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L2 REIDEMEISTER FRANZ TORSION 

A. L. Carey and Varghese Mathai 

INTRODUCTION 

In this paper we discuss an approach to the study of closed, connected, oriented 

manifolds, with infinite fundamental group which have a special property which we call 

L 2-acyclicity. The first object of our exposition is to summarise in an accessible form 

what we have established about such manifolds in [2]. As a result of discussions on this 

work which occurred during the conference we attempted to prove some new results and 

these are included in Section 4. 

The main object of the first three sections is to introduce the definition of a new 

differential invariant of an L 2-acyclic manifold (as in [2]) called L2-RF torsion. The 

theory of finite von Neumann algebras is an essential ingredient in the definition. 

The new results in the final section enable us to compute the V-RF torsion for 

more L 2-acyclic manifolds. 

To indicate why this study should have some general interest we begin with a 

conjecture which is suggested by our research. 

CONJECTURE: Let lVI be an odd dimensional, closed, connected, oriented manifold 

of negative sectional C'arvature. Then Jvf is an L 2 acyclic manifold. 

The evidence for this conjecture is based on the following: Using the results of 

Donnelly and Xavier [9] and Dodzuik [8], it can be shown that if 1\!I is an odd dimen­

sional, closed, connected, oriented manifold, with negative sectional curvature pinched 

between two sufficiently close negative constants, then M is an L2-acyclic manifold. 

Acknowledgement: The authors would like to thank the organisers of the 1989 "Ge­

ometry and Physics" conference at A.N.U., Canberra for an invitation to participate. 

1. SOME ALGEBRA & THE FUGLEDE-KADISON DETERMINANT 

Let 1r be a discrete group and £2 ( 1r) be the Hilbert space of square summable 
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functions on 7r. Let C(1r) denote the group algebra (over C) of 1r i.e. C(1r) consists 

of (C valued) functions on the group 1r which have finite support, and the algebra 

operations are addition and convolution. 

Recall the left regular representation 4>: 1r-+ Unit (f2 (1r)) = { Unitary operators 

on f 2 (1r)} defined by (t/>(g)f)(h) = f(gh), which extends linearly to a representation 

4>: C(1r)-+ B(f2 (1r)) = { Bounded operators on f 2 (1r)}. 

The weak closure{= von Neumann algebra generated by ¢(C(1r))} in B(f2(1r)) we 

call the group von Neumann algebraU(1r). There is a natural trace on C(1r) defined by 

r (2::: f 9 g) = fe. e = {identity element of?T} 
gE1r 

which extends uniquely to a trace on U(1r) also denoted by r. Then r ® trn is the 

induced trace on 

which we again denote by r. 

We will now discuss the Fuglede-Kadison determinant of a finite Von Neumann 

algebra U. 

We shall stick to our earlier convention and denote the induced trace on Mn(U) by 

r. If A E Gl(n,U), then A* A E Gl(n,U) is positive definite and log( A* A) E Gl(n,U) is 

self-adjoint. The Fuglede-Kadison determinant 

IDetrl: Gl(n,U) -+.lR~ 

is defined by 

1Detr1(.4) = exp(r(log(A* A))/2] 

and it has the following properties: 

(1) IDetri(H) = exp(r(log(H))) if HE Gl(n,U), H = H* and H 2:: 0. 

(2) IDetri(H) = 1>-1, >.-# 0. 

(3) IDetri(A) = IDetri(A*) = IDetri((A* A)112 ) if A E Gl(n,U). 

(4) IDetri(AB) = IDetri(A)IDetri(B) if A,B E Gl(n,U). 
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(5) IDet,-I(A) = IDet,-I(U AU*) if A, U E Gl(n,U) and U is unitary. 

(6) IDet,.I(A) S IAI if A E Gl(n,U). 

For us the most important fact about this determinant is that it has a non-trivial 

extension (i.e. not the algebraic one) to certain singular operators, namely those which 

are injective but whose range is not closed. If it were not for this the ensuing dis-

cussion would have little content. The point is that using the spectral representation 

A* A = J Adf.l(E:>-) the preceding definition still applies with the understanding that 

IDet.,.I(A) = 0 when Jln/\df.l(E>-) is divergent. With obvious modifications all of the 

preceding properties continue to hold together with the following computationally useful 

result: for B E Mn(U), B ;::: 0, 

Note that [10] discusses the preceding results only for II1 factors. The generalisation 

to the finite case is given in [6] except for the discussion of singular operators. However 

it is not hard to see that the argument in [10] for this extension holds also for finite von 

Neumann algebras. 

Finally, a Hilbert U('rr) module is defined to be a dosed, rr invariant subspace of 

ffixExC2 (7r). For more details, we refer the reader to our paper [2]. 

2. L2-RF TORSION 

Let M be a closed, connected, oriented manifold and rr = rr1 ( lvf) denote the fun-
~ 

damental group of JYI. Let lvl -+ 111 denote the universal cover of M. "We only consider 

Riemannian metrics on lv! which are induced from M. The space of L 2 differential 

p-forms M on lvf denoted r2(2/11J) is defined to be the Hilbert space completion of 

{wE D,P(M): J- w 1\ *W < oo} where W'(lvi) denotes the space of differential p-forms 
M 

on M. Let f:::..p denote the Laplace operator do+ od acting on p-forms. VVe consider weak 

(distributional) solutions to the equation /::,pw = 0 (*)for wE r2('2)(M). Since !:::..Pis (an 

elliptic operator, it follov.rs from standard theory that a weak solution to ( *) is also a 

strong solution to ( *), and by elliptic regularity results, is also smooth. It can similarly 

be shown that ker (!:::..p) is dosed subspace of r2(2/M), since f:::..p is rr equivariant, it is a 
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result of Atiyah [1] that ker (.6,p) is a Hilbert U(x) module of finite 11-dimension. Define 

~ 

Let K be a triangulation of M and Af be the induced triangulation of M. Let C(2)(K) 

denote the space of j- cochains which are L 2 i.e. C{2)(I<) is the Hilbert space completion 

of 
~ 

E C1(K): !f(crW < oo}. 
cr=j simplex 

operator elK on C;(K) is 

(also denoted by d K) 

d~(: c(2 )cih-. c(~\i<) 
which satisfies d{t1 o dk = 0 Le. 0(2)( (I(), dK) is a complex of Hilbert U( 1r) modules. 

Define as in Dodzuik [7], the L 2- cohomology of this complex to be 

Hi (l~") - k dj 1 di:-l (Z) \. = er K range K 

which is also a Hilbert complex by Dodzuiks theorem [7], ker (.6.j) is isomorphic 

to H(2/I() as Hilbert U(1r) modules, i.e. 

and b{2 )(M) are homotopy invariants of 1\d. 

We define an L 2-acyclic manifold to be a closed, connected oriented manifold !11/ 

such that bt2)(M) = 0 for all j ~ 0. 

The condition that };.![ is an L2-acyclic manifold is easily seen to be equivalent via 

( *) to the condition that 

d + d* . codd(l"::-) ceven(l~) 
K 'I( · (2) \ ---> (2) ' 

is a weak isomorphism i.e. ker(dg + d']<) = 0 and range (dK + d'k) is dense. Here d'K 

is the L 2 adjoint of dK. 

It follows that we can construct a. U( 1r) module isomorphism of C(2~d(K) with 

C(;)n(K) using the obvious bases of these free Hilbert U(1r) modules. The operator 
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dK + d'K may be regarded then as an element of U(7r) 1 ® Mn(C) where n is the rank 

of C(~d. Now this latter algebra is also a finite von Neumann algebra (as U(7r) is anti­

isomorphic to its commutant U( 7r )'which is generated by the right regular representation 

acting on £2(7r)). We shall continue to abuse the notation and denote by T the trace on 

U(7r) 1 ® Mn(C). Finally we may now define the L2 RF-torsion by 

THEOREM [2]: T( 2)(M) is independent of the choice of the 0 1 triangulations I< of 

M, i.e. T(2)(M) is differential invariant of M. 

The proof is in the spirit of that of ordinary torsion, but with new technical diffi­

culties arising from the fact that d K + d'K is only a weak isomorphism. 

3. L2-ACYCLIC MANIFOLDS 

We now show that there are many L2-acyclic manifolds, and also that the class of 

L 2-acyclic manifolds is closed under certain simple geometric extensions. 

Recall that an A-foliated manifold is closed connected oriented manifold with a 

nowhere zero, closed 1-form. 

EXAMPLE: Any manifold M which fibres over the circle. 

THEOREM: [2] If M is an A-foliated manifold, then M is an L2 -acyclic manifold. 

This theorem is proved essentially by supersymmetry ideas using a Witten type 

argument [15], and some L2 estimates. 

We digress at this point to recall some definitions ( cf [13]). First we note that a 

Riemannian metric on a connected closed manifold M is said to be locally homogeneous 

if given any two points p and q in A1 there are open neighbourhoods of U and V of 

p and q respectively and an isometry (U,p) --+ (V,q). A closed manifold admits a 
~ 

geometric structure if M admits a locally homogeneous Riemannian metric on X =.M 

has a group of isometries G which acts transitively on X with a compact isotropy group. 

We then say (following Thurston) that ]'v[ admits a geometric structure modelled on 

(X, G). Thurston [14]has classified all the three dimensional geometries; there are eight 

of them: 



Euclidean three space. 

Hyperbolic three space. 

S 2 X JR. 
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The product of hyperbolic 2 space with ]R, 

( v) The universal cover of JR). 

The three dimensional Riesenberg group. 

The three dimensional solvable Lie group. 

(viii) 

In each case G is the group of isometries of the space. 

Finally we recall that a count ably generated discrete group 1r is said to be amenable 

if there is a finitely additive, left invariant measure on 1r. 

THEOREM: [2] Let M be a closed, connected, oriented three dimensional manifold 

with infinite fundamental group. Assume either that 

1. 1r1 ( M) is amenable. 

2. ]i/[ admits a geometric structure. 

Then 111.! is an L 2 -acyclic manifold. 

Proof: 

1. is proved via a result of Cheeger and Gromov and L 2 Poincare duality. 

2. is proved via a case by case study. 

This made us conjecture in [2] that any closed connected oriented 3-manifold, with 

infinite fundamental group, is an U-acyclic manifold. 

A fibre bundle F --? lvf --+ B is said to be special if in the long exact sequence in 

homotopy 

we have ker i =range 8 = 0. This implies that there is a fibre bundle of universal covers 

F -.l'vf-+ B. 

EXAMPLES: If 1r2 (B) = 0, or 1'v1 is a flat bundle i.e. M = B x P F where p : 1r1 (B) --+ 

Diff( F) is a representation, then lvi is special. 
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THEOREM (2] Let F ----7 lvi -> B be a special fibre bundle of closed, connected oriented 

manifolds. IfF is an L 2 -acyclic manifold, then so is lvf. 

This theorem is proved using quasi-isometry invariance and also long exact se-

quences of L 2-cohomology. 

4. SOME NEW RESULTS 

In this section we extend the analysis of (2] by proving a number of results which 

enable us to compute the L2 RF-torsion of manifolds of the form ]\([ x S 1 • The main 

results are 4.2 and 4.9. For the algebraic ideas we refer to [16]. 

LEIV!:N!A 4.1: Let G be an element of U 0 Nfr+a which has the form (relative to some 

basis) (A D) where A E U 011dr and C E U 0 NI,. ar-e invertible and B E U 0 Mrx 8 , 

\B C 
D E U 0l'l4sxr· Then G is also the product 

where the first and last operators are commutators. 

Proof: The result follows by multiplying out the product ( *) and observing that 

where [a, ;3] = apa- 1 ;3-1 is the group commutator. vVe recall some of the continuity 

properties of the Fuglede Kadison determinant (see (10]): 

1. JDet,.,J(A) = limE-+oJDetrJ(JAJ +e) 

2. JDetr(HI) 2: jDet,.,j(H2) if H1 2: H2 2: 0 

3. limn-+oo/Det,..J(An) :::; /Det,..J(A), where An tends uniformly to A. 

4. limn-+oo/Det,..J(Hn) if Hn 2: H 2: 0 and Hn tends to H uniformly. 

Before we can introduce our results we need some notation and definitions from [2]. 

Let 
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be a complex over U where each Ci is a free finitely generated Hilbert U( ?T) module and 

dis a bounded U(n:) module map. We call (C, a Hilbert U(n-) complex. We write 

15 for the adjoint of d. We note that the cornmutant of U( 1r) acting on this complex 

is isomorphic to so we may identify both d and 5 as elements of this 

algebra. We may choose a set e = (e1, ez, ... , en) of generators for (C, d) as a free U(?T) 

module which are pairwise orthogonal and with respect to which d and hence b may be 

represented by an explicit matrix over . In this case we refer to the triple ( C, d, e) as 

an L 2-RF complex. We ·write m(d,e) or m.(8,e) to denote this matrix. Such a complex 

is said to be L 2 -acyclic if all its L2 -cohomology groups vanish. In that case d + /5 is 

injective but not necessarily invertible. 

THEOREM 4.2: Let 0-+ (C',d',e1)-+ (C,d,e)-+ (C 11 ,d11 ,e11 )-+ 0 be a short exact 

sequence L 2 -acyclic U -RF complexes. Then 

Proof: Let H* be the orthogonal complement of C'*, inC*, with a basis eH chosen to 

satisfy the following conditions 

that it extend the basis e1 of C 1 to a basis of c which is u related to the basis e of 

C, and hence 

(2) that eH projects onto the basis e11 of C'11 • 

The differential 

d : codd -+ eeven 

has a matrix relative to this basis of the form 

( 
d' 

d-
pd 

Here p : eeven -+ e'even is the orthogonal projection. As J2 = 0, we see that d~ = 0 

and hence (H, dH, ell) is a Hilbert U-RF complex. The following diagram of U-RF 

complexes is commutative. 

0 -+ C' -+ C -+ en -+ 0 

II 
0 -+ C' -+ C -+ H ---+ 0 
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It follows that there is a natural isomorphism taking bases to bases of (H, dH, eH) 

and ( C'11 , d11 , e'). We see similarly that the adjoint map 

8 : codd --+ ceven 

can be decomposed as 

8= 

as C' is a subcomplex of C. It follows that 

m(d+8,e)= I ( 
m(d' +o',e' 0 \ 

m(p(d + 5), e) m(dH + DH, eH)} 

We now prove a lemma which will enable us to complete the proof of the theorem 

LEMMA 4.3: If 

is a matrix of the sort considered in ( * ), then 

IDet,.J(G) = JDetri(A)JDetrj(C) 

Proof: We recall that JDet,.J(G? = JDet,.(G*G)I = limc-;-oJDet,..I(G*G+e) by property 

(1) above of the Fuglede-Kadison determinant, i.e. 

(
A*A+B*B + E 

G*G+ E = 
C*B 

B*C ) 

C*C'+c 

Applying the lemma 4.1, this equals 

(
A*A+B*B+e-B

0
*C(C*C+c)- 1 C*B 0 ) 

C*C +e. 

modulo commutators. 

Hence 

!Detrl(G*G +E)= JDet,..J(A.* A+ B* B + E- B*C(C*C + Er1 C* B)JDetri(C*C +e) 

Since C(C*C) = (CC*)C it follows that C'(C*C +e) = (CC* + e)C and hence that 

(CC* + e)-1 C = C(C*C' + E)-1. 
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So we see that B*C( C*C + e)- 1 C* B = B*( CC* + r:.)- 1 CC* B :S B* B since by the 

spectral theorem we have (CC* + r:.)- 1 CC* :S L 

It follows that 

A* A+ B* B + r:.- B*C(C*C + E)-1C* B 2: A* A 

and so 

A* A+ B* B + E- B*C(C*C + e)-1 C* B 

converges uniformly to A* iL Now by property 1± above of the Fuglede-Kadison deter-

minant, we have 

limJDet,..J(A* A+ B* B + E- B*C(C*C + c:)-1 C* B)= IDet,..J(A* A)= JDet,..J(A? 
f---;.0 

Also by property 1 above of the determinant, we see that 

limJDetrJ(C*C +e)= JDetr\(C)2 
€->0 

We now apply lemma 4.3 to deduce that 

which suffices to prove the theorem. 

Our next result needs some preliminaTy discussion. We refer to bounded U module 

cochain maps f between U-RF complexes ( C, d, e) and ( C 1 , d1 , e1 ) as simply maps. Then 

two such maps f and g are said to be L2 homotopic if there is a sequence of maps 

DiE L(Ci,Ci-l) such that dj_ 1DJ + Di+ 1 dj = jj- gj for all j. If there is a map 

h from ( C 1, d', e1 ) to ( C, d, e) such that both f o h and h o f are L 2 homotopic to the 

identity map then f is called an L 2 homotopy equivalence. Finally we may define the 

mapping cone ( C f, d f, e f) of a map f as follows: 
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(eJ)j = ej U ej_1 

From Lemma 1.30 of [2] we know that iff is an L 2 homotopy equivalence of U-RF 

complexes then the mapping cone complex is also an L 2-acyclic U-RF complex and 

hence it has an L2-RF torsion which we denote T(2)(J, e, e'). We now note the following 

fact: 

COROLLARY 4.4: Let f: (C,d,e) ~ (C',d',e') be an L 2 homotopy equivalence of 

L 2 -acyclic U -RF complexes. Then T(2)( C', d', e') = T(2)(J, e, e')T(2)( C, d, e). 

It follows that if an L2 homotopy equivalence f satisfies T(2)(J, e, e') = 1 then the 

L 2-RF torsions of the complexes (C,d,e) and (C',d',e') are equal. 

Our next result begins with a simple observation. Let 1r = 1r1 x 1r2. Hence 

naturally as Hilbert spaces. 

LEMMA 4.5: If M is a free Hilbert U(1rt)-module of rank m, and N is a free Hilbert 

U(1r2 ) module of rank n, then M &c N is in a natural way a free Hilbert U(1r) module 

of rank mn. 

Proof: It is enough to show that (R2(1r1 ))m ® (R2(1r2))n has a natural Hilbert U(1r) 

module structure. But 

naturally as Hilbert spaces. Hence we can naturally endow the tensor product with a 

free Hilbert U( 1r) module structure of rank mn. 

REMARK: If (N,d) is a free Hilbert U(1r) complex and M is a free Hilbert U(1r) 

module then lemma 4.5 and induction proves that M ®N is a free Hilbert U( 1r) complex. 

LEMMA 4.6: Let M and N be as in the lemma above. Iff E L(M, M) and g E 

L(N, N) then f ® g E L(M ®c N, M ®c N) is in a natural way a Hilbert U( 1r) module 

homomorphism. 

Proof: It is enough to consider M = (f2(1r1))m and N = (R2(1r2))n. Let ¢> denote 

the natural isomorphism between (R2(1r))mn and (f2(1rl))m ® (R2(1r2))n described in the 
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previous lemma. Then 

We will denote this map by just f 0 g. 

COROLLARY 4.7: If Mj is a Hilbert U(;rj)-module (j = 1,2) then M1 0c zs 

in a natural way a Hilbert module. 

Proof: definition )Vi j is finitely generated and projective. Let :Fj be a free Hilbert 

U( 7rj) module and Pj E L(:Fi, :Fi) be self adjoint projections such that range Pi = Mj. 

By the lemma above Pl 0 P2 is naturally a Hilbert module homomorphism. Hence 

range (p1 0 pz) = M1 0c M 2 ) is in a natural way a Hilbert U('1r) module. 

LEMMA 4.8: Let 0 __, N 1 _i;. N .!'.., N'1 -> 0 be a short exact sequence of free Hilbert 

U(1r2 ) modules and M be a 

0 __, M 0c -;Q 

is a short exact sequence Hilbert U( 1r) modules. 

Proof: We will check injectivity of 1 0 i. If m 0 n E ker(l 0 i) then m 0 = 0 is 

equivalent to m = 0 or n = 0. Surjectivity of 10 p is obvious. Also by the above lemmas 

aU maps and modules can be considered to be Hilbert U(n:) modules or homomorphisms. 

PROPOSITION 4.9: Let ( C, d, e) be an L2 -acyclic U( n:1 )-RF complex and ( C 1, d1 , e1) 

be aU( ;r2 )-RF complex. Then 

(1) ( C 0 C 1, d 0 1 + 1 0 d1 , e 0 e1) is an L 2 -acyclic U( 1r)-RF complex. 

(2) T(z)(C 0 C 1, d 01 + 10 d', e 0 e1 ) = T(2 )(C,d, e)xCC') 

Proof: (1) By our previous lemmas it is clear that ( C 0 , d 0 1 + 1 0 d1, e 0 e1) is a 

U(;r)-RF complex. We will prove that it is acyclic by induction on the length of C 1 • 

If C' : 0 __, c'o -> 0 has length one, then 

since c'o is a free Hilbert module. Assume that C 0 C' is L2 -acyclic for all U'-RF 

complexes C' of length :::; n. 
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If C': 0-+ c'o !_, ... :!::._> c'n-+ 0 is such that (C',d1,e') is a U(r.2 )-RF complex of 

length equal ton+ 1, we define the complexes 

B : 0 -+ c'0 -+ 0 

B l 0 c•'l d' cz en 0 : ----7 -+ --? ••• -', -+ 

Then Band B' are U(r.2 )-RF complexes of length:::; n. Also we have the short exact 

sequence of U'-RF complexes 

Tensoring over C with the complex C; and by an extension of lemma 4.8, we obtain a 

short exact sequence of U( 7T )-RF complexes 

which gives rise to a long exact sequence in L2-cohomology by Cheeger and Gromov [4]. 

By our induction hypotheses 

for all j 2: 0. Hence from the long exact sequence we see that H (2) ( C 0 C') = 0 for all 

j 2: 0. 

(2) Let .:F(?r2 ) denote the semigroup of all U(7r2 )-RF complexes. We will define 

functions f1 : .:F( ?T2)) -+ lR by 

h(C',d', e') = Tc 2J(C 0 C',d 01 + 10 d', e 0 e') 

f (c,, d' 1) - T. (C d )x(C') 2 , , e = (2) , , e 

vVe shall prove that h = fz by induction on the length of C'. 

If C 1 : 0 -+ c'o -+ 0 is of length one, h = fz trivially. So assume that h = h for 

all U('~r2 )-RF complexes of length :::; n. If 

I dl dl ; 
C 1 : 0 -+ c 0 -+ ... -} c n -+ 0 
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is aU(1r2)-RF complex of length n + 1, we define the U(1r2)-RF complexes B and B' 

as in (1) above and we get the short exact sequence of L2-acyclic U(1r1) ® U(1r2)-RF 

complexes as in(*) above 

0 --t C ® B --t C ® C' --t C ® B' --t 0 

Hence by theorem 4.2 

By our induction hypothesis this equals 

COROLLARY 4.10: Let M be an L 2 -acyclic manifold and N a closed, connected 

oriented manifold. We know by preceding results that M X N is L 2 -acyclic. Then we 

have that 

Proof: Let K and L be triangulations if M and N respectively. Then C(2)(K-----;( L) = 
~ ~ 

C(2)(K) ® C(2)(L) where we use the Hilbert tensor product. We can now apply the 

preceding theorem to see that 

~ 

Now by theorem 1 in Cohen [4] we see that x(C(2)(L)) = x(L) 

COROLLARY 4.11: Let M be a closed, connected, oriented manifold. Then by 

preceding results M x S1 is an L 2 -acyclic manifold. Also T(2 ) ( M x S1 ) = 1. 

COROLLARY 4.12: T(2)(1I'k) = 1 when k > 0. 
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