough
strings to permit the proof of a complicated computation lemma. The situation was
much more complex than with weakly uniform trees.

The proof using weakly uniform trees occurred to us after a discussion with S.
Simpson in which Simpson commented that weakly uniform trees could be used in
place of uniform trees to prove the results of Chap. VI. Proofs in Chap. VI would
then become slightly more complicated, but these trees could be used to construct
minimal degrees which were bi-immune free. It later occurred to us that the use of
weakly uniform trees would simplify the proofs of this chapter.

2. Subtree Constructions

The proof that & ~ [0, g] for some g < 0’ will make use of a full approximation
construction. All trees used will be constructed simultaneously with g. However, the
construction of the trees can be isolated from the construction of g if the full
approximation construction satisfies certain conditions. The subtrees needed are
constructed in this section under such an assumption.

The construction of subtrees in a full approximation construction is a dynamic
process which we view as follows. Let 7= U{T;: t > s} be given, where {T;: ¢ > s} is
an increasing recursive sequence of finite trees. A subtree T* = U{T}: t > s*} is
constructed, where s* > s and {T7: t > s*} is an increasing recursive sequence of
finite trees, and for each ¢ > s*, T¥ is a subtree of T,.

At each stage ¢t > s*, T | will receive a set of strings S} as input. The way in
which T} extends T7* , depends on information conveyed by S¥. T7 may be
prevented from extending 7% , because an appropriate string cannot be found on
T,. This information is conveyed to T by having T* transmit a string «, which will be
received by T and used to define T, ,. T may also receive strings from trees other
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than T*. However, if T* controls T, then Tand T* will be related in a way which will
guarantee the success of the construction.

Strings received by trees will carry instructions with them. The information
received by a tree will be coded as a set of ordered pairs of the form {a, i), witha € &;
and i < 3. If <a, i) is received by the tree Ty at stage s + 1, then <{«, i) will instruct
T, toextend T in a specified way. The following are the types of extensions which
may be specified. They are pictured in the next two figures.

o
o
o* o*
T Tyey—type 2
Fig. 2.1
o
a*
ht(B) = ¢ ht(@) =t
T, Ts+1—type 1 Tsyy—type O
Fig. 2.2

2.1 Definition. Let T, be a tree, and let o = T be given. Let o* be the longest focal
point of T such that «* < «, and fix 5, #* € & such that T(n) = « and T(n*) = a*.
Fix te N such that ¢ > ht(T;) and the greatest m € N such that T,(d)| for some € &
for which 1h(6) = m. T, is a type 0 extension of Ty for o of height t if:

@) T, extends T;.

()  h(Tsy) =1t

(iii) dom(Ty, ) = dom(T,) U {A: n* < A& lh(4) <m + 1}.

T,. 1 is a type 1 extension of T for o of height t if (i) and (ii) hold as well as:

(v)  Ih(z) = ht(Ty).
v)  dom(T,:,) = dom(T)U{i: n < A&lh(i) = m + 1}.
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T,. . is a type 2 extension of T for o if (i) holds as well as:

(vi)  ht(Ti.,) = ht(Ty).
(vii) dom(Ty,,) = dom(T) U {4: n* = A& 1h(4) < m}.

2.2 Remark. The reception of <«, i) by the tree T at stage s + 1 will convey the
instruction to carry out Objective i whenever possible. The objectives are listed
below.

Objective 0. Combine plateaus and create a new (splitting) level. This objective will be
met when Ty, is a type 0 extension of T for o of height ¢, where ¢t > ht(T) is
specified. There is a type 2 extension T* of T for o within T, , the existence of
which is crucial to the proofs of the interpolation lemmas. Ty, ; adds one level to T*
(which will be an e-splitting level if a weak e-splitting tree is being constructed).

Objective 1. Designate a new focal point. This objective will be met when Ty, { is a
type 1 extension of T for a of height ¢ for some ¢ > ht(T). It is used to force
T = U{Ty: s = s*} to be infinite, with infinitely many focal points.

Objective 2. Specify an {e, k y-divergent extension tree. When T receives (a,2), aisa
potential focal point of T, and a tree T* is specified such that T* = T, with
o= T*&). T, is instructed to preserve o as a potential focal point, while a search
for suitable strings in PExt(T*, &) proceeds. If this search is unsuccessful, then
PExt(T*, &) will be <e, k)-divergent for some k < n.

Objective 3. Specify a tree with no e-splittings mod k. The process is the same as in
Objective 2, except that if the search is unsuccessful, then PExt (T*, £) will have no
e-splittings mod k for some k < n.

Since an oracle of degree 01?’ is not available, we will not be able to determine in
advance whether or not searches as in Objective 2 and Objective 3 will succeed. This
differs from the situation in Chap. VII.

Reception of strings will be subject to the following constraints.

2.3 Remark. Let the tree T receive <{a, i) and {f,j> at stage s + 1. Then the
following conditions will hold:

(1) ac T,

(i) If i = 0, then lh(x) < ht(Ty).

(iii) Ifi = 1, then ais a potential focal point of T which is not a focal point of Ty.

(iv) If ie{2,3} and T,_, does not receive <{a, i), then « is a potential focal
point of T

(V) acforfca

If T = T* and T* is sufficiently large, then there will be an extension 7* of T of
type i such that 7% = T*. The proof of the existence of 7% under the following
hypotheses is left to the reader.

2.4 Lemma. Let T and T* be trees such that T = T* and T is finite. Let o.€ ¥; and
i < 2begivensuchthato = T. Then there is a type i extension T* of T for o of height t
such that T* < T* under the following circumstances:
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(i) i =0, Ih(x) < ht(T) < ht(T*) = ¢, and if «* is the longest focal point of T
such that o* < o then o* is in the last plateau of T*.
(i1) i =1, ht(T*) = ¢, 2.3(iii) holds for T in place of T, and « is not terminal on
T* but is in the last plateau of T*.
(i) i =2, ht(T) = t, and T* contains a type 0 extension of T for a.

When a tree T receives information at stage s + 1, it will decide to process at
most one bit of information <a, ). This choice is made as follows.

2.5 Definition. Let T be a tree which receives the set of ordered pairs S, ; at stage
s + 1. Wesay that T, prefers (a, iy if {a, i) is the first pair in S, ; (under a fixed one-
one recursive correspondence of N with % x [0, 3] such that for all a, f€.%; and
i,j < 3,ifa = B then {a, i) precedes {f,j> and if i < j then {a, i) precedes {a,;))
such that i < 1.

The following notation will be used for strings.

2.6 Notation. Let £ € ¥} be given such that & # (. £~ will denote the unique A€ %
suchthat A = £and lh(4) + 1 = 1h(§). Fixie Nsuch that & = £~ *i. (&) will denote
the string &~ * (i + 1), and if i # 0 then p(&¢) will denote the string &~ = (i — 1).

The identity tree will be the starting point for the construction. Since it is
convenient to require that all trees contain infinitely many focal points, the first tree
will be a partial subtree of the identity tree. This partial tree is defined through a
recursive approximation which depends on the set of strings received by the tree.
The tree is described in terms of its approximations.

2.7 Initial Tree Construction. Let {S,: 1 > 0} be a recursive sequence of finite
subsets of & x {i: i <3}. We construct a recursive sequence of finite trees,
{Init,({S,: 0 < u < t}: te N}, whose union is the initial tree specified by {S,: t > 0},
Init({S;: ¢ > 0}). For convenience, we use T, to denote Init,({S,: 0 <u < ¢t}). T,_,
receives the set of strings S, at stage .

Let Id, be the full identity tree as specified in VII.2.1, and let Id, = {¢ < Id,:
lh(o) < t}.

We begin by setting T, = Id,. Given T, fix {a,i) €S, such that T, prefers
{a, iy if such a pair {a, i) exists. If no such pair {a, i) exists or if {a,i> does not
satisfy 2.3(1)-(iv) for T}, let T, , ; = T,. Otherwise, let T, , be a type i extension of 7,
for a of height ¢ + 1 such that 7,,; < Id,, . Note that by Lemma 2.4, such an
extension exists. No information is transmitted by 7, for any t.

The following remark summarizes the properties of Init({S;: # > 0}) used later
in the construction. These properties follow easily from Definition 2.1 and 2.7.

2.8 Remark. Fix {S,: ¢ > 0}, let Init, denote Init,({S,: 0 < u < t}) and let Init denote
Init({S;: ¢ > 0}). Suppose that 2.3(i)—(iv) are satisfied at stage ¢ + 1 by Init, for all
{a,iy€ S, ;. Then:

(i) Init,, ; # Init, if, and only if Init, prefers some {a, i), in which case Init, , ; is
a type i extension of Init, for o of height z + 1.

(ii) If « is a potential focal point of Init, and for all {f,j) received by Init, with
j<l,eitherj=1landa < B,orj = 0and a < f and «is a focal point of Init,, then «
is a potential focal point of Init, . ;.
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During the construction, it will not be enough to construct subtrees. Rather, all
previously defined trees will play a role in determining the next tree. The new tree
must be added to the end of a sequence of previously defined trees, and this new
sequence must be special. Special sequences are used to insure that g, the limit of the
strings constructed, has domain N. This is accomplished by forcing all trees to have
infinitely many plateaus, with g as the unique infinite path through each of these
trees.

2.9 Definition. Fix s*, 7, ke N. For each i < k, let {T : s* < s < t} be a sequence of
finite trees. The array {7 :i < k& s* < s < t} is special if it satisfies the following
conditions:
) Vi<kVsels*, t)(Ti+1, S T ) & Vi < kVse[s*, )(Ti s+, extends T, ).
(i) Vi< kVse[s*, t]Vae . (If o is a potential focal point of T;; and for all
m < iand {B,j) received by T,, , either je {2,3},orj=1and « = 8, or j = 0 and
o < f and o is a focal point of T, , then o is a potential focal point of T}, ;.)
(i) Vi< kVse[s*,0)(Tis+y # Tis =V < i(ht(T; 5+ 1) = ht(Ti 4 1))
& (T # 0 — Im < 1 Jae F(T, s prefers (o, m) & T 5+ ; is a type m extension of T
for a))).

Conditions 2.9(ii) and (iii) tell us how to preserve focal points from tree to tree,
and indicate the conditions under which trees will be extended. They reflect 2.8(ii)
and (i) respectively, allowing us to immediately note the following fact.

2.10 Remark. Under the hypothesis of Remark 2.8, for all te N, {Init,: s < t} is
special.

Many of the trees which will be used during the construction will be defined by
the Ext operation. These trees are defined through a recursive approximation. They
do not process the pairs which they receive, but pass them on to the tree which they
extend.

2.11 Extension Tree Construction. Let s, s* € N be given such that s* > s. Let T be a
tree defined by T = U{T,: t > s}, where {T,: t > s} is a recursive sequence of
increasing finite trees. Let €%} be given such that Tw(&)]. Define the tree
T* = Ext(T, &, s*) as the union of the trees {TF: t > s*}, where T} = PExt (T}, &)
(see VIL.2.3). T will be denoted as Ext(7, &, s*). (Note that s* determines the stage
at which the recursive approximation to 7* should begin.) 77 transmits exactly
those pairs which it receives; these pairs are received by T,.

The following properties of Ext(T, &, s*) follow easily from its definition.

2.12 Remark. Let 7, &, s and s* be given as in Definition 2.11. Then the following
conditions hold:
(1) For all t = s*, Ext(T}, &, s*) < T,; and for all ¢ > s*, Ext(T}, £, s*) extends

EXt(R— 1> é’ S*)'

(if) For all t > s*, Ext(T}, &, s*) transmits exactly those pairs which it receives.

(ii) For all ¢ = s*, if T,(¢) is a potential focal point of T, then the (potential)
focal points of Ext(T}, £, s*) are exactly those (potential) focal points a of T, such
that T,(¢) < a.
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There are two basic types of requirement which play a role in the construction of
a function g for which 9[0, g] ~ %. The first type of requirement is a diagonaliza-
tion requirement whose satisfaction produces a one-one map from .# into 2[0, g].
Such a requirement is satisfied by forcing g to be on a differentiating tree. These
trees are now introduced.

2.13 Differentiating Tree Construction. Let k,se N be given, and let {T,,:
m < k&t > s} beanarray of trees such that for allm < kand ¢t > s, T,,,, + ; extends
T,.andifm # OthenT,,_,, 2 T, Foreachm < k,let T,, = U{T,,,: t = s} and let
T,..-1 receive S, at stage t. Fix e, s* € N such that s* > s and i, j < »n such that
a; £ a;. We construct an (e, i, jy-differentiating tree

T+, = Diff{T,,;: m < k&t = s},e,i,j,5%)
as the union of the increasing sequence of trees
{Tk+ 1,6t = lefr({Tm,r m< k&s Sr< t}ses i’jaS*): t= S*}'

We proceed by induction on {z: ¢ > s*}. By VII.1.1(i) and 1.2(ii), fix p, ¢ < f{0) such
that p =;¢q but p #,4, and the least x such that T(p)(x) #; T(g)(x).

Stage ¢ of the construction proceeds through the following sequence of steps. At
the end of stage ¢, ¢ is placed in some state. If ¢ > s*, proceed directly to the
beginning of the step or substep of the construction in which a state was assigned at
stage ¢. The reader may find Fig. 2.3 useful for following the construction. The first
diagram is used if » = p and the second if r = q.

pP=Tr1(E) 9 Tie-1(§)=p
0=Txe1(n) ¢ =Ti—1(N) 0=Ti,_1(n) Tie—1(V)

7= Tie-1(B) 4 T=Tk:—1(B)

8 =Ty, 1(D) ¢ Tk,e-1(q) 6=Tr:_1(0) b Tir—1(q)

Tie—1() Tye—1(9)

Fig. 2.3

Step 0. Begin Tyyy1. If Ty, 1(0)7 or if ht(T,—y) # ht(To, ), set Tiyy, = 0.
T,+1.-1 has no transmission. Place ¢ in state {0,0) and proceed to the next stage.
Otherwise, proceed to Step 1 if T;,_;(p)?, and to Step 2 if T, ,_,(p)| = 0.

Step 1. Begin branching on T,.,. If T,,_, is a type 1 extension of T},_, and
ht(Ty,, - 1) = ht(To,-1), proceed to Step 3 letting 6 = T} ,_;(p). Otherwise, set
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Tis1,=0andlet Ty, transmit (T}, (@), 1) to T}, ;. Place ¢ in state {1,0)
and proceed to the next stage.

Step 2. Obtain a type 0 extension. We want § to be in the last plateau of T} ,—; with
ht(Ty, - ) = ht(To,—,). If this is not the case, set T;,;, =@ and let Ty,
transmit (T}, 1(9),0> to T}, ;. Place ¢ in state {2,0) and proceed to the next
stage. Otherwise, go to Step 3.

Step 3. Force <1>g<f >(x)l. Lett = T,,_(B) be the least string in % (under some fixed
recursive one-one correspondence of N with %) such that 6 < 7 and 7 is a potential
focal point of T} ,, where vis the first stage at which Step 1 or 2 is completed. Search
for 0 = PExt(T},-1,p) such that 1 < ¢ and ¢”<’>(x)l If no such o is found, set
Ti+1,=0and let T, transmit {t,2) to Ty,-;. Place ¢ in state {3,0) and
proceed to the next stage. Otherwise, fix the least such ¢ = T} ,_ () (under some
fixed recursive one-one correspondence of N with %}). Proceed to Step 4.

Step 4. Build the Diff tree. Before we define the Diff tree, we must make sure that the
arrays of trees are special. This is accomplished in the first substep. The Diff tree is
defined in the second substep.

Substep 0. Obtain a type 0 extension. We want ¢ to be in the last plateau of 7},
with ht(T,, - 1) = ht(T, - ,). If this is not the case, set Tj,;, =@ and let T\,
transmit (T, (9),0) to T,,_,. Place ¢ in state {4,0) and proceed to the next
stage. Otherwise, go to Substep 1.

Substep 1. Define the {e, i, j)-differentiating tree. Let z = <I>Z<’ ’(x). Let r be the first
of {p,q} such that T,, (r)’(x)#z If r=p let A=n and if r=gq let

=tr(p - q;n). Let p = T}, (&) be the first string (under some fixed recursive
one-one correspondence of N with %) such that 4 = ¢ and lh(p) = ht(T}, ). Set
Ti+1,0)=p. Ty11,-, has no transmission. For all stages u > ¢, let Ty, , =
Ext(T, ,, &, t) and place u in state {4,1). T;., transmits all the pairs which it
receives to Ty ,.

The next two lemmas specify properties of {e, i, j>-differentiating trees which
are important for the construction of the initial segment of 2[0,0] which is
isomorphic to .#. The first lemma specifies details of the construction, while the
second lemma specifies properties which the final tree will have if suitable
assumptions are made. The properties specified by the next lemma fall into four
categories. The first three properties specify the type of tree which was defined. The
next three properties aid with the verification of 2.3(i)-(v). We then have two
properties dealing with the preservation of focal points and five properties
specifying how information is processed.

2.14 Lemma. Let e, i, J, k, s, s* € N be given, and let
T+ =Diff{T,, . m< k&t =5}, e, i, j, 5*)

be defined as in 2.13 through the recursive approximation {T} . ,: t = s*}. Then the
following conditions hold:



2. Subtree Constructions 233

(i) Forall t > s*, Tyy1, S Tyy; and for all t > s*, Ty, extends Ty, —,.

(i) Ty, is recursive and weakly uniform,and if T, # O then T, ., is e, i,)-
differentiating.

(ii)) For all t > s*, if Tys1,0)| = T (&), then Tyyy, = PExt (T, &) and
T+ 1, transmits exactly the pairs which it receives.

(iv) Forallt = s*,if Ty, = O then T, ., transmits at most one pair {a, i),
and o = Ty, —;.

(V) For all t=5* if Tyr1,=0 and Tyy1,—, transmits {a,0), then
Ih(a) < ht(Ty ;- 1)

(vi) Forallt = s*,if Ty, =0 and T\, transmits {a, iy withie{1,2,3}
and tandt — 1 are in different states on T} .. |, then for allm < k, a is a potential focal
point of T,,,_, which is not a focal point of T,,;—.

(vii) For all t > s*, if Ty+1, =0 and Ty, -, transmits {a,iy with i€ {2,3},
then lh(a) > Ih(T}, - ().

(viii) For all t = s*, if Ty1y, # O then (T, (0)) > 1h(T} (0)).

(ix) For all t = s*, if Ty+1,=0 and T\, transmits {a,iy, then t and
t + 1 are in different states on T, exactly when one of the following conditions
holds:

@) i<1&T,, is a type i extension of Ty, for a such that ht(T,,) =
ht(TO,z)-

(b) i=2 and a = Ty, 1(&) for a specified &, and for a spccified xe N,
there is a o = PExt (T}, &) such that #°”(x)].

(x) For all t = s*, if t and t + 1 are in the same state on T, ., then either
Ti+1.-1 and Ty, transmit the same pair, or neither tree transmits a pair.

(xi) Forallt = s*,iftandt + 1 are in different states on T .. |, then the state of t
on Ty lexicographically precedes the state of t + 1 on T 4.

i) If Tyyr, =0 but Tiri41 # 0, then INTyy1,410)) = ht(Tysy41) =
ht(T,,.,) for all m < k and T, does not transmit any pairs.

(xiii) Forallt > s*,if Ty, = 0 then Ty, \,_ transmits a pair if and only if t is
not in state <0,0> on T}, 1.

Proof. Immediate from the construction. [

In Sect. 4, we will construct a function g of degree < 0’ such that 2[0,g] ~ .%.
We will force g to have degree < 0’ by defining a recursive sequence of strings
{as: s€ N} such that g = lim, oi,. We will then have to show that dom(g) = N. This
will be accomplished by finding a path I" through a tree of trees, and showing that
g = U{T,(0): y = I'}. The preservation of potential focal points is crucial for the
verification of this fact, and the steps in tree constructions requiring that we take
type 0 extensions with height restrictions related to the previous trees will allow us
to preserve these focal points.

2.9(ii) is the central clause for the preservation of focal points, but in order to
apply this clause, the process of transmission and reception of pairs must satisfy
certain properties. 2.3(i)~(v) will yield these properties for reception of pairs. 2.9(iii)
will allow us to show that the processing procedure for pairs leading to the
transmission decision at a given stage has the right properties. It will then follow
that we either define an <e,i,j)-differentiating tree which contains g, or an
extension tree containing g which is <e,j)-divergent.
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2.15 Lemma. Fix e, i, j, k, s, s*€ N, and let
T+ = Diff{T,: m < k&t = s},e,i,j,5%)

be defined as in 2.13 through the recursive approximation {T} . ,,: t = s*}. For each
t = s*, assume that {T,,,: m < k& s* < r < t} is special. Then if Ty, # 0, Ty, = 0,
andno sufficiently large t is in state {0,0) on T} , |, then there are £ € ; and i < 2 such
that Ty, transmits {T\(&), i) for all sufficiently large r and PExt (T, ) is either
finite or {e,j>-divergent.

Proof. We note that there are only finitely many states which ¢ > s* can occupy on
T, +,. Furthermore, if ¢ > s* and T}, {, = 0, then ¢is in some state on T}, ;, and by
2.14(xiii), T+ .- transmits some pair unless ¢ is in state {0,0) on T} , ;. Hence by
2.14(x) and (xi), there is a stage r and a pair {a, i) with i < 2 such that every stage
t > ris in a fixed state and for each such ¢, T}, transmits {a, ).

First assume thati < 1. Fixt > r. If T}, # T}, -1, then by 2.9(iii), T}, is a type i
extension of T}, for a and ht(7T} ) = ht(7T,,,) for all m < k. Hence by 2.14(ix), ¢
and ¢ + 1 are in different states on T, ,, contradicting the choice of r. Hence
Ty, = Ty, forallt > r. By 2.14(iv), there is a £ € &} such that T}(£) = a. PExt (T}, &)
is now seen to be finite.

Assume that ie {2,3}. Then i = 2. By 2.14(ixb), there are £ € %} and xe N such
that o = T} (&), and for all o = Ext(T}, &, s%), #7”(x)1. Hence PExt (T}, &) is
{e,jy-divergent. 1

The other trees needed for the construction of g are weak e-splitting trees. These
trees are constructed in the next section.

3. Splitting Trees

The remaining type of requirement which will have to be satisfied deals with
controlling the degree of ®? where g is constructed so that 2[0,g] ~ £. Such
requirements are satisfied through the use of splitting trees. Asin Chap. VII, we will
prove interpolation lemmas which will enable us to construct splitting trees. We
restate Lemma VIL.3.2, the GLB Interpolation Lemma, for the reader’s
convenience.

3.1 GLB Interpolation Lemma. Let i, j, k < n and o, 1, pe ¥, be given such that
u; A u;=uy, lh(o) >0, lh(t) =1h(p), and 7 =,p. Then there is a sequence
T=1Tg,..., Ty =p Such that for all p<m, lh(r,)=1h(z), o%1,€%}, and
To=iT1 FjT2 =" =jTme

As we try to build a weak e-splitting subtree 7* of T, we will face the following
situation. We will be given strings u, ve dom(7) such that lh(u) = Ih(v), and will
want to find strings ¢ and 7 such that {(T(u * ¢), T(v * 7)) forms an e-splitting; we
wish to erect these strings on 7* while preserving the weak uniformity of 7T*. Since
we will have to combine old plateaus to form new plateaus, we cannot succeed
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as in Chap. VII merely by considering the case in which lh(u) = 1. We thus try to
reduce the problem which we now face to the situation of Chap. VII by fixing the
least y such that u(y) # v(y), fixing i and j such that u(y) = i and w(y) =, and
requiring, for all k, that if i =, j then ¢ = t. The extension maps will then depend
on the value of the corresponding string at y. We thus need a new definition of
extendibility, and must prove a new Extendibility Interpolation Lemma.

3.2 Definition. Let i,j,meN, o,7€ % and p,ve ¥, be given such that m + 1 =
lh(u) = lh(v). Fix the least y such that u(y) # v(y). Assume that:

()  Ih(o) = Ih().

(i1) u(y) =i&v(y) =j.

(iii) VE<n(i=,j—oo=,1).

Let % = {a€ % :1h(a) = lh(p)}. We say that (o, t) is extendible for {u, v} if there is
amap 0: % — {&: 1h(¢) = Ih(o) & 0,,+, * & € S} such that the following conditions
hold:

(iv) O =oc&0H(v) =1.
(v) Vk <nVB,yeU(B =iy — 0(B) =, 0(7)).

The following lemma enables us to find extendible branchings under suitable
hypotheses.

3.3 Extendibility Interpolation Lemma. Let i, j, me N and o, 1, pu, ve ¥, be given
satisfying 3.2(1)—(iii) with m + 1 = lh(y) = lh(v). Then there is a A such that
1h(2) = 1h(0), 0,4+, * L€ S} and both {o, i) and {A,t) are extendible for {u,v).

Proof. Fix i, j, y, 0, 1, i, v as in the hypothesis of Lemma 3.3. By Lemma VII.3.8
(the previous Extendibility Interpolation Lemma), there is a A such that
Ih(4) = lh(0), 0,,+, * A€ F; and both (g, ) and {4, 7) are y-extendible for (i, j).
Let ¢, and y,; be the corresponding extension maps. Let % = {ae%:
Ih(x) = Ih(y)}. For m < 1 and 6 e %, define 6,,(0) = ¥,.(6(»)). For all B, ye % and
k<n,

B=ky— B) =7(P) = ¥m(BO) = ¥m(P(P) < 0u(B) =1 Om().

It is now easily verified that 6, and 0, witness the extendibility of (s, 1> and {4, 1)
respectively for {u,v>. I

We now construct a typical splitting tree. The reader will find a thorough
understanding of Lemma VII.3.10 to be very helpful. We try to motivate each step
of the construction in detail, naming each step and keeping track of the progress of
the construction at stage ¢.

3.4 Splitting Tree Construction. Let m',s'e N be given, and let {T,,,: m <m'&
t =5’} be an array of trees. Fix k <n and e, s*e N such that s* > s and fix
Bc T,-y. Let T,,=U{T,,,: t =5} for all m <m’, and let T, receive the set
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Smr+1. We construct a tree

T, =Sp({Tp,:m<m&t=s}, ek, B s* {Sp,m<m&t>s*})
as the union of an increasing sequence of trees {7, ,: ¢t > s*} where

Twi=Sp{Tp, m<m&s <r<t} ek, s* {S, m<m&

s* <r<t}).

T, will be a weak e-splitting subtree of T, _; for k above § whose construction
begins at stage s* and which receives S, at stage ¢ > s*.

We will proceed by induction on the set of stages {¢: # > s* — 1}. Stages will be
placed in states according to the progress being made in the construction of a given
level of the splitting tree. States will be triples {ry, r,, r3» ordered lexicographically.
Unless either ¢isin state {0, 0, 0) or all steps in the construction are completed at the
end of stage ¢, we will set Ty, = Ty y— 1.

We begin by placing s* — 1 in state <0,0,0) and setting T, «_; = 0. Fix
t + 1 > s* and assume by induction that T,,. , has been defined. We indicate how to
define T, . 1. We beginsstage ¢t + 1 with Step 0if zisin state (0,0, 0). Otherwise, we
begin state ¢ + 1 with Step 1.

Step 0. Define T, (). Define

B if BeTy_1,&5=0&Ih(f)=ht(Ty,)&t+1=s*
T otherwise.

Tm’,t+ 1(5) = {

If T i +1 = 0, tis placed in szate <0,0,0) and T, , does not transmit any strings to
T, -1, Proceed to the next stage. Otherwise, proceed to Step 1.

Step 1. Express Preference. If S, , ., does not satisfy 2.3(i)-(v) or if T, , does not
prefer any element of S, . 1, place ¢ in state {0, 1,0). T, , does not transmit any
stringsto T, _, .. Proceed to the next stage. Otherwise, fix {a, i*) € S, , ;- ; such that
T, prefers (o, i*). If T, ,_, also preferred {a, i*> €S, ,;, proceed directly to the
point in the construction at which stage ¢ ended. (Thus if stage ¢ ended within a last
step, substep, or subsubstep, we proceed directly to the beginning of that step,
substep or subsubstep, with everything in the construction which has been defined
at stage f unchanged at stage ¢ + 1.) Otherwise, let o* = o if i* = 1, and let «* be the
longest focal point of T, , such that a* = o if i* = 0. (In the latter case, 2.3(ii)
implies the existence of such a focal point.) o* is tentatively designated as the next
focal point of T, . We now begin a new splitting level for T,,. We thus require that
T, —,,.beatypei* extensionof T, _, ,_, for a* with ht(T,, _, ;) = ht(T, ). If thisis
not the case, place ¢ in state {1,0,0), let T, , transmit {a*,i*> to T, _,,, and
proceed to the next stage. Otherwise, we continue stage ¢ + 1 of the construction,
letting 7" be a type 2 extension of T, , for o* such that 7" < T, _,,. Such an
extension must exist inside a type i* extension of T, _;,_;.

If is not placed in state 1,0,0),let {&;: i < p} be the set of all strings ¢ such that
a* < T'(¢) and T'(¢)| and is terminal on T'. For each i < p, fix £ such that
T -15) = T'(&). Let {n?: i < v} be alist of all ne ¥ such that n = £ % for
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some i < p and j < f{lh(&)). For each i < v, let B = T, _; (n?). {B°: i < v} starts
the splitting level for T, but must be extended to insure that we have the desired e-
splittings. We will do this as follows. Following a fixed recursive procedure, form a
list of all pairs {<B, B) >: By, #i B}, & u < q}. We will proceed inductively through
steps {u + 2:u < ¢}, building {f¢*' = T, _, ,(n**"):i < v} atstepu + 2 such that:

) Vi< o 2 B).

@ Vi, j < v(h(B{™ ') = Th(B; ™).

3) (B, putty form an e-splitting.

@ Vi,j < oVm < nn} =nn) - B =BT,

Note that conditions (2) and (4) will hold with 0 in place of # + 1 once we show that
T, -1 is weakly uniform. We now proceed to the next step.

Step u + 2. Define {B¢*': i < v} satisfying (1)-(4). This step has several substeps.
Two interpolations may be needed so we must always work above level 1 of T, _,.
So far, we have only guaranteed that level 0 of T, _; has been defined. Thus we
begin with Substeps 0 and 1.

Substep 0. Speczaltze the sequence of trees for B . If there is a /3 2 B such that
[f“ < Tp-1,and lh(ﬁ ') = ht(T,,,), fix the least such ﬁ =Tp- 1,,(11 1) under some
fixed recursive one-one correspondence of N with y} and proceed to the next
substep. (Note thatif T, _; ,is a type 0 extension of T, _; ,; of the same height as
To,, then B‘i‘u will exist.) Otherwise, place ¢ in state <u + 2,0,0), let T, , transmit
{a*,0) to T, _,,, and proceed to the next stage.

Substep 1. Define level 1 of PEXt (T 1, 1}). If Ty -1, is a type 1 extension of
T -1, for [3" and ht(T,, -, ,) = ht(To,), go to the next substep. In this case,
T - 1,071, % 0)] andisa potential focal point of T, _ ; , which is not a focal point of
Toi— 1, Otherw1se place tin state (u + 2,1,0),let T, , transmit <B 1>t0 T —y 0
and proceed to the next stage.

SubstepZ Find an e-splitting of B, . leney}such that 7} = n? *7,and forallj <
define 7} = n}*7. Since BO $ ,B there is a least y < lh(#)) such that
nlu(y) ¢k;1} (y) Fix this y and ﬁx the greatest element u,,,eL for which

no(y) =mhi( y) Let w, =u, A . Search for an e-splitting mod & on
PExt (T -1, 115, * 0). (We will then interpolate to get an e-splitting mod m or an e-
splitting mod k.) If no such e-splitting exists, place ¢ in state {u + 2,2,0, let T, ,
transmit {7, - 1,(#f}, *0),3) to T, _,, and proceed to the next stage.

Suppose that e- sphttlngs mod b exist. Let (y;, 7> be the least e-splitting mod b
found at stage 7 (under some fixed recursive one-one correspondence of N with &7).
Fix x such that ®2(x)| # ®2'(x)| and go to the next substep.

Substep 3. Place T, (7} in the last plateau of T,y —1,- We wish to use the GLB
Interpolation Lemma to transform {74,771y into an e-splitting mod k or an e-
splitting mod m. The procedure for obtaining such an e-splitting involves searching
through an extension tree T* of T, _, , for e-splittings. In order for the sequence of
trees to remain special, we must define 7*(9) to be a potential focal point of 7, .
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Thus we require that T, _, (%) be in the last plateau of T, _,, with
ht(T,, - 1.) = ht(T, ). If this is the case, then there are y; 2 9! for i < 1 such that
lh(yo) = lh(y}) = ht(To,), 75 =»7;, and y) = PEXt (T -1 At *0). Fix such
v, = Tow—1.((;) and proceed to the next substep. Otherwise, place ¢ in state
{u+ 2,3,0), let T, , transmit {a*,0) to T,,_,, and proceed to the next stage.

Substep 4. Interpolate to get an e-splitting mod m. By the GLB Interpolation Lemma
(3.1), there are arrays {v:i < w&j < w — 1}and {6/:i < w&j < w — 1} satisfying
(5)-(9) below for j =0
5) Vi, i' < w(lh(v}) = 1h(v))).
(6) (=1 % 0% V& L) =7t x 0%V &Vi < w(vi 2 V") &l =
T - 1,r(77iu *0 x v{)
@) Vi < w(0xvie ).
®  PUL.
® vh

IIl
Il

V=V =, =00l

We proceed through the sequence of subsubsteps {j: 1 <j < 2w — 2}, con-
structing {v/: i < w} and {d!: i < w} satisfying (5)~(9) at subsubsteps 2j — 1 and 2;.
Note that it is not necessary to follow this procedure for j = w since ®2*(x)|. At the
end of subsubstep 2w — 2, we will either have an e-splitting mod k or an e-splitting
modm on PExt (T, -1, 1}).

Subsubstep 2j — 1. Define 51 satisfying  (8). Institute a search in
PExt (T -1, 7%, % 0% v/~ 1) for veyy such that

T - 1,0l 200! 'V)(x)l
B .

If no such v exists, place ¢ in state (u + 2,4,2j — 1), let T, , transmit <&/~ *,2) to
T, - 1., and proceed to the next stage. Otherwise, fix the least such v (under some
fixed recursive one-one correspondence of N with ). For all i<w, let
? = vI7 1 xv. Proceed to the next subsubstep.

Subsubstep 2j. Place a* in the last plateau of T, _,,. We will want to define 6ji}
satisfying (8) with j + 1 in place of j. Thus we will search for sucha § = 5;1{ on an
extension tree T* of T,, _,, and, failing to find J, we will use T* as the next tree in
our sequence of trees. Since this new sequence will have to be special, T*(@) will
have to be a potential focal point of 7, _ ;. We insure that this is the case by taking a
type O extension of T, _ , if necessary. Thusif o* is not in the last plateau of T, _ ; ,
orifht(7, -, ,) # ht(T, ), we place tin state {u + 2,4, 2j),let T, , transmit {a*, 0)
to T, ., and proceed to the next stage. Otherwise, fix the least v* € &; (under some
fixed recursive one-one correspondence of N with &) such that v*2v
and 1h(T,, -, ,(;1, *0 % V)% v¥) = ht(T,,,). For all i <w, let v/ = #/*v* and 6! =
T - 1.4(, % 0 % ). Proceed to the next subsubstep if j < w — 1.

Suppose that j = w — 1. Then there is a least i W such that {671, o}
e-splits on x, since (8% 1,61 e-splits on x and @ '(x)| for all j < w. Fix this i.



3. Splitting Trees 239

If i is odd, then we have found an e-splitting mod k on PExt (T, _; ,, f;) and the
construction of T, is terminated at this point. If i is even, let j, = 6" ~' and
P = 5:‘1 . Note that {j,,7,> e-sphts y R (7 )modm and that, by (8) and (7),
0xvr~1 0xv* ' e Hence 7,7, < PExtf(T,,, ~1.1;)- By the last subsubstep,
lh(yo) lh(yl) = ht(TO ). Proceed to the next substep, defining €% by

m -1 t((}) - y} fOI'] < 1

Substep 5. Interpolate to get an extendible e-splitting mod m. The e-splitting mod m
{Pos 71y Of T -1 ,(7}.) will only be useful if it is approprlately extendible above B .
Let Ay, A,€%; be deﬁned by {o = Ay * Ao and &= A, * A2. Since 1h(#}) > 0, it
follows from the Extendibility Interpolatlon Lemma (3. 3) that thereisa 4, such that
i * A1 €%, h(4y) = 1h(4), and both {4y, 4,> and {4, 4,) are extendible for
<r?1‘u 15> Note that T, —y (7, * A1)]. In order to make use of these extendible
branchings, we must force

T - 1,:(’?;‘“ * 25, T - 1,:('?:-‘,, *Aj+1))
to be an e-splitting for j = 0 or j = 1. This will be the case if
¢Zm' - 1,z(fl."u*i~‘)(x)l_

We try to achieve this last condition for some A = A, in the first subsubstep of
Substep S.

Subsubstep 0. Extend the interpolant to get a convergent computation on x. Search for
0 < PExt (T, -1, 1;, * A1) such that @;(x)|. If no such ¢ is found, place ¢ in state
{u+2,5,05,let T, , transmit { T, (1]} * 4,),2) to T, 1 ,, and proceed to the next
stage. Otherwise, fix the least such ¢ (under some recursive one-one correspondence
of N with #). Let 6 = T,y (% % A1 % 2). Letj = 0if (T, — 1 (% * A), 0 e-splits
on x,and letj = 1 otherwise. Note thatif j = 1, then {o, T, 1 ,(if}, * A2)) e-splits on
x. Before we can define the extension map above T, -, (7% ), we will need
T -1.(}) to be in the last plateau of T, with ht(T,, - ) = ht(T,). This is
achieved in the next subsubstep.

Subsubstep 1. Place E‘J‘u in the last plateau of T, _ | ;. If B;‘u is not in the last plateau of
Tp -y, orif ht(T,_,,) # ht(Ty,), place ¢ in state <u + 2,5, 1), let T, , transmit
{a*,0) to T, _,, and proceed to the next stage. Otherwise, thereisa 4’ 2 /4 such
that ht(7, ) = Ih(T,, - 1,,(ﬁ';u * A;+1 *A')]). Fix the least such A’ (under some fixed
recursive one-one correspondence of N with %) and proceed to the next
subsubstep.

Subsubstep 2. Force convergence to enable transfer of e-splittings. Search for 1 <
PExt (T -1, ﬁ;fu * A;,1 * A') such that @(x)|. If no such 7 is found, place ¢ in state
{u+ 2,5,2),let T, , transmit (T, _ 1,,(ﬁ;fu *Ajr1*A),2)t0 T, _,,,and proceed to
the next stage. Otherwise, fix the least such t = T, _y (%}, * 4;+1 * 2”) (under a fixed
recursive one-one correspondence of N with %). Let j* = 0 if either j = 0 and
@7(x) = P(x)orif j = 1 and ®I(x) # P;(x), and letj* = 1 otherwise. (j* is used to
indicate that we have an e-splitting extending (T, - (7} *4;+),7>.) The
extension map will be defined once we have an appropriate e-splitting in the last
plateau of T, _,,. This is achieved in the next two subsubsteps.
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Subsubstep 3. Place ﬁ;‘u in the last plateau of T,y 1 ;. If B;‘u is not in the last plateau of
Ty -y, or if (T, 1) # ht(Ty,), place ¢ in state (u + 2,5, 3), let T,,, transmit
{a*,0) to T, -, and proceed to the next stage. Otherwise, proceed to the next
subsubstep in order to define {#**': ¢ < v}.

Subsubstep 4. Define {B**': ¢ < v}. There are two cases, depending on the values of
j and j*. The e-splitting on x which we have obtained as the beginning of an
extension of (¥, B;) extends { Ty~ 1 (A%, * Ac), T - 1.((A%, * 24)) for some ¢ and d.
Jj and j* determine A, and 4, according to the following table:

j

<heAg> 0 1

i* 0 <Aoohi> | <A >

1 <A N> | <AA>

Fig. 3.1

Case 1. j=j* If j=0 then (T -1, (% Ao* A"), T -1 (% % A1 % A")) is an e-
splitting mod m, and if j = 1, then (T — 1 (7% % Ay % "), Ty - 17}, % A2 A”)) is an
e-splitting mod m, and for k* € {0,1}, <T,, _ (g % A% A7), T — 1 (Y, % Agee s % A7)
is extendible for (7} ,7% >. By Subsubstep 3, we may assume that ht(7,,) =
Ih(T,y - 1 ,((7%, * Ao % ")) else we replace 2" with some A" 2 1” having this property.
Let 6 be the extension map for (7!, .-

Case 2. j # j*. In this case, (T,,,/_L,(Z;‘u *Ag* X", T - 1,4}, % A% 7)) is an e-
splitting modm for some de {1,2}. Fix this d. Again by Subsubstep 3, we may
assume that 1h(T,, _; (% x4, * 2”)) = ht(T,,). We note that if we set 0(7*) =
Agx A" for all ¢<wv, then 0 is an extension map of (T, _ L * Agx A7),
T — 1,475, % 2a % 2")) for <a7, 75 .
In both cases, let 7:"' = #**6(*) and B**! = T,—y (n**?) for all c < w.

Proceed to the next step if u < g. If u = ¢, place ¢ in state 0, 1, 0), with T, , having
no transmission. Extend 7" to T, ., as follows:

TG) if TO)
Toys1(0) =< g1 if 6=¢ «d forsomed eN&n® =¢&7 «d

1 otherwise.

Proceed to the next stage. |

We have tried to make the construction of a weak e-splitting tree for k above
follow, as closely as possible, the scheme used to construct e-splitting trees in Chap.
VII. There are certain key differences which arise when we work below 0, which we
note.

Since T, is not total, we must try to take type 1 extensions of T, _, , in order
to make the domain of T, _, , sufficiently large. Type 0 extensions are taken either
in order to be able to interpolate or in order to have 7, _, , defined on the domain
of an extension map, or to force all trees to have infinitely many plateaus. The
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accomplishment of this last goal will not become evident until the next section, since
it depends on the mechanics of the transmission of strings. This goal seems to be
necessary in order to produce a function g whose domain is a// of N and such that
2[0,g] ~ . Of course, we have already commented on the need to make T,
weakly e-splitting rather than fully e-splitting. Two other differences should be
noted. The GLB Interpolation Lemma is applied within the construction of the
tree. This is done since we cannot effectively know whether or not there are e-
splittings mod k on T, _,, and if such e-splittings are found, k& was chosen
incorrectly. Thus k must be chosen during the construction, and we try to produce
e-splittings mod k whenever possible. Finally, the Extendability Interpolation
Lemma produces an extension map 6 which does not generally give rise to a
uniform tree because of the way in which y was chosen. This choice was dictated by
the need to produce an e-splitting level for £ on T,,.

The next two lemmas specify properties of the weak e-splitting trees for £ which
we have just constructed. These properties will be used in our construction of an
initial segment of 2[0,0"] which is isomorphic to .#. The first lemma specifies
details of the construction of the weak e-splitting trees, while the second lemma
specifies properties which will hold if suitable assumptions are made about
constructions of other trees. The properties specified by the next lemma fall into
four categories. The first two properties specify the type of tree which was defined.
The next three properties aid with the verification of 2.3(i)-(v). We then have two
properties dealing with the preservation of focal points and six properties which
specify how information is processed. These latter properties will be useful in
verifying that sequences of trees are special.

3.5 Lemma. Let m', s, k, e, s*eN, fe%;, {Tp,: m<m&t>s'}y and {S,,:
m<m' &t > s*} be as in the hypothesis of 3.4. For all t > s*, let a*(t) be the o*
chosen at stage t, Step 1 of 3.4. For all t = s*, let

Tw:=Sp({Tp,  m<m&s <r<t}ekf,s*{S,, m<mé&
s*¥<r<t})

and T, = U{T,,,: t = s*}. Then the following conditions hold:
(1) Forallt=s* Ty, < Tw-1,; and for all t > s*, T, , extends T, ,_;.
(ii) T, is recursive and weakly uniform; and if T, has no e-splittings mod k
then T, is weak e-splitting for k.
(iii) For allt > s* there is at most one pair {a, i) such that T, , transmits {a, i).
For this pair, o < T,y -, and a*(t) < o, and if i = 0 then a*(t) = o.
@iv) For all o and t=s*, if T, , transmits <a,0) then lh(a) <
ht(Tm’,t) < ht(Tm - l,t)'
(v) Forallue %;,ie{l,2,3} andt > s*,if T, , transmits o, iy and t and t + 1
are in different states on T,,, then for all m < m', o is a potential focal point of T, ,
which is not a focal point of T,, .
(vi) For all t=s*, ae¥; and i€{2,3}, if T, , transmits {a,iy then
Ih(e) > ht(T, ).
(vii) For all t = s*, if T,y (@)| then T, (0) =B < Tpp— 1,
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(viil) Forallt > s*,ae % andi < 3,if T, ,and T, , | prefer the same pair and
T, .- transmits {a, i), then t and t + 1 will be in different states on T,, exactly when
one of the following conditions holds:

(@ i<l and T, _,, is a type i extension of T, _1,-1 for a such
that ht(T,, - ) = ht(T,,,).

®)i=2, a=Tp-1,-1(8, and for a specified xeN, there is a
6 < PEXt (T, 1 4, &) such that ®3(x)].

©) i=3,0="Ty_1,-1(&),bisasin Step u + 2, Substep 2 where it is de-
cided to transmit {ua,iy, and there is an e-splitting modb on
PExt (T -1, &).

(ix) For all t = s*, if Towy+1 # Ty then WW(Tpy 1) = ht(T — 1) = ht(Ty )
and T, , does not transmit any pairs. If, in addition, T, , # 0, then T,, , prefers some
oty i)y T4 IS a type i extension of Ty, for a, and for all 6 < Ty yvy — Ty
0 2 a*(z).

(x) If T, , transmits a pair, then T, , prefers a pair.

(xi) Forallt> s*, if T,y ,—, and T, , prefer the same pair and t and t + 1 are in
the same state on T,,, then either T, ,_, and T, , transmit the same pair, or neither
tree transmits a pair.

(xit) Forallt = s*,if Ty, and T,y , prefer the same pair and t and t + 1 are in
different states on T,,, then either the state of t on T, lexicographically precedes the
state of t + L on Ty or Ty sy # Ty

(xiil) Forallt > s*,if B < Ty — 14> T+~ 1 Drefers some pair, reception of pairs by
T 1—1 satisfies 2.3(1)~(v), and T,y , - has no transmission, then T, # Ty - 1.
Proof. The proof is a routine but tedious check of the construction of 3.4 which we
leave to the reader. [

3.6 Lemma. Let m', s, k, e, s*eN, e}, {Tp,: m<m&t=s} and {S,,:
m < m' &t > s*} be as in the hypothesis of 3.4. For all t > s*, let a*(t) be the o*
chosen at stage t + 1, Step 1 of 3.4. For all t > s*, let

T, =Sp({Tp,  m<m&s <r<t}ekf,s*{S,, m<m&
s*<r<it})

and T, = U{T,,: t = s*}. Assume that for allt = s* , {T,,, m < m' &s* <r < t}is
special. Also assume that for all sufficiently large t, reception of pairs by T,, , satisfies
2.3()«v), that T, , prefers {a, i), and that T,, is finite and has no e-splittings mod k.
Then there are Ae¥; and j <3 such that T, , transmits {T, -,(A), j)> for all
sufficiently large r and PExt (T, 1, A) is either finite, or {e, n)-divergent, or has no
e-splittings mod b for some b such that u, < u.
Proof. We note that there are only finitely many states which ¢ can occupy on T, if
T, prefers {a, ) for all sufficiently large ¢. By the hypotheses, every sufficiently
large ¢ occupies some state on T,,, and transmits some pair. Hence by 3.5(xi) and
(xii), there is a stage r and a pair {f,j) such that every stage ¢ > r is in a fixed state
and for each such ¢, T, ,_ ; transmits {f, . The Lemma now follows from 3.5(viii)
and 2.9(iii) in a way similar to the proof of Lemma 2.15. [

We now have the trees needed to construct an initial segment of 2[0, 0'] which is

isomorphic to .#. The construction of the initial segment is presented in the next
section.



4. The Construction 243

4. The Construction

In this section, we present a full approximation construction which produces a
function g such that 2[0, g] ~ %. The basic outline of the construction in terms of
priorities is similar to that of the construction given in the proof of Theorem XI.2.2.
Thus we will have a tree of trees .7, and will choose, at stage s of the construction, a
string y; < .  will be finite branching, and priorities will be used to show that the
path I' through J defined by I' = lim sup, 7, (the sup is taken in terms of the
priority ordering) has infinite length. Strings on 4 which are of higher priority than
those contained in I" will be chosen only finitely often. Strings on 4~ which are of
lower priority than those contained in I will not be allowed to have much of an
influence on the construction of g, as they will be cancelled when a higher priority
path is later followed, and the action they have caused within the construction will
be masked. Thus g will be viewed in terms of how it sits within the trees T, fory < I'.
We now define priorities.

4.1 Definition. Let #: N — N be defined by 4#(2i) = n + 1 and AQ2i + 1) = 2 for all
ie N. Given y, 6 € , we say that y has higher priority than J if either there is a least x
such that y(x) # 8(x) and for this x, y(x) < 6(x), or y = 6. If I is given such that
I'l ke %, for all ke N, then we extend priorities to I, letting 6 have higher (lower)
priority than I if for all but finitely many k, ¢ has higher (lower) priority than I | k.
Trees are indexed by elements of ¥, and we let the priority of a tree be the priority of
its index.

The trees {T,: y = I'} are defined to satisfy certain requirements. Thus if
Ih(y) = 2e + 1, then T, will either be e-splitting for some k < n or {e, n)-divergent.
And if lh(y) = 2e + 2 and <{m, i,j) is the eth triple under some recursive one-one
correspondence of N with N x {<i,j>: i,j < n&u; & u;} which we now fix for the
remainder of this section, then T, will either be {(m, i, j )-differentiating or {(m,j)-
divergent.

Trees will be designated at certain stages of the construction as either initial
trees, extension trees, differentiating trees, or splitting trees for some k < n.
Designations may be cancelled, so that T, may be designated differently at stage s
and stage ¢. At a given stage s, the designation of T, is the last previous designation
given to T, which has not yet been cancelled.

We recall the mechanics of the reception and transmission of pairs from Sects. 2
and 3. Initial trees transmit nothing, and respond immediately to the information
which they receive. Extension trees transmit exactly what they receive. As long as a
differentiating tree is empty, it ignores what it receives, but triggers new
transmissions; once it becomes non-empty, it behaves like an extension tree.
Splitting trees process what they receive, and transmit at most one pair; the pair
transmitted is determined by the processing procedure. Reception and transmission
of information is arranged so that {7,: y = I'} will be a special sequence which
satisfies 2.3(i)~(v). The lemmas of Sects. 2 and 3 will then be used to show that these
trees have the desired properties.

The choice of y, € # depends on the reception and transmission of information.
Strings originating on a differentiating tree must be traced through the processing
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mechanism of splitting trees in order to determine y,. The following definition is
used in that determination.

4.2 Definition. Let 8, € ¥, be given such that § = §. Let se N be given such that
T;s =0 and T, is designated as a differentiating tree. The sequence {{a,,i,>:
B <y < &} is a transmission sequence at stage s + 1 if the following conditions hold:
(i) T;, transmits {g;-,is5-» and i;- €{0, 1}.
(i) For all y such that § = y = 4, if T, ¢ is designated as a splitting tree, then:
(a) T, transmits <{o,-,i,-» and i,- € {0, 1}.
(b) T, prefers <o,,i,> and 6, < T, .
(i) Forallysuchthat f =y < 6,if T, ;is designated as either an extension or a
differentiating tree, then T, ; satisfies (iia) and (iib) and {o,-,i,-)> = {0,,i,).
The transmission sequence {{a,,i,>: p Sy < 0} at stage s + 1 is a triggering
sequence at stage s + 1 if it satisfies:
(iv) Either 8 = @ or for some & such that § < ¢ = §,sand s + 1 are in different
states on T, and T, ; does not transmit any pair {a, i) with i < 1.
We say that T triggers Ty at stage s + 1 if there is a triggering sequence
{<o,,i,>: B =y < o} at stage s + 1. We call T; a trigger at stage s + 1 if there is a
B <= o such that T, triggers T, at stage s + 1.

A transmission sequence is a sequence of pairs transmitted down through the
tree of trees, each pair instructing the tree which receives it to take a type i extension
of itself for some i < 1. Such a sequence triggered by T triggers T if one of three
situations occurs. The first situation is that f = . Thus the transmission sequence
can be extended no further. However, T, immediately responds by producing the
desired extension, so the construction of an earlier T with £ < 6 can proceed
beyond the point at which it had stalled, thus allowing us to make progress towards
defining T5(@). The second situation in which T} triggers T} is if 7 has no
transmission. This will only occur because T has responded to the instruction it
received at the previous stage by producing the desired extension. Thus progress is
made towards defining T5() as in the previous case. The final situation in which T’
triggers T is when T transmits <o, i) withie {2, 3}. In thiscase, « = Tj-(£), and we
are prevented from making more progress towards defining T5(Q) by the need to
find either a © = PExt (T}-, &) such that @%(x)| for some specified e and x, or an e-
splitting on PExt (T-, &) for k for a specified e and k. If such strings are found at a
later stage, then the transmission of T; changes, and we continue making progress
towards defining T5(@). If no such strings are found, we need not define T5(0), but
must insure that our sequence of trees satisfying the various requirements contains
PExt(T}-, £). We will therefore change our guess at the path through the tree of
trees when this happens, directing it along a path inhabited by PExt(T}-, £).

We are now ready to construct a function g such that 2[0, g] ~ %. Along with
the trees and their designations, a string y, € % and an approximation o, to g will be
specified at stage s.

4.3 The Construction. Stage 0: Designate Ty, as Init({Sg,: ¢> 0}). Let
% =y = 0.

Stage s + 1. For all f such that T} is designated, the information received by T} ; at
stage s + 1 is the information transmitted by those T, such that § = §~ at stage
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s. Fix the tree Ts of highest priority such that T} is a trigger at stage s + 1. If no such
T; exists, proceed to Case 2. Otherwise, fix § < 0 such that T, triggers T} at stage
s+ 1,and let {<o,,i,>: B < y = 0} be the corresponding triggering sequence. Note
that there is only one possible choice for Tj. Proceed to Case 1.

Case 1. Cancel all trees of lower priority than T; and their designations. Also cancel
all information transmitted by trees of lower priority than T;. Those y for which T,
is still designated at stage s + 1 are called active at stage s + 1. For all y which are
active at stage s + 1, let S, ., ; be the information received by T, ; at stage s + 1
from non-cancelled trees. For these y, T, ;. ; will have the same designation as T, 5,
-and will be defined as the next step in the approximation to the tree so designated as
in the definitions of these trees in Sects. 2 and 3. Note that the triggering sequence
{<o,,1,>: p =y < 0} hasnot been cancelled. We proceed by subcases, depending on
how T triggers Ty at stage s + 1. If T}  is designated as a splitting tree or if § = 9,
let (a*, i*) be the information transmitted by T} ;if any information is transmitted.
Note that if i* is defined, then i* € {2, 3}.

Subcase 1.i* = 2. Letag,; = o = Tp- (&*). Letys4, = s(B) and designate T,_, , as
the following extension tree:

T,.,, = Ext(Tp-,&*,s + 1).

Begin building T,

s+1°

Subcase 2. i* = 3. In this case, T+ is designated as an e-splitting tree for k for
some eeN, k <n, and s+ 1 is in state {u + 2,2,0) on T, searching for an e-
splitting mod b for some b < n such that w, < u,. Let o5, = o* = Tp- (&*). Let
ys+1 = S(B). If b = 0,designate T,_, , asin Subcase 1;and if b # 0, designate T,,_, , as
the following e-splitting tree for b:

T

Vs+1

= Sp({Té,l: é C‘))s+185t =S5+ 1}’esb,a*as+ 17{S{,1: é = ys+1&
t> s+ 1}).

Begin building 7,

s+1°

Subcase 3. B = 6 and T; ¢ has no transmission. In this case, s + 1 will be in state
<3, 1> on T‘s. Let Os+1 = T&,S+ 1($) and 7s+1 = 5.

Subcase 4. Otherwise. Then T ; will be designated either as the initial tree or as a
splitting tree, and has no transmission. Let o, = g5 and y,,; = 6.

Case 2. For all y such that T, ; is designated, let T, ;. ; have the same designation as
T, ,and define T, ;. ; as the next step in the approximation to the tree so designated
as in the definitions of Sects. 2 and 3;1let S, ;. ; be the information received by T, ; at
stage s + 1. There are two subcases.

Subcase 1. lh(y,) = 2e. Let a* = o,y = T, (@) and 7,4, = 7,%0. Set b = n and
designate T,_,, as in Case 1, Subcase 2. Begin building T,

s+1°

Subcase 2. 1h(ys) = 2e + 1. Let {m, i,j) be the eth triple under the ordering fixed
earlier. Set 7y,4; =7,%0 and designate T, as the following <{m,i,j)-

s+1
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differentiating tree:

T,

Vs+1

Let a4y = T,,4(0). Note that T,,_,, ;+; = 0.
In both cases, we say that T} ;. is newly designated if Ty ;. | is designated and
either T} is not designated or T} is cancelled at stage s + 1.

= Diff({Ts,: & S 9,81 > 5+ 1},m,i,j,s + 1).

This completes the construction. Define I by I' = lim sup, y; where the sup is
taken over the priority ordering, and g = lim,a;. We will need to prove the
following facts about I' and g:

) Ih(l) = oo.
2) dom(g) = N.

From (2) and the definition of g, it will then follow that g < 0. (1) will allow us to
use the trees along the path specified by I' to show that 2[0, g] ~ .Z. (2) will follow
fairly easily once we prove

3) g=U{T,@):y<T} where T,=lim,T,,

For we will show that if lh(y) > 2, then 1h(T,--(0)) < Ih(T,(0)).

The proof of (3) will involve an analysis of transmission sequences. When a tree
is newly designated, its definition depends on the trees defined at the previous stage
of the construction. In order to preserve specialness of sequences of trees, we will
have to show that trees remain unchanged except through the direct action of
triggering sequences.

4.4 Lemma. Fix A, 6€ % such that A = 6 and T;, is designated. Then:
(i) If T, receives {a, iy with i < 1, then there is an n > A and a transmission
sequence {{op,igy: A = B < n} at stage t + 1.

(i) If ¢~ =A™, T, is not cancelled at stage t + 1, & has higher priority than 4,
and Ty, transmits {a, i), then i€ {2,3}.

(iii) If T;, is not cancelled at stage t + 1, {o,i>€ S;,+, and i < 1, then T,
prefers {o,i).

(iv) Suppose that Ts,_, is designated but not cancelled at stage t, that
S = {{0p,ig): A = B < O} is a transmission sequence at stage t, and that for all £ such
that A= £ <0, t and t — 1 are in the same state on T:. Then S is a transmission
sequence at stage t + 1.

(v) Suppose that T;,_, is designated but not cancelled at stage t, that
S = {0y, ip>: A = f < 8} is a transmission sequence at stage t, and that T, , does not
transmit any o, i) with i <1. Let (€% be given such that Ac £ <0, T:, is
designated as a splitting tree or as an empty differentiating tree, and suppose that
either t and t + 1 are in different states on Ts or Tz, 4y # T:,. Then T, , is a type i,
extension of T, ,_, for o, and ht(T;,) = ht(Ty,-,).

(vi) If T;, is not cancelled at stage t + 1, S = {{op,is>: A= P4} is a
transmission sequence at stage t, and T, is a type i, extension of T, - for o, with
ht(T;,,) = ht(Ty, - 1), then either 6 = A and T, , has no transmission, or there is a &
such that Ty triggers Ty at stage t + 1.
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(vii) If T, is not cancelled at stage t + 1 and T, ,, # T, then there are n 2 4
and & < J such that T, triggers T at stage t + 1 and T, is not cancelled at stage
t + 1; and for all v of lower priority than n, T, is not designated.

Proof. We proceed by induction on ¢. The lemma follows easily for 1 = — 1.

(i) We proceed by induction on those 4 such that T, , is designated, with lower
priority strings coming first. Since only finitely many trees are designated at stage ¢,
the ordering on which the induction is carried out is well-founded. Assume that T,
receives a,iy with i < 1. Then T, receives and prefers some pair {o,,i,;>, and
there is a £ € %, such that ¢~ = 1 and T, transmits {o,, i;). If T}, is designated as
an empty differentiating tree, then {{o,,7,>} is a transmission sequence at stage
t + 1. If T, is designated as an extension tree or as a non-empty differentiating tree,
then by 2.12(ii) and 2.14(iii) respectively, T, receives {o;,i;). And if T, is
designated as a splitting tree, then by 3.5(x), T, must receive and prefer some {f,; )
with j < 1. Thus in all cases, it follows by induction that there is an # 2 ¢ and a
transmission sequence {{o is>: &< f cn} at stage ¢+ 1. Hence {{ay,ip):
A < B < n} will be a transmission sequence at stage ¢ + 1.

(i) Assume that £~ = A7, ¢ has higher priority than A, and T, transmits
{a,iy. Without loss of generality, we may assume that A = s(&), since if T, is
designated, then T, must also be designated. Fix the greatest r < ¢ such that T},
is newly designated. Since 4 # A~ %0, Case 1, Subcase 1 or 2 of the construction of
4.3 must be followed, T, transmits a unique {a, i) with i€ {2,3}, and there is a
transmission sequence S = {{ag,igy: £ = fcn} for some n =& at stage r.
Furthermore, T, is designated as an empty differentiating tree or as a splitting tree.
If t = r, then we are done. Otherwise, we assume by induction that for all v such that
¢ cvcnandall ssuch that r < s <1, sand s + 1 are in the same state on T, and
T, is not cancelled at stage s + 1. Applying (iv) inductively, we see that S is a
transmission sequence at stage ¢ + 1, hence forall vsuchthaté «cv=n,tandz + 1
arein the same state on T,. If tand ¢ + 1 are in the same state on T, then by 2.14(x)
and 3.5(xi), T, transmits {a, i». Otherwise, since ¢ and ¢ + 1 are in different states
on T, and S'is a transmission sequence at stage ¢ + 1, T, is a trigger at stage ¢ + 1.
Hence T, is cancelled at stage ¢ + 1, contrary to the hypothesis of (ii).

(iii) We proceed by induction on those A such that T, , is designated, with lower
priority strings coming first. Let {a,i) €S, be given, with i < 1. Fix the lowest
priority # such that T, , is designated and not cancelled at stage 4+ 1, withn~ = A.
By (ii), T, transmits {a, i . If T, , is designated as an empty differentiating tree or as
a splitting tree, then by 2.14(iv) and 3.5(iii), {, i) is the unique transmission of T, ,,
so T, must prefer <o, 7). And if T, is designated as an extension tree or as a non-
empty differentiating tree, then by 2.12(ii) and 2.14(iii), {a,i}€ S, +1, SO by
induction, T,, prefers {a,i). Hence T,, must prefer <a,i). (Since {a,i) was
arbitrary, we have shown that there is at most one {a,i)€S;,+; such thati < 1.)

(iv) Suppose that T;,_; is designated but not cancelled at stage ¢, that
S = {{0p,is>: A = B < J} is a transmission sequence at stage ¢, and that for all ¢
such that A = £ = 6, t and ¢ — 1 are in the same state on T Then an induction
argument on {¢: A = & < 6}, longer strings first, using (iii), 2.12(i1), 2.14(iii) and (x)
and 3.5(xi) shows that for all £ such that A = & < 6, T and T, _; transmit the same
pair. Hence S is a transmission sequence at stage ¢ + 1.
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(v) Suppose that Tj,_, is designated but not cancelled at stage ¢, and that
S = {0y, ipy: A S B = J} is a maximal transmission sequence at stage . Let (e ),
be given such that A = ¢ = 4, T, is designated as a splitting tree or as an empty
differentiating tree, and either ¢ and ¢+ 1 are in different states on T, or
T:,+1 # Ty, Fix the longest n such that A = n < £ and T, , is designated as an
initial tree or as a splitting tree. Note that by choice of £, T, is designated as an
initial tree or as a splitting tree, so # exists. By 2.14(xii) and 3.5(ix), Tz, = T¢,- 1. By
2.14(ixa), 3.5(viiia), 2.12(ii) and 2.14(iii), T, is a type i; extension of T, ,_, for o,
and ht(7,,) = ht(T,, ). Furthermore, n = 4, else {o,, {,> would be defined, and so
by 3.5(ix), we would have T,, = T,,_;.

(vi) Let S = {<a4,is): A = B < 6} be a transmission sequence at stage ¢, and
assume that T, is a type i; extension of T ,_, for g; with ht(T ;) = ht(Tp,-,). If
A =6, then by 2.14(xii), T, has no transmission. Assume that 1 # §, and fix the
shortest # > A for which T, is designated as an empty differentiating tree or as a
splitting tree. By 4.2(iii), T, - ; transmits o, i; ), so by 2.14(ixa), 3.5(viiia), 2.12(ii),
2.14(iii) and since T, is not cancelled at stage ¢ + 1, ¢ and ¢ + 1 are in different
states on T, aslong as T, , receives {o,, i,>. In any case, it follows from (iv) that there
isalongest vsuch thaty = v < d and rand ¢ + 1 are in different states on T,. Hence
for some ¢ < v, T triggers T at stage ¢t + 1.

(vii) Suppose that T, is not cancelled at stage t + 1 and T, ., # T,,. Fix the
longest &£ = Asuch that T, is designated as an empty differentiating tree, a splitting
tree, or the initial tree. By 4.2(iii), T¢,+; # T:,. We note that by Step 0 of 3.5, if
T:, # @ and ris the greatest stage < 7such that T, is newly designated as a splitting
tree, then T, # 0 (else T:, = T;,.; = ). If T, is not designated as an empty
differentiating tree, then by 3.5(ix) and 2.8(i), T, must receive and prefer some
{o,iy€Se,+1 withi < 1. By (i), there is a highest priority # = ¢ and a transmission
sequence {{og,isy: & = f < n} at stage ¢t + 1. Since T;,,; # Ty, it follows from
2.14(xii) and 3.5(ix) that T, has no transmission, and ¢ and 7 + 1 are in different
states on 7. Hence T, triggers T, at stage ¢ + 1. T, , cannot have been cancelled at
stage t + 1, else <a,i) ¢ S:,. . Hence T, is the unique trigger at stage ¢t + 1, and
Case 1, Subcase 3 or Subcase 4 of 4.3 is followed at stage ¢ + 1. But then if v has
lower priority than #, then T, , is cancelled at stage ¢t + 1,and T, ,, ; cannot be newly
designated at stage ¢ + 1. Hence T, ,,; cannot be designated if v has lower priority
than . 1

The proof of (3) will require that 7.(f) be a focal point of T} for all § = 7. A
crucial step in the verification of this fact is that reception of pairs satisfies 2.3(i)—(v).
2.3(1)~(iv) will follow from the lemmas of Sects. 2 and 3. We turn our attention to the
verification of 2.3(v). We will have to consider the relationship between T ,(0), the
pair transmitted by T,, and T, (@) whenever ¢~ = A~ and ¢ has higher priority
than 4. We specify this relationship along with some other useful facts about the
construction of 4.3 in the next lemma.

4.5 Lemma. Fix A€ %, 0€ ¥}, te N and i < 3 such that J. # Q and T, , is designated.
Then:

() If T, transmits {o,i), then ¢ = T,-,. If, in addition, T, (0)|, then
(=] TL,(Q)).
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(ii) If A # A %0 then Ty, transmits a unique pair {o,iy. For this pair,
i€{2,3}, Ih(o) > ht(T ) and T, ()| = o.
(iii) If 2 # 2~ %0 and Tps D), then T,(0) > Ty (0) and Ih(T; () >
ht(Tpz).0)-
(iv) For all (€%, if &~ = A™, & has higher priority than A, and T, transmits
o,iy, then T, (@) 2 ¢ and i€ {2,3}.
W) I <B.J>, <y, k>€Siisr and {B,j) # {y,k), then B <y or y = B. If, in
addition, ke {0,1}, then § <y and je{2,3}.
(vi) If T, receives {a,0), then lh(s) < ht(T; ).
(vii) If T, ,receives {a,0), f < o and f is apotential focal point of T ,, then B isa
focal point of T,.
(viii) If T, is newly designated, then dom(T,,) < {0}; andif T, = 0, then either
T, is designated as a differentiating tree or T;- , = 0

Proof. We proceed by induction on ¢, and then by induction on those 4 such that 77,
is designated, with lower priority A considered first. Fix ¢, A, ¢ and i as in the
hypothesis of the lemma.

(i) Assume that T, transmits {o,i). If T, is designated as an empty
differentiating tree, then (i) follows from Lemma 2.14(iv). If T, , is designated as an
extension tree or as a non-empty differentiating tree, then by 2.12(ii) and 2.14(iii)
respectively, there is an € &, such that 4~ = 1and T,, transmits <{o, i ). Applying
(i) by induction to #, we see that 6 = T, < T;- , s0 ¢ 2 T;,(0). Finally, if T, is
designated as a splitting tree, then (i) follows from Lemma 3.5(iii) since
T,.(0) < o*(2).

(i1) Fix A # A~ %0 such that T}, is designated. First consider the case where
T, is newly designated. Then Case 1, Subcase 1 or Subcase 2 of the construction of
4.3 is followed at stage ¢, and by (i) and 3.5(vi), Tp;),- transmits a unique pair
{o,i),i€{2,3},1h(0) > ht(Tpzyi-1)> T1./(D)| = o, and thereis a 6 > p(4) such that
T, triggers T, at stage ¢ and T is not cancelled at stage 7. Let S be the transmission
sequence from T to T, at stage ¢. By 4.4(v), 4.4(vii), 3.5(viii) and 2.14(ix), ¢ and
t + 1 are in the same state on T, and 7T,, = T, ,—, for all # such that p(1) = n = 4.
Hence by 3.5(xi) and 2.14(x), Ty, also transmits {o,i). Hence (ii) holds.

Now assume that T, is not newly designated. Since T, , is designated, T, is
designated and not cancelled at stage . We assume by induction that S is still a
transmission sequence at stage ¢ — 1. By 4.4(v), 4.4(vii), 3.5(viii) and 2.14(ix),  and
t — 1 are in the same state on T,;; and by 2.14(x), 3.5(xi) and 4.4(iv), S is a
transmission sequence at stage ¢, and T, ;, transmits {g,i).

(iii) Assume that A # A~ 0 and that T, (0)|. By (ii), Tz, has a unique
transmission {0,2) or <o,3), T:,0) =0, and lh(s) > ht(T,;.,). By (),
(g Tpu),z(q))-

(iv) Fix ¢ such that £~ = A7, ¢ has higher priority than 4, and T, transmits
{o,i). Define s'(¢) = s(¢) and s*7(&) = s(s*(¢)). There must be a k such that
A =s4¢), and for all j < k, Ty, must be designated. By (ii), Ty (0) = o and
ie{2,3}. Iterating (iii), we see that T ,(0) = Twe (0) 2 -+ 2 Ty (D) = 0.

(v) Assume that <{fB,j> # <{y,k)eSs,+1- Then T,,,; is not newly de-
signated, else S;,+; = 0. Hence T, is not cancelled at stage ¢ + 1. Thus there are
&, ne such that ¢~ =5~ = A, Ty, transmits {f,j >, and T, transmits {y, k). If
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ke {0, 1}, then by (iv), either ¢ has higher priority than n and je {2,3}, or £ = n.
Assume first that ¢ has higher priority than 7. (A similar proof will work if # has
higher priority than £.) Then 5 # 1~ x0. By (i) and (iv), § < T,(0) < y. Finally,
assume that & = 5. Then by 3.5(iii) and 2.14(iv), T, cannot be designated as a
splitting tree or as an empty differentiating tree. Hence T , is designated either as an
extension tree or as a non-empty differentiating tree. By 2.12(ii) and 2.14(iii), T,
receives both (B, j> and {y, k). Hence (v) follows by induction.

(vi) Let T, receive {o,0). Then there is a £€.% such that £~ = 4 and T,
transmits {o,0). If T, is designated as an extension tree or as a non-empty
differentiating tree, then by 2.12(ii), 2.14(iii) and induction, lh(c) < ht(T},) <
ht(T;,). If T;, is designated as an empty differentiating tree or as a splitting tree,
then by 2.14(v) and 3.5(iv), lh(o) < ht(T’,).

(vii) A potential focal point 8 of T, will be a focal point of T, if and only if
1h(B) < ht(T;,). Let T, receive {a,0), and let § = ¢ be a potential focal point of
T,,. By (vi), Ih(e) < ht(T} ). Since < o, Ih(B) < ht(T;,). Hence f is a focal point
Of Tl’,.

(viii) Let T, be newly designated, with T}, # 0. First assume that Case 1,
Subcase 1 or Subcase 2 of the construction of 4.3 is followed at stage ¢. Then
Tp5,c— 1 1s designated either as an empty differentiating tree or as a splitting tree and
is not cancelled at stage ¢; and thereis a 6 = p(4) such that T triggers T, at stage ¢
and T is not cancelled at stage z. By 4.2(iv), 4.4(v), 2.14(xii) and 3.5(ix), tand ¢ — 1
must be in different states on T,,,. Hence by (i), there is a pair {o, i) transmitted by
Tpzyi-1 such that 6 = Ty ,_y, so T;,(0)] = 6. By 2.14(xii), 3.5(ix) and 4.4(vii),
Ih(¢) = ht(T;- ,—;) = ht(T;- ;). Hence dom(T;,) = {0}.

If Case 2, Subcase 2 of the construction of 4.3 is followed at stage ¢, then T, is
designated as a differentiating tree. Otherwise, Case 2, Subcase 1 of the
construction of 4.3 is followed at stage t, and y,_; = 4. By 4.4(vi), either T;- ,_ is
newly designated or T;-,_; # T4-,-, =0, and T,-,_, is designated as a
differentiating tree. Hence by 4.4(vii), 2.14(xii) and induction, dom(T;- , ) < {0}
and T, < T;-,-;. Hence dom(T, ) = {0}. 1

We now turn our attention to proving that the construction generates special
sequences of trees in which reception of strings satisfies 2.3(i)~(v). The proof will
involve conditions about the preservation of focal points, as well as conditions
about the mechanics of transmission and reception of pairs.

4.6 Lemma. Let 1 %, and te N be given such that T, , is designated. Then:

(i) If 6 has lower priority than A, T;, is designated but not cancelled at stage
t+ 1, {og,ig>: & = B < 0} is a transmission sequence at stage t + 1, Ty, transmits
o,iy, and T;,+(0)!, then T;,.,(0) < o.

(i) If Ty, isdesignated, T:, . ,(9)], & has lower priority than A,and T, , , ;(9)],
then T+ 1(0) € T+ 1(0).

(iii) Reception of pairs by T, satisfies 2.3(1)~(v).
(iv) If for all £ = 4, B is a potential focal point of Tk, and for all {ot,i) € S;,+1,
either i€ {2,3} or § < a, then B is a potential focal point of T+ ;.

V) {Tepe1: €S A&t <s<t+ 1} is special.

Vi) If Tye1 # 0, then for all ¢ < A, Ty,+1(0) is a potential focal point of
Teirq-
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Proof. We proceed by induction on . The lemma follows easily for t = — 1.

(i) Fix 6 of lower priority than A such that T}, is designated but not cancelled
at stage ¢ + 1. Fix a maximal transmission sequence S = {{a;,is): £ = f < 6} at
stage ¢ + 1. Since S is a transmission sequence, T, is designated as an empty
differentiating tree, hence 6 = 6~ 0. Thus if A has higher priority than §, then
either A = 0~ or A has higher priority than 6. By 2.14(iv), T;s- ,(0)|, else we have
nothing to show. We note that T ,(9)| and T, is not cancelled at stage ¢ + 1, else
T, would be cancelled at stage ¢ + 1. It thus follows inductively from (ii) that
Ti0+10) = T5,.0) = Ts- (9). Let {o;-,i;-» be the transmission of T, if such a
transmission exists. It suffices to show that for all § such that {~ < <6,
T;5- (0) < a;-. We proceed by induction on {f: ¢~ = B < 6}, longer strings first. If
T, is designated as an empty differentiating tree, then =4, so by 2.14(iv),
Ts- (0) < 05-. If T, is designated as an extension tree or as a non-empty
differentiating tree, then by induction, T;- (§) = 645 = 64-. And if T} is designated
as a splitting tree, then by 3.5(iii), a*(¢ + 1) < g;-. By (vi) and 4.5(vii), Ts- ,(0) is a
potential focal point of T, and if i; = 0, then T- ,(9) is a focal point of Tj,. Hence
Té—‘t(®) js= oc*(t + 1) < Op-.

(i1) If & # y,+,, then T, . ; is designated if and only if T , is designated and not
cancelled at stage ¢ + 1. Hence if £ has higher priority than A, then applying (ii) by
induction, we see that T, ;(0) = T,,(0) < T:(0) = T, 1(@). Assume that
& =17y, If Case 2 of the construction of 4.3 is followed at stage ¢ + 1, then
& = &7 %0,soeither £~ = 1 or A has higher priority than ¢~. By induction and since
Teio1 S Te- gy Tape1(0) = T3, (0) = Te- (@) = T:,+1(0). Otherwise, Case 1 of the
construction of 4.3 is followed at stage ¢+ 1, and there is a d > ¢~ and a
transmission sequence {{ay,is>: p(¢) = f < 8} such that Ty, (@) = g,. By the
cancellation procedure and since T, = 0, 4 has higher priority than §. Hence by (i),
Ty.+10) = 0y = Tro11(0).

(iii) 2.3(i), (ii), and (v) for T , follow from 4.5(i), 4.5(vi) and 4.5(v) respectively.
Let T, , receive {a, iy withie {1, 2, 3}. Fix the shortest £ > 4 such that T}, transmits
a,iy and T, is designated either as a splitting tree or as an empty differentiating
tree. If either T, is newly designated or if t and ¢ + 1 are in different states on T,
then by 3.5(v) and 2.14(vi), for all n = A « is a potential focal point of T, which is
not a focal point of T, ,, so 2.3(iii) and 2.3(iv) hold for T;,. We must now verify
2.3(iii) for subsequent stages. 2.3(iii) will follow for T, by induction unless
T;,# Ts,-1. Thus assume that T,, # T,,_;. Since T;,_, transmits <{a,i) and
T:,- is not cancelled at stage ¢, it follows from 4.4(iii) that T, ,_ prefers {a, ).
Applying (v) inductively, we see that T, is a type i extension of T, ,_; for o such
that ht(7,,) = ht(Tp,). Since T;,< Tg,-1, ht(T;,) =ht(Te,-;). Hence by
2.14(ixa) and 3.5(viiia), ¢ and ¢ + 1 are in different states on T, a case which has
already been considered.

(iv) We proceed by induction on lh(4), shorter strings first. Assume that for all
& < A, B is a potential focal point of T:,, and that for all {a,i)€ S+, either
ie{2,3}orfca.lfT;,,; = T,,then fisa potential focal point of T , ; ;. Assume
that Ty, .+, # T, If T, ,is designated as an initial tree or as a splitting tree, then by
2.8(i) and 3.5(ix), T, , receives and prefers some <, i) and T , , ; isa type i extension
of T, for a. By 4.5(vii), forall p = T, ., — Ta,, p < p. Hence fis a potential focal
point of T, 1. Ty, # 0, else f would not be defined. Suppose that T , is designated
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as an extension tree or as a non-empty differentiating tree. Then T, - , is designated
and receives all pairs which T, receives. Let T),- , receive {a, i) with i < 1. Then
thereisa ¢ such that ¢~ = A~ and T, transmits (o, i). By the construction of 4.3, 1
cannot have higher priority than &. It now follows from 4.5(iv) that for all <«, i)
received by T)- ,, either f = o or ie {2,3}. Hence (iv) follows by induction.

(v) If A =0, then it follows from Remark 2.10 that {T,;: n S A&t <s<
t + 1} is special. Assume that A # 0. 2.9(i) for {T,;:n = A&t <5 <t + 1} follows
from 2.12(i), 2.14(i) and 3.5(i). 2.9(ii) for {T, ;:n < A&t < s < t + 1} follows from
(iv). We now verify 2.9(iii) for {T,s;: n S A&t <s<t+ 1},

We proceed by induction on 1h(4), shorter strings first. Thus we may assume
that {T,,:n < A&t < s <t+ 1} is special. We assume that T, # T, or that
T, is newly designated. If T, , . , is designated as an initial tree, a splitting tree or an
empty differentiating tree, then it follows from 2.8(i), 3.5(ix), and 2.14(xii) that
ht(T;, 1) = ht(Ty,), Ts, has no transmission, and if 7;, = @ or if T, , is newly
designated, then it follows from 4.5(viii) that T, , receives and prefers some {a, i)
and T, ., isatypeiextension of T, for a. By 4.4(vii), we cannot have T, , ., # T,
for any n = A. Hence ht(T; ;) = ht(T,,+ ;) for all y = 4, and 2.9(iii) holds in this
case.

Suppose that T,,,, is designated as an extension tree or as a non-empty
differentiating tree. First suppose that T, ., is newly designated. Then Case 1,
Subcase 1 or Subcase 2 of the construction of 4.3 is followed at stage ¢ + 1, and by
4.5(viii), dom(T}, + 1) = {0}. By 4.5(ii), T, must newly transmit some {z, ;) with
Jje{2,3}, hence by the proof of (iii),  is a potential focal point of T, which is not a
focal point of T,, for all =A™, and T,, has no transmission. Hence
ht(T,+1) = ht(To ). Again it follows from 4.4(vii) that ht(T,, ;) = ht(T,,+,) for
all n = 4. Next suppose that T, is not newly designated. Fix the longest £ < A
such that T, is designated as the initial tree or as a splitting tree. Then T, ., # T,
so by induction, ht(T%, ;) = ht(Tp,+ 1), T, receives and prefers some {«, i) and
T:,+11s a type i extension of T, for a. By 2.12(ii) and 2.14(iii), it suffices to show
that T, , receives {a, iy. But this follows from 4.5(iv) and induction, as if 1~ = ¢,
then by the construction of 4.3, there can be no 5 such that T, is designated,
n~ = ¢&, and 4 has higher priority than #.

(vi) Fix 4 such that T}, ,(@)]. First suppose that T, . is newly designated or
that T,, = 0. By 4.5(viii), dom(T,+ ) = {0}. By (v) and 2.9(iii), Ts,+(0) is a
potential focal point of T, ., for all £ = A. Otherwise, T, ,(0) = T} (@) which, by
induction, is a potential focal point of T, for all £ = 4. By (iv), it suffices to show
thatforall ¢ < Aand (o, i) €S, 1,ifi < 1then T, ,(0) < o Let<{a, i) € S, 4+ be
given with i < 1. By 4.4(i) and 4.4(iii), there is a transmission sequence {{o, is):
¢ < p < d)forsomed > Eatstager + 1, with (o, i) = {a, i) and T5, = 0. If 2 has
higher priority than o, then by (i), 7;,+,(0) = 6: = «. We cannot have 1 = §, as
T, =0, so by 4.5(1), Ss,+1 = 0. We complete the proof by assuming that é has
higher priority than 4 and obtaining a contradiction. Fix the longest 5 such that
n < o6 and n = A. Then ¢ < 5. Hence i, < 1, contradicting 4.4(ii). [

We are now almost ready to prove that 1h(I") = oco. This fact will follow from
the next lemma about triggering sequences and their effect on the definition
of 7.
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4.7 Lemma. Let 6€ %, and te N be given such that Ty, is designated. Then:

W) ITs,=0 then T, is designated as a differentiating tree. If, in addition, ne ¥,
is given such that n~ =9, then T, is not designated.

(i) If Ts is not cancelled at stage s + 1 for all s > t, then {s: y, = &} is finite.

Proof. (i) We proceed by induction on ¢. (i) clearly holds for 1 = 0. We assume by
induction that (i) holds for ¢+ — 1 in place of ¢.

Since at most one tree T, , is newly designated at stage ¢, we need only verify (i)
for 6 = y, when T,, , is newly designated. We assume the following as an additional
induction hypothesis:

4 If T, =0, then either there is a ¢ =y, such that T;, # T;,_, and T,
triggers T at stage ¢, or T, , is newly designated and transmits some pair.

We analyze the construction at stage ¢. First assume that Case 1, Subcase 1 or 2
is followed at stage ¢. Then thereis a 6 such that T triggers T, - atstagetand T, - ,_,
transmits <z, iy with ie {2, 3}. Furthermore, t = T, (0) = T vt 80 Ty # (Z) and
(i) holds. Since T,,, # 9, (4) must also hold.

Next assume that Case 1, Subcase 3 or 4 is followed at stage ¢. Then no trees are
newly designated at stage ¢, so (i) follows by induction. These subcases can be
followed only if T, triggers some T at stage ¢ and T, has no transmission. If
Subcase 3 is followed then ¢ = y,, hence by 2.14(xiii), 4.6(v) and 2.9(iii), T, , # 0, so
(4) holds. And if Subcase 4 is followed, then (4) follows from 2.8(i) if ¢ = @ and from
4.6(iii) and 3.5(xiii) if & # 0.

Suppose that Case 2 is followed at stage ¢. Then T, , is newly designated. If
Subcase 1 is followed and 7, - , # @ then T, , 0. If Subcase 2 is followed, then by
4.6(v), 2.9(iii) and 2. 14(x111) T,,. will have a transmission if 7,,=0 and
T,-.=T, -1 # T, -2 Notethaty~ = y_,. Hence by 4.3, both (4) and (i) will
follow once we show that T, , ,#@. If y_, #y_, %0, then by 4.5(i),
T, _..-1 # 0. Suppose thaty,_, =y~ 0. We apply (4) by induction. There are two
cases to consider.

First suppose that 7, _ ., is newly designated. Then by (4), if 7}, _, -1 =0,
there is a longest transmission sequence S at stage ¢ from T, _, to 7. If ¢ = 0, then S
is a triggering sequence, so Case 2 would not be followed at stage . If T,,_,
transmits (t,i), then ie {2,3} by the maximality of S, and as the transmission
sequence did not exist at stage t — 1,  — 1 and ¢ — 2 are in different states on 7.
Again, S is seen to be a triggering sequence, so Case 2 could not have been followed
at stage t. Otherwise, ) = ¢ = y,_, and T,,_, has no transmission. By 2.14(xiii),
4.6(iii) and (v), and 3.5(xiii), T¢,—; # T¢,—,. Hence by 4.4(vi) there is an  such that
T,,_, triggers T, at stage ¢. Again we see that Case 2 could not have been followed at
stage 1. We must therefore conclude, in this case, that 7, ,,_; # 0.

Finally, suppose that T, _,,_; is not newly designated at stage ¢ — 1. If
T, _,.-1 = 0,thenitfollows from (4) and 4.4(vi) that T, _, triggers some T, at stage
t, so Case 2 is not followed at stage ¢. Hence again we conclude that T, , ., # 0.

(ii) Suppose that Tj;, is designated and T is not cancelled at any stage
s+ 1>t Ifs>tand y, = §, then T; = ) must be a trigger at stage s. We proceed
by induction on {f: 8 < 6}, longer strings first. For each such 8, we show that
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{s: Ty triggers T} at stage s} is finite, thus proving (ii). First suppose that g = ¢. If
r > s > tand T triggers T} at stages r and s, then by 2.14(xi) and 2.14(xiii), the state
of s on Tjlexicographically precedes the state of r on T}. Since there are only finitely
many possible states, by 2.14(x), there must be a stage #(5) > ¢ and a pair {o;-, i5- )
such that for all s > #(9), s and #(5) are in the same state on T; and T}, transmits
{os-,I5-». Thus Ts cannot trigger T; at any stage s > #(d). If i5- € {2, 3}, then T}
cannot be a trigger after stage #(J), so the proof of (ii) is complete.

Assume by induction that {s: T; triggers T} at stage s} is finite. We will have the
following induction hypothesis:

&) There is a stage #(ff) > ¢ and a sequence {{c;,i;): - < A < 6} whichisa
transmission sequence for all s > #(f).

(5) has been verified in the preceding paragraph for § = 6. Note that T - is not
cancelled at any stage s + 1 > ¢. Hence we may define T;- = U{T;- ;: s > ¢} and
designate it in the same way in which T}- , is designated. If T}- is designated as an
extension tree or as a non-empty differentiating tree, then by 2.12(ii), 2.14(iii) and
induction, Tj- ; transmits {os-,iz-) for all s> #($). Furthermore, T; cannot
trigger T;;-. Hence #(f7) = #(B) and (5) holds. If T;- is designated as an initial tree,
then f~ = Qand Tj triggers T, at stage #(f). By (5) and 2.8(i), T; triggers some 7, at
stage #(f) + 1 with § = n < 6, contrary to the choice of #). Hence if = = 0, we
have completed the verification of (ii).

The remaining case is when T - is designated as a splitting tree. By 4.4(iii), Tj-
prefers {a;-,is-) at all stages s > #(f). If r > s = #(f) and T- , and Ty- ; transmit
different pairs, then by 3.5(xi), r and s must be in different states on T - ; by 3.5(xii),
the state of s on T - lexicographically precedes the state of r on T -, unless thereis a
stage u such that s <u <rand Tj- , # Tj- ,—:. If no such stage u exists, then all
sufficiently large stages must be in the same state on Tj-, so #(f~) must exist as
specified in (5). But if u exists, then by (i), T; would trigger some T, at stage u + 1
with B~ < 5 < 0, contrary to the choice of #). Hence (ii) must hold. I

The lemmas just proved enable us to verify the success of the construction. We
first show that I is an infinite path through .

4.8 Proposition. 1h(I") = co. Furthermore, there are y(m)e S, and t(im)e N such
that:
(@) lh(y(m)) = m.
(it) For all t = Hm), either y, = y(m) or v, has lower priority than y(m).
(i) {r:y, o y(m)} is infinite.

Proof. We proceed by induction on m. (i)-(iii) are easily verified for m = 0. Assume
that (i)-(iii) hold for m = k — 1. Since {y € #: Ih(y) = k} is finite, it follows from (iii)
that thereisa y(k) > y(k — 1) of highest priority such that Ih(y(k)) = kand y, = y(k)
for infinitely many s. Fix a stage #(k) such that T,  is not cancelled at any stage
s = (k). By (ii) for m = k — 1, it follows that T, is not cancelled at any stage
s = t(k — 1), hence by 4.7(ii), (k) must exist. (i) and (ii) are now easily verified for
m = k. And (iii) is immediate from the choice of y(k) and 4.7(ii).
We now note that I' = U{y(m): me N}, so by (i), Ih(I') = c0. 1|
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For each fe % such that f has higher priority than I" and T}, is designated at
infinitely many stages ¢, it follows from 4.8 that there is a least stage #(f) such that
Ty, is not cancelled at any stage ¢ > #(f), T}, is designated, and if there is a
t > t(B) such that T ()] then T} ,4,(@)]. For such g, let Ty = U{T},: t > #(B)}, and
let T have the same designation as T ).

Let g(x) = lim, ag(x) for all x for which this limit is defined. We now show that
lh(g) = 0.

4.9 Proposition. lh(g) = o0 and g < 0'.

Proof. Since {a: se N} is recursive, if lh(g) = oo then g < 0’. We show that
lh(g) = o in a two part proof. Let g* = U{T,(@): y = I'}. We first show that
lh(g*) = oo and then show that g = g*.

Let y = I' be given such that y # @ and lh(y) is even. If y = y~ %0, then by
2.14(viii), Ih(T,(9)) > 1h(T,-(0)). And if y =y~ 1 then there is a pair {a,i) such
that T,-,,, transmits <a, i ) at all sufficiently large stages, i€ {2, 3}, and T, (0) = o.
By 2.14(vii), Ih(T(0)) > Ih(T,-(9)). Hence lim{lh(7,(9)): Ih(y) = s&y = I'} = 0.
Since T, = T,- for all y = I such that y # @, Ih(g*) = co.

We will show that g = g* by proving that for all y = I' such that lh(y) is even and
all > #(y), T/(0) < «. Fix such a y. By 4.8(ii), for all > #(), either o, = T} ,(0) for
some ¢ of lower priority than y, or there is a § of lower priority than y such that
Ts,-, is designated but not cancelled at stage ¢, {{as,is): S fcd} is a
transmission sequence at stage t, T, transmits {g,i) and &, = ¢. Hence by 4.6(i)
and 4.6(ii), T,(0) < o |

We are now ready to prove the main theorem of this chapter.

4.10 Theorem. Let £ be a finite lattice. Then there is a function g of degree < 0’ such
that 2[0,g] ~ <.

Proof. By 4.9, it suftfices to verify 1.15(1) and 1.15(ii). Fix me N and i,j < n such that
u; & u;. Let {m, i, j ) be the eth triple in the ordering described earlier in this chapter.
Fixy < I' such thatlh(y) = 2e + 2, and let y* = y~ % 0. Then T« is designated as an
{m, i,j y-differentiating tree. If y = y*, then since Ih(g*) = oo, T,(9), so by 2.14(i),
T, is {m,i,jy-differentiating. Otherwise, y =y~ %1 and y~ = I, so since
lh(g*) = o, T,-(P)|. By the construction, T, will transmit {7,(0),2) at all
sufficiently large stages and T,-,o = 0. Since g = T,-, T,- is infinite, and if
T,-(n) = T,(0), then PExt,(T,-,#) is infinite since T,() = g. Hence by 2.14(xiii)
and 2.15, T, is {e,j)-divergent. Thus 1.15(i) holds.

Fix ee Nand y < I" such that lh(y) = 2e + 1. Let y = y~ *m. We verify 1.15(ii)
by induction on k. We also assume the following induction hypothesis:

(6) There is a sequence u,, = u,, > u,, > - - > u,, of elements of ¥ such that
T,-.x has no e-splittings mod n, and T, -, is designated as an e-splitting
tree for ny.

The induction hypothesis is easily verified for £ = 0, as no tree has e-splittings
mod u,. By 3.5(1), T,-.x is an e-splitting tree for n,. Hence if T,-,, is infinite, then
k =m, and 1.15(i1) will hold. Otherwise, T,-,, is finite, so T,-,+1, must be
designated. Hence T,-,, must transmit some {o,7) at all sufficiently large stages
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with ie {2, 3}, so by 3.5(x), T,-,, must prefer some pair. If T,-(n) = «, then since
acgcT,-, PExt,(T,-,n) is infinite. Hence by 4.6(iii), 4.6(v), 3.6 and the
construction, either y = y~ = (k + 1) and T, is {e, n)-divergent, or there are no e-
splittings mod n 4 ; on T),-, 4+, for some ny . such that w,, , <u,. Ifn., #0,
then (6) holds for k + 1 since T,-, 4+ 1, is designated as an e-splitting tree for ;. ;.
And if ni4; =0, then T,-,4+,, has no e-splittings mod0, so T, 4+, is an e-
splitting tree for 0. Since . is finite, the induction must terminate with T, satisfying
1.1531). [

The methods introduced in this chapter can be combined with the methods of
previous chapters to prove generalizations of Theorem 4.10. Some generalizations
of this sort are discussed in the next section.

5. Generalizations and Applications

The methods introduced in this chapter are compatible with methods used to prove
many of the theorems about minimal degrees. Thus similar theorems can be proved
for other initial segments of the degrees. The proof of Theorem 4.10 can also be
extended to embed other usls as ideals of 2[0,0"]. We discuss such results in this
section. We will not give any complete proofs. Rather, we will sketch the changes
which need to be made in the proof of Theorem 4.10 in order to prove the more
general results. We will also discuss applications of these results.

The first category of generalizations which we consider deals with embedding
infinite usls which have a least element as initial segments of 2[0,0]. Not all
countable usls with least elements can be embedded in this manner. In fact, by
Theorem VIIL.2.2,if g < 0’ then 2[0, g] is g < 0¥ presentable. Furthermore, by
IV.3.11,if 2[0, g] is a lattice, then ge L, so 2[0, g] is g = 0'® presentable. Shore
[1981] has shown that 2[0, 0'] has no presentation of degree < 0¥, so there is no
nice characterization of the initial segments of 2[0,0'] in terms of the jumps of
degrees of presentations. We will show that if % is a 0'®) presentable usl with least
element, then there is a g < 0’ such that 2[0, g] ~ .#. We will lead up to this result,
beginning with recursively presentable usls.

5.1 Theorem. Let ¥ be a recursively presentable usl with least element. Then there is a
g < 0 such that ¥ ~ 9[0,¢g].

Sketch of Proof. The proof of Theorem 4.10 readily combines with that of Theorem
VIII.1.8. Set up a recursive list of all requirements, and a recursive increasing
sequence {.%;: ie N} of finite lattices such that the embedding .%; <, %, | preserves
the ordering and least upper bounds of .%;, with ¥ = U{.%;: ie N} having universe
N. The sequence {.%;: ie N} gives rise to a uniform sequential lattice table for .%. If
we allow our trees to increase in width as we progress from tree to tree to make use
of the lattice table as in Theorem VIII.1.8, then this modification to the proof of
Theorem 4.10 and B.3.29 will yield a proof of the above theorem. [

The proof of Theorem VI1.4.6 can be adjusted to use Theorem 4.10 to obtain the
following result due to Epstein [1979] and Lerman.
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5.2 Corollary. Th(2[0,0]) is undecidable.

The characterization of the degree of Th(2[0,0']) was obtained by Shore
[1981], and relies on Theorem 5.1.

5.3 Theorem. Th(2[0,0']) has degree 0'), the degree of the first order theory of
arithmetic.

The outline of the proof of Theorem 5.3 is the same as that of Theorem VIII.3.5.
We need a way to code arithmetic through a lattice, and embed that lattice below a
degree d as an initial segment. The lattice must be given in a sufficiently effective
way so that exact pairs below 0’ will be available for the ideals which need to be
picked out. Shore defines distributive lattices with this property, and proves an
Exact Pair Theorem (see Theorem II1.8.6) which produces exact pairs for the
necessary ideals. Theorem 5.1 allows us to embed such lattices as initial segments
below 0" and thus prove Theorem 5.3.

Shore’s Exact Pair Theorem can be used to pin down the sets which are coded by
exact pairs in certain intervals of degrees. Using the translation of arithmetic
provided by Theorem VIII.3.5 into the theory of various intervals of degrees, Shore
[1981] obtains the following results.

5.4 Theorem. (i) 2[0,0] # 2[0, 0¥].
Gi) 2[0,0'] £ 2[0’,02].
(iii) If a = O, then every presentation of the usl 2[0,a] has degree > a®.
(iv) If a = O’ then every presentation of the usl 9[a,a’] has degree > a'¥,

Theorem 5.1 can also be used to obtain the following improvement on Theorem
VIIL.4.1 (Shore [1981]).

5.5 Theorem. If 9' = 9'[b, o) then b® = 0.

The ideas mentioned in the sketch of proof for Theorem 5.1 can be extended to
embed 0’ presentable usls with least elements as ideals of 2[0,0'].

5.6 Theorem. Let ¥ be a 0 presentable usl with least element. Then thereisag < 0’
such that & ~ 9[0,g].

Sketch of Proof. Changes must be made to the sketch of proof for Theorem 5.1 to
take the non-recursiveness of %, and hence the non-recursiveness of the set of
requirements into account. By the Limit Lemma, there are recursive approxi-
mations to each of these sets. Whenever such an approximation changes its value
for a given requirement or finite lattice in the approximation to %, we cancel the
part of the construction which was performed using the information which was just
changed, and pick up from the last stage at which everything performed during the
construction through that stage still seems to be correct based on current
information. This cancellation agrees well with the construction carried out in Sect.
4, and is performed as the first step at every stage of the construction. The proof of
the theorem now follows very closely the proof of Theorem 4.10 with this
cancellation taken into account. Note that Appendix B.3.28 allows us to extend the
sequential lattice table for .Z; to one for %, ,, so this revised construction can be
carried out without changing any trees based on correct information about .%. 1
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We now discuss the modifications to the above proof which will allow us to
embed 0 presentable usls with least element as ideals of 2[0,0'].

Let & be a 0'® presentable usl. Then thereis a sequence £, < % < - - - of finite
usls which is recursive in 0 such that ¥ = U{.%;:ie N}. Thefact that {%;: ie N} is
recursive in 0 implies, by two applications of the Limit Lemma, that there is a
recursive array {%, ;x: i,j,ke N} such that for each ie N, % = lim;lim; &, ;.
Fixing i€ N, we thus have an array as in Fig. 5.1 such that if we look at the limit #¥;
along column j, then ¥, = ¥, for all but finitely many je N. And if ¥, = %, then

& jx = & for all but ﬁmtely many ke N.

* * *
£ .3’,.,1 ,,?i,z

Lo L Lia
oo Lo Lo

Fig. 5.1

We list all potential requirements (differentiating requirements of the form
<P9<’ ? £ g¢? are listed for all i and j), in a recursive list {R;: ie N}. We try to satisfy
requirement R; with respect to the sequence of trees generated by the tables for a
sequence of lattices {£¥,: j < i} for various choices of k > i. We will try to satisfy
Rywith {&#%,:j < i} atstagekonlylfeltherk =ior{ZF _iJ< i} #{LF < i}
Since, for all J and all sufficiently large m and k, &%, = £7,, only ﬁmtely many
such attempts will be made.

Since the sequences {£’},: j < i} are recursive only in 0’, we will approximate to
them recursively, using {.%; , ,:j < i} at stage r. If such a sequence changes for fixed
k between stages r and s, we cancel what we have done since stage r, and begin with a
new attempt to satisfy R; with the new sequence. Since, for all j and %, there is an r
such that for all t > r, %, = £%¥,, again only finitely many cancellations will be
required.

The first few steps of the construction will proceed as follows. We will keep
trying to satisfy Ry on %, using a tree T, cancelling what we have done
whenever % o, +1 # Zo,0. Eventually, %o, = £  forall > r, so we will make
a final attempt to satisfy R, through £% . We now try to use £, and 7% | to
satisfy both R, and R,. We approximate to #¥ , and £} | using %, ; ,and & ; ,as
before, arriving at final lattices. If #¥ | # £¢ |, we define ap = T ((0) and try to
satisfy R, usinga tree 7§ | with respect to the table for #* & 1, Withay = T§ | ;and we
attempt to satisfy R, usmg asubtree T, < T§ defined in terms of the tables for
£% 1 and £% . (Without loss of generahty, we can arrange that £ | extends £§ |,
and that all elements mentioned in any R; are in £*,) If ¢ | = £% , then we
make no new attempt to satisfy R,. By Appendix B.3.28, we can extend the table for
L5 otoonefor £7 |, and so satisfy R, on a subtree of T . Thus we will eventually
satisfy R; for % if its conditions are consistent with the ordering of %, and
construct a sequence of subtrees satisfying all requirements for {%;:ie N}. We have
thus sketched a proof of the following theorem.
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5.7 Theorem. Let £ be a 0'® presentable usl with least element. Then thereisag < 0’
such that & ~ 9[0,g].

Suppose that we start with a usl .%, and produce g < 0’ such that 2[0,g] ~ %.
We would like to locate g in the high/low hierarchy. If % is 0’ presentable, it will
follow from the Jump Theorem or the existence of such a g below an arbitrary non-
zero recursively enumerable degree that it is possible to find g e L, in this case. Since
narrow subtrees and e-total subtrees can be introduced into the construction and
produce no new complications, their use as in Chap. V.3 enables us to produce such
agel, — L;. Hence:

5.8 Theorem. Let & be a 0'®) presentable usl with least element. Then there is a
gel, — L, such that 2[0,g] ~ %.

Note that if the £ of Theorem 5.8 is a lattice, then by [V.3.11, the corresponding
g must lie in L,.

The proof which we have presented for the Cooper Jump Inversion Theorem
(Theorem X.2.1) makes use of an oracle of degree ¢, and so cannot be combined
with the recursive approximation proof of Theorem 4.10. However, Cooper’s
[1973] original proof of this theorem proceeds by recursive approximation, and can
be combined with the construction of Sect. 4 by approximating to the trees used in
Chap. X instead of those used in this section. The resulting proof is similar in nature
to producing g below a non-zero recursively enumerable degree, a construction
which we will sketch. We will need % to be a 0’-presentable lattice, essentially since
the proof requires that we determine whether we are looking at a sequence of trees
(and hence a table) for the true approximation to .. We state the jump theorem
here without proof.

5.9 Theorem. Let ¥ be a 0’ presentable usl with least element, and let d = 0 be given.
Then there is a degree g such that 2[0,g] ~ ¥ and g’ = d.

5.10 Corollary. Let ¥ be a0’ presentable usl with least element. Then there isa ge L,
such that 2[0,g] ~ %.

We now turn our attention to finding specified initial segments below fixed
degrees. Two such theorems were proved for minimal degrees. If d is a degree,
then either of the following conditions guarantee the existence of a minimal degree
below d:

4)) deGH,.
)] d # 0&d is recursively enumerable.

The proof of (1) used an oracle construction which cannot be combined with the
proof of Theorem 4.10. We do not know if such a result holds for arbitrary finite
lattices. However, if d € H; then Cooper [1973] has produced a minimal degree < d
through a proof which proceeds by recursive approximation. Posner [1980]
presents an easier proof of this kind. Either of these proofs can be combined with
the proof of Theorem 4.10 to yield:

5.11 Theorem. Let £ be a0’ presentable usl with least element, and let d e H, be given.
Then there is a g < d such that 2[0,g] ~ %.
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The proof of (2) in Theorem XI.2.2 uses a construction which proceeds by
recursive approximation and is compatible with the proof of Theorem 4.10. Hence
we can prove a generalization of (2) which will imply Corollary 5.6.

5.12 Theorem. Let ¥ be a 0' presentable usl with least element and let a # 0 be a
recursively enumerable degree. Then there is a g < a such that 2[0,g] ~ .

Sketch of Proof. Let A be a recursively enumerable set of degree a, and let
{a,: se N} be a recursive enumeration of 4. 4 will permit o, to change to oy, if
a, < x, where x is the least y such that ay(y) # o, (). If no such y exists, then 4
permits the change.

It is best now to view the construction of the trees as proceeding simultaneously
with the construction of {a: se N}. If there is no trigger at stage s + 1, then it can
easily be verified that oy, ; 2 o, so no problems arise. So let us consider trees
involved in triggering sequences. If such a tree is designated as an extension tree or is
non-empty and is designated as a differentiating tree, then no changes need to be
made.

We first consider T; designated as a differentiating tree with T; = . We require
that 4 permit all transmissions of T in the following sense. Let Ts transmit {a, i) at
stage s. If i€ {0, 1}, then this is only allowed if a, < T- (). Andif i = 2, then 4 must
permit o, to change to «. If transmissions are disallowed, begin constructing a new
attempt at a differentiating tree above oy, proceeding as before but replacing Ts- ()
above with og. This process continues as long as the obstacles to all trees are due to
permitting. New states are inserted to reflect the wait for permitting, and earlier
attempts have higher priority. Cancellation follows the priority ordering, but if a
lower priority attempt reaches a later state than a higher priority attempt, then the
higher priority attempt is cancelled. Since only finitely many states exist, if we look
at the greatest state in which infinitely many attempts terminate (assuming that
permitting is always the obstacle to the attempt), we see that attempts in this state
are never cancelled. Hence if we wait for 4 to permit on larger and larger strings,
then we can compute A recursively, and so obtain a contradiction. Hence
differentiating trees will have the right properties, i.e., a last successful attempt
will be made, and this tree will be used at all sufficiently large uncancelled
stages.

Consider Ty designated as a splitting tree. We assure the construction of an
appropriate tree as in the preceding paragraph once several comments are made. If
Ts wants to transmit {a, 3) at stage s, then this transmission is allowed if & permits
o. Ts, may receive many pairs <{a, i) for ie {0, 1} at stage ¢. It prefers the pair of
highest priority (in terms of its transmission sequence) for which 4 permits the tree
to change state. If 4 will not permit a certain transmission and 7, is the
corresponding trigger, then the new attempt begun is an attempt to replace 7}, , with
another differentiating tree. Thus a notion of characteristic must be defined for a
transmission sequence, listing the state of each pair along the way (state 0 is
specified for trees with no states such as extension trees). The argument about states
in the previous paragraph becomes an argument using the ordering of the finitely
many possible characteristics.

If T is designated as an initial tree, then preference must be redefined as in the
preceding paragraph. Otherwise, the construction of this tree is unchanged.
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As we stated, each time a new attempt is started, it must be above o,. We will
always be able to choose some § 2 o, which is a potential focal point of T, but not a
focal point of Ty, at which to begin this attempt. Thus the sequences of trees will
still be special. No other changes are required in the construction. |

Shore [1981] uses Theorems 5.11 and 5.12 combined with theorems about exact
pairs to characterize the degree of Th(2[0,a]) for acH; and for a # 0 and
recursively enumerable. The proof is along the lines sketched for the proof of
Theorem 5.3. Epstein [1979], [1981] had previously obtained the undecidability of
Th(2[0, a]) for acH,.

5.13 Theorem. Th(2[0, a]) has degree 0' if either:
(1) aeH;.
(i) a # 0& a is recursively enumerable.

All the results of this section can be relativized. Care must be taken, when
talking about arithmetic, to include the definability of certain degrees in the
hypothesis of some of the relativizations.

We have just touched on some of the applications which can be made using
initial segments results for the degrees below 0’ and other classes of degrees. We
refer the reader to Nerode and Shore [1980], Shore [1981] and [1981a], and
Epstein [1979] and [1981] for proofs of the applications mentioned in this section
and some further results.





