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HIGHER ORDER PROPERLY ELLIPTIC BOUNDARY VALUE PROBLEMS 

WITH WEAKLY SMOOTH COEFFICIENTS 

A.J. Pryde 

1. INTRODUCTION 

Consider the boundary value problem 

(1.1) find u such that Au f on rl , on 

where rl is a bounded domain in JRn , is an elliptic 

opera"t.or and is a system of boundary operators 

j E P, P {jl,··.,j } . m 
For the moment assume 'che coefficients of 

1>. and Bp and the boundary (lrl are smooth, and for convenience assume 

the orders j E P satisfy j ~ 2m - 1 . 

Let aSW) denote the Sobolev space of order s on n , and set 

NS(A) = {u E HS(n) Au = O} and IT n as-j-ol?{dD) So there is p 
jEP 

determined a bounded operator 

(1.2) 

By the work of Agmon, Douglis; Nirenberg, Browder, Schechter, 

Lions, Magenes and others, it is known that if A is properly elliptic 

and Bp covers A (that is, the supplementary and complementing 

conditions are satisfied) then (1.2) defines a Fredholm operator for 

s ;;::. 2m • 
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lYloreover, if Bp is a normal boundary system, the restriction 

s <: 2m can be removed using duality and interpolation. Indeed, suppose 

Bp is nOl.:mal, so that in particular 'che orders of the B, 
J 

Let Q = 1'1 ~ P where M ~ {O,l, ••• ,2m-I} Extending B 
p 

'co a normal system BM of boundary operai:ors B, 
J 

of order 

are distinct. 

arbitrarily 

smooth coefficients, it follows 'chat -there is a unique adjoint system C1'1 

of boundary operators C, 
J 

of order 2m - j - 1 , j EM, 

for smooth u, v ·the following Green' s formula holds 

(1.3) (Au,v) .. (u,A'v) B,u,C,v 
J J 

whe:r'e A I is the formal adjoint of A, and (, and 

denote respectively the L 2 (Q) and L 2 (cH,) inner produc-ts. 

real s then there is determined a bounded operator 

(1.4) 

where I1* 
Q 

II H-s+j+~(;Hl) 
jEQ 

II" 
Q 

is the dual of ITQ • 

such tha'c 

For each 

In fact, for elliptic A and normal Bp ' (1.2) is Fredholm if 

and only if (1.4) is. If also A is properly elliptic and covered by 

Bp ·then A' is properly ellip·tic and covered by CQ • By ·the 

previously men'cioned results, (1.2) is Fredholm for s';; 0 . By an 

interpolation argument it follows that (1.2) is Fredholm for all real s. 

These results, and the definitions and proofs can be found in the 

book of Lions and Magenes [3]. 

Also in [3 J (problem 2.11. 2) -the question is raised of avoiding 

the use of interpolation when 0 < s < 2m • In this paper we outline a 

procedure for doing that. 
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The advantage to be gained by avoiding interpolation is that 

weaker smoothness assumptions are required of the coefficients. Roughly 

speaking, (1.2) is Fredholm if there is smoothness of order I s-ml + m , 

whereas the interpolation argument for 0 < s < 2m requires smoothness 

of order 2m. 

Of course, if A is strongly elliptic then, particularly in the 

second order case, it is well known that smoothness assumptions on 

coefficients and boundary can be greatly relaxed. 

books of Necas [5] and Gilbarg and Trudinger [1]. 

See for example the 

On the other hand, 

McIntosh [4J has obtained results for second order operators which are 

just properly elliptic with discontinuous coefficients on a plane domain 

Q satisfying only the condition that Hl(Q) be compactly embedded in 

L2 (m . 

2. SESQUILINEAR FORMS 

As is customary for problems with normal boundary conditions, we 

find an equivalent variational formula"tion. This requires the 

construction of an associated sesquilinear form. 

So consider the operator (1.2) when 0 < s < 2m , and for 

convenience take s to be an integer. Set e max(s,2m-s) . 

We make the assumption 

(2.1) the boundary of Q is smooth. 

This assumption can be relaxed, but not to a significant extenL 

In particular it allows us to make smooth changes of coordinates under 

which conditions (2.2) and (2.3) below are invariant. 
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Next assume A can be written in the generalized divergence form 

(2.2) A 

This degree of Holder continuity of the coefficients ensures that both 

A and A' map smooth functions into L2 (Q) • 

To state our assumptions on Bp we make the following definition. 

We say a differential operator E in the boundary is of class (a,b) 

where a, b are integers, if E can be expressed locally with respect 

to boundary coordinates in the form 

(2.3) E Y. DPEPqDq 

Ip+qT~a-b 
where EPq E cf(a,b,p,q),l , 

(2.4) f(a,b,p,q) Ipl - a-I + max(b+8+lql ,2m-I) . 

We follow <the conventions that the only differential operator of negative 

order is the zero operator, and that c-l,l = Loo • 

An operator E of class (a,b) maps smooth functions into 

L 2 ((In) and determines a bounded operator E : Hs-b--l? (an) -;- Hs-a--l? (an) 

If also F is of class (b,c) then EF is of class (a,c) • 

We make the assumption that the B. 
J 

for j E P are of the form 

(2.5) B. 
J 

where is of class (j , 9,) • 

As usual, Y.Q, is the trace operator of order .Q,. 
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In this section we also assume that A is elliptic and that Bp 

is a normal sys·tem. This la·tter condition means tha'c the orders j E P 

are distinct, satisfy 0 ~ j ~ 2m - I , and the functions B .. are 
JJ 

non-vanishing. 

Extend Bp to a normal system BM ,,,ith B. 
J 

for j E tij 

satisfying (2.5). Then o ~ j , 9, ~ 2m l, is an invertible 

IOVier ·triangular matrix of differential operators of class (j,!n . 

Its inverse (B j !/') has ·the same properties. 

We can now construc·t the associa_ted sesquilinear form. 

define the bounded form J 
1 

(2.6) Jl[u,vl 

on by 

IplLm-s lapqDqU,DPV] . 

hl~s 

Firstly 

Restric'cing firstly to funcj~ions with support in small neighbour-

hoods of aQ, changing coordina-tes so that one is ·the distance function 

from the boundary, integrating by parts and then using a partition of 

unity, we obtain for all smooth u, v , 

(2.7) 

where F. and 
J 

2m-I 
(Au,v) - ~ 

j=s 
F j U'Y2m_j_1V 

F j9, is of class (j ,!/,) • 

Integra·ting by parts in the reverse order gives 

s-l 
(2.8) J 1 [u,vl (u,A'v) + I < YjU,GjV} 

j=O 

2m-I 
where G. L Gj.Q,Y 2m-9,-1 and Gj !1, is of class (2m-j-1,2m-!1,-1) 

J 9,=j 
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Defining for o :0; j :0; s - 1 and G. 
J Y2m-j-l for 

s :0; j :0; 2m - 1 we obtain Green" s formula 

(2.9) (Au,v) - (u,A'v) 

By -the ellipticity of A, FM and GM are normal systems. 

Denote by < ,) for a real, the natural extension of the 
a 

L2 (3D) inner product ,) on smooth functions to Ha(aD) x H-a(aD) 

Then for smooth u , v we have ( F.u,G.v) =( F.u,G,v > ., 
J J J J s-J-'2 

Further is of class (j,9,) and so i-ts formal adjoint maps 

+ '+*, 
H-s J "(3D) into H-sH+J" (3D) • Hence 

I<F.u,G.v) 
J J 

I [FjkBkQ,), GjrY2m-r-l is a normal boundary operator of 

order 2m - Q, - 1 . It can be expressed in the form 

2m-l 

I where locally 
r=Q, 

(2.10) 

(2.11) g(Q"r;p,q) 



(2.12) 
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In particular, for smooth u, v we have Green's formula 

(AU,V) - (u,A'v) 

We seek now to replace p, 
J 

and in (2.7) by Bj and 

Cj respectively. For smooth u, v define 

2m-l 
(2.13) L 

j=s 

Then it follows that 

8-1 2m-] 
(2.14) J 2 [u,vl I L ( (c! 0 B ,-G ~ n F ,) u, y 2 n IV) n *' 

j=O !t=s 'JiV J J'" ] m-",- S-"'-2 

and, using a computation of Grubb [2], that there exist c' 
pq 

such that for smooth u, v 

(2.15) L 
Ipls2m-s 

Iq!Ss 

Ex·tend the definition of J 2 to all HS (m x H2m- s W) by (2.15), 

Then for smooth u, v 

2m-l 
(2.16) J[u,v] (Au,V) - L ( 

j=s 
B,U,C,V) ,1 

J J s-J-"2 

3. VARIATIONAL FORMULATION 

We are now in a position to give a variational formulation of the 

boundary value problem. Firstly, if X is the index set P or Q I 

decompose it in the form X = X' u X" where X' = {j EX: j 2 s} 
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THEOREM 3.1 Assume Q is a bounded domain in lRn satisfying 

(2.1), A is an elliptic operator of the form (2.2) and Bp is a 

normal boundary system satisfying (2.5). The following are equivalent 

(cJ the form J defined by 

That (aJ is equivalent to (bJ expresses the fact that the boundary 

value problem 

(3.2) 0, find u € HS(Q) so that Au 0 

has the variational formulation 

for all v € N2m- s (C ) 
Q' 

The form J is introduced because its domain is independent of 

its coefficients and so corresponding a priori estimates are localizable. 

Indeed, write U for a typical element of HS(Q) x ITQ, with norm 

lIulls and V for an element of H2m- s W) x ITp " with norm II vII 2m-s 

Let lIull s_l and IIvII 2m- s _l denote the corresponding norms in the 

larger spaces obtained by replacing each Sobolev space Ht by the larger 

t-l space H , in which it is compactly embedded. 



132 

By Peetre's lemma, ] is Fredholm if and only if 

(304) for a.ll 

and 

(305) iivil2m_s s: c for all V" 

These est.imat.es can il.O"l!if be localized in the usual 'Way,-, Indeed, 

using a partition of unity, it suffices to prove .4) and (3.5) for U 

and V wi'ch small suppor-t. We can t.ake ·these supports in a smooth 

coordi!J.ate neighbourhood at~ the boundary and pass to t.he case of half 

balls in By t,he cont:inuity of -the coefficient:s of all highest 

order i:e:cms and th.e compac'tness of lower order terms ~'7e can freeze 

coefficients in If A is properly elliptic and covered by Bp , 

the locali.zed versions of estimates (3.4) and (3.5) fo11m., by s·tandard 

'cechniques. Hence 

THEOHEM 3.6 Assume -in addition to the conditionB of theorem 3.1 

thai; A is pl'operly elliptic and covered by Then 

is F'r'edholm. 
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