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HIGHER ORDER PROPERLY ELLIPTIC BOUNDARY VALUE PROBLEMS
WITH WEAKLY SMOOTH COEFFICIENTS

A.J. Pryde

1. INTRODUCTION

Consider the boundary value problem

(1.1) find u such that Au=f on Q , BPu = gP on of

Q.

where @ is a bounded domain in If‘, A= a D is an elliptic

ia%SZm

operator and BP is a system of boundary operators . B, = N

b. D ,
|0}5j *
jeP, P=1{j ,...,5.} . For the moment assume the coefficients of
1 m

A and BP and the boundary 9 are smooth, and for convenience assume

the orders j € P satisfy j < 2m - 1 .

Let H®(Q) denote the Sobolev space of order s on § , and set
() = {ue 8%(Q) : Au = 0} and n, = 1573 %(30) . so there is
jeP )
determined a bounded operator

s
(1.2) BP : NT(B) > HP .

By the work of Agmon, Douglis, Nirenberg, Browder, Schechter,
Lions, Magenes and others, it is known that if A is properly elliptic
and BP covers A (that is, the supplementary and complementing

conditions are satisfied) then (1.2) defines a Fredholm operator for

v

s 2m .
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Moreover, if BP is a normal boundary system, the restriction

s > 2m can be removed using duality and interpolation. Indeed, suppose

BP is normal, so that in particular the orders of the B. are distinct.

Let Q =M~P where M= {0,1,...,2m-1} . Extending BP arbitrarily

to a normal system B of boundary operators Bj of order j € M with

M

smooth coefficients, it follows that there is a unique adjoint system CM
of boundary operators Cj of order 2m - j -1, j € M, such that

for smooth u , v the following Green's formula holds :

(1.3) (au,v) - (u,a'v) = 3 {(B.u,cv) ,
jeM J
where A' is the formal adjoint of A , and ( , ) and (G
denote respectively the L2(Q) and LZ(BQ) inner products. For each

real s then there is determined a bounded operator

2m-s
(1.4) C.: N (A') - II*
Q Q
where II* = | H_S+]+%(BQ) is the dual of I .
. Q
J€Q
In fact, for elliptic A and normal BP , (1.2) is Fredholm if

and only if (1.4) is. If also A 1is properly elliptic and covered by

B then A' is properly elliptic and covered by C

P By the

0 -
previously mentioned results, (1.2) is Fredholm for s < 0 . By an

interpolation argument it follows that (1.2) is Fredholm for all real s .

These results, and the definitions and proofs can be found in the

book of Lions and Magenes [3].

Also in [3] (problem 2.11.2) the question is raised of avoiding
the use of interpolation when 0 < s < 2m . In this paper we outline a

procedure for doing that.
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The advantage to be gained by avoiding interpolation is that
weaker smoothness assumptions are required of the coefficients. Roughly
speaking, (1.2) is Fredholm if there is smoothness of order |s—m| +m ,
whereas the interpolation argument for 0 < s < 2m requires smoothness

of oxrder 2m .

Of course, if A is strongly elliptic then, particularly in the
second order case, it is well known that smoothness assumptions on
coefficients and boundary can be greatly relaxed. See for example the
books of Necas [5] and Gilbarg and Trudinger [1]. On the other hand,
McIntosh [4] has obtained results for second order operators which are
just properly elliptic with discontinuous coefficients on a plane domain
Q satisfying only the condition that Hl(ﬂ) be compactly embedded in

2@ .

2. SESQUILINEAR FORMS

As is customary for problems with normal boundary conditions, we"
find an equivalent variational formulation. This requires the

construction of an associated sesquilinear form.

So consider the operator (1.2) when O < s < 2m , and for

convenience take s to be an integer. Set 0 = max(s,2m-s) .
We make the assumption

(2.1) the boundary of @ is smooth.

This assumption can be relaxed, but not to a significant extent.
In particular it allows us to make smooth changes of coordinates under

which conditions (2.2) and (2.3) below are invariant.
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Next assume A can be written in the generalized divergence form

(2.2) a )
|S2m—s pq pq

¥
q <s

This degree of Holder continuity of the coefficients ensures that both

z pPa p? where a € cmax(|p|-1,[q|-1),1
|

A and A' map smooth functions into LZ(Q) .
To state our assumptions on B_ we make the following definition.
We say a differential operator E in the boundary is of class (a,b)

where a , b are integers, if E can be expressed locally with respect

to boundary coordinates in the form

£(a,b,p,q) ,1
(2.3) E = oPEPIY  yhere EPY ¢ cf(arPeRi@) 1
1p+q <a-b

(2.4) £f(a,b,p,q) = |p| -a-1+4 max(b+e+{q|,2m—l) .

We follow the conventions that the only differential operator of negative

order is the zero operator, and that C_l'l = L°°

.

An operator E of class (a,b) maps smooth functions into

—b=% _—
2(9Q) and determines a bounded operator E : H° b=% (a0) » 5572 %(39) .

If also F is of class (b,c) then EF is of class (a,c) .

We make the assumption that the B, for Jj € P are of the form

(2.5) B, = §

L szYz where sz is of class (j,%)

As usual, Yl is the trace operator of order & .
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In this section we also assume that A is elliptic and that BP
is a normal system. This latter condition means that the orders jeP
are distinct, satisfy 0 < j < 2m - 1 , and the functions Bj' are
non-vanishing.

Extend BP "to a normal system BM with Bj for jeM
satisfying (2.5). Then (ng) ;, 0<3 ,8%<2m-1, is an invertible
lower triangular matrix of differential operators of class (j,4)

Its inverse (sz) has the same properties.

We can now construct the associated sesquilinear form. Firstly
. s 2m-s
define the bounded form Jl on H () x H (Q) by
(2.6) 3 favl = ] [a un,DPV] .
lp!SZm—s P
ql<s

Restricting firstly to functions with support in small neighbour-
hoods of 3R , changing coordinates so that one is the distance function
from the boundary, integrating by parts and then using a partition of

unity, we obtain for all smooth u ; Vo,

2m-1
(2.7) J; u,vl = (Au,v) - .2 € Fju’YZm—j—lv )
J=s
]
where Fj = 120 szYZ and Fj£ is of class (j,8%) .

Integrating by parts in the reverse order gives

s=1
(2.8) I Mu,vl = (wA'v) + ) (yu,Gv)
'=0 J J
J
2m-1

where Gj = ng GjlYZm—l-l and Gjl is of class (2m-j-1,2m-2-1) .
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Defining Fj =y, for 0= j<s -1 and G.

j 5= Yom-j-1 FOF

s < j<2m~- 1 we obtain Green's formula

(2.9) (Au,v) - (u,A'v) = z (F.,u,G.v) .
jeM J

By the ellipticity of A , FM and GM are normal systems.

Denote by 4 ’ >a for a real, the natural extension of the

Lz(aﬂ) inner product { , ) on smooth functions to Ha(EQ) X H_a(BQ)

Then for smooth u , v we have ( F.u,G.v y =< F.u,G.v ) L e
J J J S=J=7%
k2

Further ijB is of class (j,%2) and so its formal adjoint maps

—g+ - Z
. s+it+k SHHE 40,

(3Q) into H . Hence

\ K2
L€ Fyu,65v) z<‘ijB Bt % G5 Y oo -1V > s
S=]-%

k2"
=Z<B Yu,[F.BJG.y__v>
L't Jjk jr'2m-r-1 s-9-%

Lepucyv) gy

k2" .
where C2 = Z [ijB J GerZm-r—l is a normal boundary operator of

order 2m - £ - 1 . It can be expressed in the form

2m~1
CQ = z CQrYZm-r—l where locally
r=4
(2.10) c PP yhere P ¢ I TR L
r 2x

gr |p+q%£r—2

(2.11) g(2,r,p,q) = max {|p+qf—r+£+e—l, min(|p|+£,‘q[-r+2m—2)} .
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In particular, for smooth u , v we have Green's formula

- ' =
(2.12) (Au,v) - (w,a'v) = ] < Byu,Cyv ) s
jeM
We seek now to replace Fj and Y2m—j—l in (2.7) by Bj and

C. respectively. For smooth u , v define

J
2m-1 y N
(2.13) J, [u,v] =st ((Fju’Y2m-j—1v -{Bu,cv S_j_%) .
Then it follows that
s=1 2m-l( N
(2.14) 3, [u,v] =j£o lzs (c2gBy-6l P )uvon 197 oy

and, using a computation of Grubb [2], that there exist céq € clql_l’l(ﬁ)

such that for smooth u , v ,

(2.15) ,luvl = [c un,DPv] .
|p|s2m—s pa
|qlSS

Extend the definition of J. +to all H (Q) x Hzm_s(ﬂ)

5 by (2.15),

and set J = Jl + J2 . Then for smooth u , v ,

2m-1
(2.16) Jlu,vl = (Au,v) - ) (Bju,cjv )S_j_% .

j=s

3. VARIATIONAL FORMULATION

We are now in a position to give a variational formulation of the
boundary value problem. Firstly, if X is the index set P or Q ,

decompose it in the form X = X' U X" where X' ={j e X : j = s} .
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THEOREM 3.1 Assume Q 1is a bounded domain in R® satisfying

(2.1), 4 s an elliptic operator of the form (2.2) and B 8 a

normal boundary system satisfying (2.5). The following are equivalent :

(a) By : N (a) ~ IIP 18 Fredholm;

(b) the form J <s Fredholm on NS(BP") x N207S (@

Q‘) ;

(c) the form J defined by

T00, ), (ve9)] = Tlu,v] +C By u,p) +C 4,00,

) x @) x Ix,) .

ig Fredholm on (H°(Q) x 1 o

Q'
That (a) is equivalent to (b) expresses the fact that the boundary

value problem

(3.2) given 9 € I Gpn = 0 find u € H°(Q) so that Au = 0

p

and BPu =9gp

has the variational formulation

(3.3) given gP, € HP, , find u ¢ NS(B ) so that

p"

2m-s
Jlu,v] = - (gP,,CP,v) for all v € N (CQ,) .

The form J is introduced because its domain is independent of

its coefficients and so corresponding a priori estimates are localizable.

Indeed, write U for a typical element of H%(Q) x HQ' with norm
2m-s .
HUHS and V for an element of H (@ x I, with norm [Iv]]

°

2m-s

Let HUHS_l and ||Vl denote the corresponding norms in the

2m-s-1
larger spaces obtained by replacing each Sobolev space Ht by the larger

space 51, in which it is compactly embedded.
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By Peetre's lemma, J is Fredholm if and only if

(3.4) lull, = c[sup Fﬂ}uﬂ + I[u”s_l] for all U ,

2m=s

and

(3.5) Vi, < c[sup J%%T"—]l ¥ ||v]|2m_s_1] for all Vv .
S

These estimates can now be localized in the usual way. Indeed,
using a partition of unity, it suffices to prove (3.4) and (3.5) for U
and V with small support. We can take these supports in a smooth
coordinate neighbourhood at the boundary and pass to the case of half
balls in J°. By the continuity of the coefficients of all highest
order terms and the compactness of lower order terms we can freeze
coefficients and pass to the case of homogeneous operators with constant
coefficients in ]ﬁ:. If A is properly elliptic and covered by BP ,
the localized versions of estimates (3.4) and (3.5) follow by standard

techniques. Hence

THEOREM 3.6 Assume in addition to the conditioms of theorem 3.1

that A is properly elliptic and covered by B, . Then B : N°(a) + I

P P

18 Fredholm.
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