CHAPTER 2
GEOMETRIC PRELIMINARIES
Almost linear functions, approximate fundamental solutions,

and representation formulae. Harmonic coordinates.

2.1 OUTLINE OF THE CHAPTER

This chapter begins with a collection of basic estimates for Jacobi
fields and some convexity results. We mostly follow the elegant presentation

in [BK].

We then introduce the notion of almost linear functions on a manifold,
the main technical innovation of [JKl]. Whereas standard coordinate functions,
e.g. Riemannian normal coordinates, have only rather poor regularity
properties (cf. the example in 2.8) due to the fact that they involve not only
the distance function but also angular terms, almost linear functions will be
constructed by only using the distance function, which admits a sufficient
control through Jacobi field estimates. The basic idea is to use the

X—Plz (p = -q) as a definition.

Euclidean identity 2<x,p-¢> = Ix»q[z -
These functions satisfy almost, i.e. up to a small error term, the usual
characterizations of linear functions in Euclidean space, e.g. that the first
derivatives are constant, the second ones vanish, or the Taylor expansion
terminates after the second term. These error terms are inevitable due to the
presence of curvature, conceptually considered as a measure of deviation from
Euclidean space. Such error terms, however, generally are of lower order than
the other terms which appear already in the Euclidean versions of the formulae
and hence can be easily absorbad. In particular, we discuss approximate
fundamental sclutions of the Laplace and heat equation on manifolds and derive
representation formulae. Almost linear functions permit to gain one order of

differentiation in such formulae by enabling us to also approximate the
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derivatives of fundamental solutions.

Another application of almost linear functions is the construction of
harmonic coordinates on manifolds with the help of a perturbation argument.
They possess even better regularity properties, since, for instance, we can
—— derive Ca-bounds for the corresponding Christoffel symbols in terms of

curvature bounds only, not involving any curvature derivatives. They there-
fore seem to bg optimally adapted to the concept of manifolds of bounded
geometry. In the present notes, they will play an important role in the

derivation of higher order a-priori estimates for harmonic maps.

Starting with section 2.6, all the results of this chapter are either

taken from or inspired by [JK1].
2.2 JACOBI FIELD ESTIMATES

Let c(s,t) = ct(s) be a family of geodesics parametrized by t .

s wusually will be taken as the arc length parameter on each geodesic.

Jt(s) = g% c(s,t) is then a Jacobi field. It satisfies the equation
D D dc dc _
(2.2.1) 35 5o Jt(s) + R[Bs B Jt] 3 = 0

which easily follows from g% é% ¢ = 0 and the definition of the curvature

tensor.,

From {(2.2.1) we see that the tangential component of a Jacobi field J ,

t .
a= = <7, %§>J satisfies

D D _tan
95 98 U =0

and is hence independent of the metric. In particular, Jtan is linear. In

order to incorporate the tangential component in the estimates, we have to

assume that we have curvature bounds
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i.e. a nonpositive lower and a nonnegative upper bound, or else to assume

gt o,

We need some definitions:
' always denotes a derivative with respect to s , while ° is the

differentiation with respect to t .

We put
cos (VP s) if p >0
cp(s) = 1 if p=0
cosh(V=p s) if p<o
and
L sint/p s) if p >0
JE)“ ,
sp(s) = s if p=20
5%5 sinh(/=p s) if p<oO
o

Both functions solve the Jacobi equation for constant sectional curvature 0 ,

namely
(2.2.3) £f" + pf = 0

with initial values £(0) =1, £'(0) =0, or €£(0) =0, £'(0) =1,

resp.

¢ will always be a geodesic arc parametrized by s proportionally to

arclength, and usually |c'| = 1 for simplicity.
LEMMA 2.2.1 Adssume K < u and lc'| =1, and etther u =0 or J =0.

Let £ := [7(0)] o, t [7]7 (0 s, be the solution of £" + uf =0

with the same initial conditions as |J| .
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If fu(s) >0 for s € (0,0) , then

(2.2.4) <J,J'> fu 2 <J,I> fﬁ on (0,0)
CICH N EICHY )
(2.2.5) < 5 < o) if 0 < s, £s, <0
1 2

(2.2.6) |30 ] e (s) + |3]" (o) s,(s) < |3(s) | for s € (0,0)
Proof l3]" + ula] = |37 = <R ,9) ¢, >+ u<T,I)

w1313 a2 912 - <a,9% 20 .
Hence

1] - LER Y " - o> .
(|7 £ lalgp |7 £ ]Jlfu 0
Since |J|(0) = fu(O) , |3y = fl'l(O) , (2.2.4) follows. Then

u

since it vanishes at 0 and has nonnegative derivative.

(2.2.5) again follows from the initial conditions, and (2.2.5) implies

(2.2.6) .
LEMMA 2.2.2 Assume K <y , and either p =0 or J° =0, and
JO) =0, el =1, c, 20 on (0,0
Then
(2.2.7) 3(s) = s3'(s)| s |3(e)] -3 A%s%

Proof 1Let P be a parallel vector field along c , and S ¢ (0,0)

I<3(s) - s3'(s), P(s)>'] = |s<R(c',Tc' 2> (s)] -

22 slas) |

In

s (s)

2 u
A s|a(o) | 5,0 by (2.2.5)

N

|| = A

2

3
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2
< A" 5|3 ] , since c, >0 on [0,0]

and (2.2.7) follows by integratioﬁ of this inequality.

g.e.d.
Instead of prescribing J(0) and J'(0) , one can also prescribe J(0)
and J(p) for p < W/Vr.. For example, since we showed in the proof of

Lemma 2.2.1 that |J|" + p]JI 2 0 , we conclude, assuming |c'| = 1 again,
(2.2.8) sin(/ip) |3(s)| < sin(/s) |J(p) | + sin(ulp-s)) [I(0) | .
We shall also need the following estimate of Jidger-Kaul [J&K2].

LEMMA 2.2.3 Suppose K < U, le'] =1, and 0 <p <m/VU incase 1 >0 .

If X 18 a Jacobi field along c with

<X,c'> =0,

then
s' (P)
o |P u 2 2 2
(2.2.9) £x,x"> | 2 5, () (x| + %) |7 - N |x(0) |« |X(p) ]|
Proof ret
1
s(t) := W (lx(O)]su(p—m + lX(p)[su(t)) .
Then s solves
(2.2.10) s" + us =0 , s(0) = |x(@} , sp) = |x(m] ,
and
s >0 on [0,p]
and
1
(2.2.11) s'(0) = (x| - st (p)|x0) D
su(p) M
s (p) = ———1@— (s(0 [x(@ | - [x0) )

s
Iy
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Then the function
g :=s|x|" - s'|x]|

is differentiable where !xl # 0 . (Note that the zeros of X are isolated,

since X solves the Jacobi equation
(2.2.12) X" + R{c',X)c' =0 ,

which is a linear second order equation.) Moreover

g' + us|X|

slx|» - s"|x] = sr£§ﬁ§fzq'
¥

s ——1—3-(|X|2]x'|2 -<x,x%%) - s

|%|

<%,R(c',X)c"™> + ps|X|

v
o
~

since by assumption <X,R(c’,X)c'> < u]Xlz . Thus g is not decreasing on
those intervals where it is differentiable. As was noted above, points T

where g' does not exist, i.e. |X(1)| = 0 are discrete, and moreover
g(T+0) =~ g(t=0) = 2s(7) X' ()| 2 O .
Thus, g 1is not decreasing on [0,p] , and defining
[x]" () = 1im |X]|*'(p-€) , [x]"(0) = 1im |®]|'(e) ,

e¥0 €40

we conclude

0 < g(p) - g(0) = s(p)|x

"(p) = s'(p)|X(p)| ~ s(0)|X]|"(0) + s'(0) [X(0)]

s' (p) 5 2
<X, X">(p) - <X,X">(0) - EETET'(]X(O)] + [x(p) |9
u

+

|x(0)

2
P X(p)|
su(p)

by (2.2.11).
g.e.d.
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We now turn to describe the effect of a lower curvature bound on Jacobi

field estimates.

LEMMA 2.2.4 Assume A < K<U , and either X <0 or gt = . x| = 22
|e'] = 1, and in addition that J(0) and J'(0) ave linearly dependent.
For a parameter T , we define again £ = lJ(O)[cT + |J!'(0)sT . If
f%(h+u) >0 on (0,p) , then

(2.2.13) latsy] <[5 ] e (s) + [3[1(0) s (8) ,
- and in any case, Lf P denotes parallel translation along c
(2.2.14) |J<§) ~ P_(3(0) + s3'(0))| < |3(0)] (cosh(hs) - 1)

+ IJl'(O)[%-sinh(As) - s]

Proof Let T be a parameter, and N = max(U-T, T-A) . Let A be the

vectorfield along ¢ that satisfies

%BP;A-&- TA=0, A0 =J(0) , A'(0) = J'(0)
Let a Dbe the solution of
a" + (1-nya = nlal , a(0) = a'(0) =0
and b the solution of
b" + 1 = nlJ| , b(0) =b'(0) =0
If P is a unit parallel field
[<g = A,B>" + 1<7 - A,B>| = |<g" - 13,P>| < n|g| .

Hence

da:=1{<g - a,p> ~ b}" s, - {<g - a,B> - b} 81 <0
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and

1 ' 1 S
—{<g - a,> - b} (s)=--—2-——f d<o0.
St St (s) ‘0

Thus gL-{<J - A,P> - b} <0, since it vanishes at s =0 . If s_>0 on
T

(0,0) , then this implies

(2.2.15) lg -a] <b on (0,p)

and

b" + Tb < b + n|a| .

In a similar way

L w-a)so,

St
(2.2.186) i.e. b<a
(2.2.15) and (2.2.16) give
(2.2.17) |3 - al(s) < als) for s € (0,0) .
Now
(2.2.18) (<a',a"><a,n> - <a,A'><p,A>) =0
and thus

i
o

<a',Aa'><a,n> - <A,A'><A,A'> =

’

since it vanishes at s = 0 , as A(0) and A'(0) are linearly dependent.

This in turn implies

and hence
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and from (2.2.17)

N

Choosing T = %{u+k) , i.e. T-n = A , then proves (2.2.13).
(2.2.18) also implies that (A/[AI)' =0 , i.e. A/]Al is parallel,
and choosing T = 0 then proves (2.2.14).

2.3 APPLICATIONS TO GEODESIC CONSTRUCTIONS

We let c(s,t) = expp(s-(v+tw)) be a family of geodesics radially

emanating from the point p .
Then
(2.3.1) J(s) = 2 c(s,t) = (d exp ) sw
e ot "= | e=0 Po’ sv
is a Jacobi field with
J(0) =0 , J'(0) = w .

If we put v = w , then J is tangential to <¢(s,0) and hence linear, i.e.

J{s) = sv , which implies
l(a exp ) ov] = |v]

or in other words, that expp : TPM + M is an isometry in the radial

direction.

If w and v are orthogenal, then (2.2.6) and (2.2.13) imply

LEMMA 2.3.7 If wlv, A<K<y, then, if sSyﬂ_- in case W >0,
u
SU(S) SA(S)
(2.3.2) |w! - 2 < |(d expp)sv-w] < le S .



34

LEMMA 2.3.2 Let B(m,p) := {x ¢ M : d(m,x) < p} be a ball in some manifold
M which is disjoint to the cut locus of its centre m . We assume for the

sectional curvatures XK im B(m,p)

We define r(x) := dlx,m) and £(x) = Sdxm’. Then £ e c’(Blm,p),T)

and

(2.3.3) |grad £(x)| = r(x)
2 2

(2.3.4) Kr(x) ctg(kr(x))s|v|® < D E(v,v)
2

< wr(x) coth(wr(x))-|v|
for x e B(m,p) and v ¢ TxM .
Proof grad f(x) = - exp;l m which implies (2.3.3).

Let q(t) be a curve in M with g(0) = x and g(0) = v and

c(s,t) = equ(t)(s ex‘q(t)m) .
Then grad f(g(t)) = = g% c(s,t)lS=O , and hence
2

D grad £(x)

—aps— = c(s,t) .

For fixed t , Jt(s) = é% c(s,t) is the Jacobi field along the geodesic from
m to g(t) with Jt(O) = g(t) and Jt(l) =0 € TmM . Hence

DV grad f£(x) = D grad f£(x) = —Jé(O) . Since

J_(0)
o

2 : f
D f(v,v) = iDV grad £, v = - <JO(O), Jo(0)> ,

(2.3.4) follows from (2.2.6) and (2.2.13) (since Jt(l) =0 , Jt(l) and
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Jé(l) are linearly dependent).

g.e.d.
2.4 CONVEXITY OF GEODESIC BALLS
The following convexity result was proved in [J2] and [BK], Prop. 6.4.6.

PROP. 2.4.1 Suppose the ball B(m,p) is disjoint to the cut locus of m ,

and p < g%‘, wheve k2 is an upper bound for the sectional curvature of
B(m,p) . Then any two points in B(m,p) can be joined im B(m,p) by a

unique geodesic arc. This arc is the shortest comnection between its end

points and thus in particular does not contain a pair of conjugate points.

Proof since the cut locus of a point m is closed, we can find some ' ,
p < p'< g&-, for which B(m,p') is still disjoint to the cut locus of m .
For any two points p and g € B{(m,p) , we can find a shortest connection
y{t) in B(m,p') Dby the standard Arzela-Ascoli argument. Let 7Y(0) =p ,
Y(1) = g , and let c(.,t) be the family of geodesics with <(0,t) = m ,
c(l,t) = y(t) . The Jacobi fields Jt(s) = g% c(s,t) are monotonically

increasing in s € [0,1] by (2.2.5). Hence, in case Y leaves B{m,p)

somewhere between p and g , we can project it onto B(m,p) , i.e. take

Y(£) = exp_ exp;n1 Y(t) 'min(l 'd(y(g),m)}}

and obtain a shorter comparison curve in contradiction to the choice of ¥y .
Hence Y is contained in B(m,p) and hence in particular in the interior of

B{m,p') and is therefore geodesic. Furthermore, clearly length(Y) < 20 .

The exponential map has maximal rank along any geodesic in B(m,p) of
length < 2p by Lemma 2.3.1. In particular, they do not contain pairs of
conjugate points and are locally unigue. Hence, the set of pairs

(p,q) € B(m,p) X B{(m,p) with two geodesic connections is compact, since two
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geodesics cannot collapse in the limit into a single one with conjugate
points. Thus, if this set were non empty, we could find such a pair (p,q)
of minimal distance with two minimal geodesic connections Yl and Y2 .

Yl and Y2 then have to form a closed geodesic. Namely, otherwise, if they
would form an angle < 7 at p for example, then moving a little bit along
the geodesic which bisects this angle, we could find a point p which is
closer to g and still has two different connections to g , in contradiction
to the choice of p and g . (For more details on this argument, cf. [GKM]).
On the other hand, by Lemma 2.3.2, dz(o,m) is strictly convex on B(m,b) A
and therefore the existence of a closed geodesic in B(m,p) contradicts Cor.

1.7.1.

If now p,q ¢ B(m,p) would have two geodesic connections, one of which,
called Y , is longer than 2p , then 7Y ceases somewhere between p and g
to be the shortest connection of its endpoints, and hence we could again find
fwo minimal geodesics, in contradiction to what we already proved.

g.e.d.

This result can be somewhat improved in two dimensions. First of all,

we have

LEMMA 2.4.17 Let s be a compact surface, possibly with boundary. If the
boundary Y 18 not empty, 1t 18 assumed to be convex, i.e. that through
every point § of Y there goes a geodesic arc which is disjoint to S 1in
a neighbourhood of 4 . Let p,q € S . Assume that there are two distinct
homotopic geodesic arcs Joining p and d . Then each of the points p
and 9 has a conjugate point in S , and this point is conjugate to p or
q s resp., with respect to a geodesic arc which is the shortest comnection in
its homotopy class.

Proof we denote the two geodesic arcs by Y, and Y, . We can assume



37

w.l.0.g. that Yl and YZ are shortest connections in their homotopy class
between p and q , since otherwise, starting e.g. from p and moving on

Yy » we would find a point ql which would either be conjugate to p or
would have a connection in S to p in the same homotopy class and of equal
length as the segment of Yl between p and qy - (At this point, for the
existence of such a connection, we have to use the convexity of 7Y ). Since
Yy and Y, are homotopic and distinct, because we could assume that they
are shortest connections, they bound a set B of the topological type of the

disc.

We now look at a geodesic line emanating from p into B . As Yl
and Yy, are shortest, this line has to cease somewhere in B to be shortest
connection to p . Repeating the argument, if we have not yet found the
desired conjugate point, we get a nested sequence of geodesic two-angles, i.e.
configurations consisting of two homotopic geodesic arcs of equal length
which furthermore are shortest possible in their homotopy class. In the
limit, this construction has to yield a geodesic arc covered twice. The
endpoint q, therefore is homotopic to p , and furthermore, the geodesic
arc is the shortest connection in its homotopy class from p to q, -

g.e.d.

LEMMA 2.4.2 Suppose B(p,R) := {ge I : d(p,q) < R} , where I 1is a surface,
is topologically a disec for some r < —E’(K < x<2) . Then

expp{v :IV} =r} = 8B(p,xr) for all r < R , where expP : TPZ +> % 18 the

I
2K °

exponential map. Furthermore, ®B(p,r) <is comvex, 1f ¥ <
Proof clearly, dB(p,xr) S expp{v : |v] = r} € B(p,¥r) . We assume now that

(2.4.1) expé{v: |v] =z} n Blp,x) # ¢ .

exp is a local diffeomorphism on {v: |v| < E} by Lemma 2.3.1, and therefore
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expp{v : ]vl = r} is an immersed smooth curve for r < g-. Since
expp{v : |v] = r} is compact, we can find some q € expp{v: |v] = £} with
minimal distance to p . Consequently, the shortest geodesic Yy from p to

g is orthogonal to expp{v : Ivl =y} at q and has length < r . On the
other hand, g = exppw B lwl =r , and the geodesic Y' = expptw B

t ¢ [0,1]1 , is also orthogonal to expp{v : lvl = r} at g and different
from Y , since its length is precisely ¥ . Thus, Y and Y' have an
angle of T at g and match together to a geodesic loop with corner at p .
It is not difficult to see that every point inside this geodesic loop caﬁ be
joined to p Dby a shortest geodesic, in spite of the fact that this loop
might not be convex at p . Thus, we can carry over the argument of Lemma
2.4.1 to assert the existence of a point p' inside this loop which is
conjugate to p w.r.t. a shortest geodesic Y" . Since p' € B(p,r) and

r < % , this is in contradiction to Lemma 2.3.1. This proves the first
claim. Furthermore, since expp has mazimal rank on {v € TPZ 3 lvl <'%} .
as noted above, we infer that every v ¢ TPZ with Iv] = ¢ has a neighbour-
hood V which is mapped under expp injectively onto its image (cf. [XK1l],
p.108£.). From this, we easily see that we may apply the estimate of Lemma
2.3.2. Therefore, if r < £%~, then h is a convex function on B(p,r) , and
consequently, OB(p,xr) = expp{v B Ivl = r} is convex as a level sat of a

convex function.

PROP. 2.4.2 Suppose now, that B(p,r) is a geodesic disc on a surface, and
i 2 . . . .

r < 3% (XK £ %) . Then each pair of points 90 9, € B(p,xr) can be joined

by a unique geodesic are in B(p,r) , and this are is free of conjugate

points.

Proof By virtue of Lemma 2.4.2, we could apply Lemma 2.4.1, if there would
exist two geodesic arcs joining 9 and q, - Consequently, we would find a

point a5 conjugate to qy w.r.t. a shortest geodesic arc, i.e. an axc of
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length < 2r <~£ . This would contradict Lemma 2.3.1.

g.e.d.
2.5 THE DISTANCE AS A FUNCTION OF TWC VARIABLES

We suppose again that the ball B(p,M)cN is disjoint to the cut locus

il 2
of p and that M < — , where -0 < K < K2 are curvature bounds. We

2K
define
1 .
*~5-(1 - o8 Kt) if k>0
() =1 °
% 2
- if K =0
and note that
t
g (t) = J s .
K 0 K2

By assumption and 2.4, any two points V1Y, € B{p,M) can be joined by
a unique minimal geodesic in B(p,M) , and we can measure the distance
between vy and Y, by the length of the gecdesic arc between them. We

denote this (possibly modified) distance function again by d(yl,y2) . Then
QK(yl.y2) i= qK(d(yl,yz))

defines a C2 function on B(p,M) X B(p,M) , since qk(O) = 0 . Moreover,

we note that

T (NXN) =T ® T N (isometrically)
Y Yy Y,

for y = (yl,y2) € NXN .

In the following lemma, we shall estimate the Hessian of QK on
B(p,M) X B(p,M) , using the Jacobi field estimate of Lemma 2.2.3. This

result is again due to Jager-Kaul [Jak2].
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LEMMA 2.5.1 IfF Yy # Yy s then for all

v € Ty(NxN) 7 Yy = (Yllyz) I3 Y1.y2 e B(p,M)
5 <grad QK(y),v>2 5 2
(2.5.1) pQ (v,v) 2 25 @) - K QK(y)|v} .

If v has the special form 0@ u or u® 0, then
(2.5.2) DZQK(V,V) z (1 - Kng(y>)lul2 .

and this also holds for Y, =Y, -

Proof rirst some definitions

P t= dly;.y,)

= ® D ]
v vl v2 € Tle TyzN y

c s [0,p] - B(p,M) is the unique geodesic arc from yl to v, with

le'| =1,
el(y) = ~c' (0)

ez(y) = c' ()

tan

4 := <vi,ei(y)> ei(y)
v = v, - v?an {(i=1,2)
i i i

Then, since p > 0 ,
grad d(y) = e, (y) ® e, (¥)
grad Q (v) =s ,(p) (e (y) ® e, (y)) , and

K
2
D QK(y)(V.V) = <Dv grad QK,V>

2 2
(2.5.3) Co= s;z(p)<e1(y) @ ez(y),vl ® v2> + SK2(p)D a{v,v) .

I1f ct(s) is the geodesic arc with
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nor nor

ct(O) = expy (tvl ) . ct(p) = expy (tvb )
1 2
(note that S is unique, if t = 0 1is small enough), then
(2.5.4) J(s) == ¢ (s)
3t Tt |s=0
is a Jacobi field along ¢ with
nor nor

J(0) = vl y J(p) = v2 .

By Synge's formula (cf. [GKM], §4.1),
2 32
(2.5.5) D d(v,v) = ——= length(c, )
52 t’|t=0

]

P

f (]3' 1% - <3,R(c* ;D c'>)ds
0

(note that there is no boundary term, since

<J,c'> =0)

We can apply Lemma 2.2.3 to obtain

o
p%d(v,v) = J (Jar |? + <3,0">)as
0
= <3,3> |8
5'2(0)
s K <ivnorl2 + lvnorl2) _ 2 lvnor N Vnorl
s 2(O) 1 2 s 2(O) 1 2 !
K K
and thus with (2.5.3)
2 . L2 nor|2 nor |2
(2.5.6) DO (v,v) > 8" (P) (<ey @ ey, v, © v, + [V 4 [V)OF|%)

K

- 2l norHvrzlor‘ .

V1
Ifv=0®u, (2.5.6) implies

D0, (v,¥) 2 s, (P) <ey(v) P + 57, (o) |WOF|?

K K2
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. 2
s',(p) |u]
K

(1 - %0 ) |ul?,

while in the general case, we only have

<el ® e, v, ® v2;>2 < 2(|v§an[2 + lvgan|2) ,
and
2 tan,2 nor,2
Ivi] = Ivi l | i =

and therefore from (2.5.6),

pQ (v, 2 s',(p) <oy © ey, v, @ v>T = (1= ' () (V1|7 + [¥5OF)F
K

K

[\

L 2 - - ' 2 2
HI 47, <oy @ ey vy @ vt - (L SK2<O”<!V1| A

_ 1 2.2 2 2
= 30, ) <grad QK(y),v> K°Q (y)('vl| + !vzl ) .
g.e.d.

2.6 ALMOST LINEAR FUNCTIONS

We are now ready to introduce almost linear functions, one of the main
tools of [JK1].
Let B(m,P) be again a ball in some n~dimensional Riemannian manifold

M which is disjoint to the cut locus of m , and assume curvature bounds
2

-w® <R <K, || < A

and

We put r(x) = d(m,x), f(x) = %dz(m,X) .

DEFINITION 2.6.1 Let u ¢ T M be a unit vector, i.e. |ul = 1, and put

p(x) = expm(r(x)u) . alx) = expm(—r(x)u) . Then
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%(x) (@(x,a(x))? - dx,px)?)

N
T 4r(x)

is called an almost Llinear function.

We observe that in the Euclidean case, this notion yields precisely the

linear functions, because of Pythagoras' theorem. We furthermore note that
(2.6.1) -r(x) £ (x) £ r(x)
The estimates of [JK1] for almost linear functions are contained in

THEOREM 2.6.1 Suppose B(m,p) s disjoint to the cut locus of m ,

—w? <K < K2 . x| = 22 on B(m,p) , and p < g% . Let ueTM, [ul =1,

X(x) the assoctiated almost linear function, and ul(x) the radially

parallel vector field on B(m,p) with ulm) = u . Then

sinh(2Ar) = 2
(2.6.2) lgrad 2(x) - u(x)| < 2KA'—§I;?§E;3_ ro(x)
2 inh (2
(2.6.3) D2 (x)| < |oxA ?iﬁ;éizf%-wr ctgh(wr)) r(x)
-1 9 inh (2 3
(2.6.4) ll(x) - <grad 2(x), —exp_ m>| < E‘KA %iﬁ;ézasl wr ctgh(wr)] ro(x) .

Proof ©wLet vY(t) be a geodesic with 7Y(0) = x . We then loock at the

following families of geodesics, joining Y(t) with p(Yy(t)) or q(Yy(t)) ,

resp. ,
B -1
cl(s,t) = epr(t)(s SXP. (t) py(e)))
c.(s,t) = ex (s« exp s . a(y(t)))
2% Py (¢) Pyey @
Ji(°,t) = g% ci(-,t) are Jacobi fields with
7,(0,8) = Y(t)
Jl(l,t) = ru(t)
Jz(l,t) = -ru(t)
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where we have abbreviated r(y(t)) = r(t) , u(y(t)) = u(t) , etc. We also

. . 3 . 9
o= =
write again c s c , C Yy ¢ . We note that
2 . 2
d (P(Y(t))r Y(t)) = cl(slt)
2 . 2
d7 (gly(t)), y&)) = cz(S.t) .
Now
2 2
c!® - ¢! 1
_g.. = - 2 1 - _1_ ' [ .2_ [ - ' _P_ 1
at yen T Jo {eyr g ep> - <eqr g o>
céz - c'2 1 1
= e e ¥ — : [] v ] T
(2.6.5) 2 r+ o= fo {<c2, I> - Lely 3> } as
2 2
c!” - ¢! .
P .__2______]:_ LA _r_ ] [] - __l_ [ - v A
R <oy opr 2rud ) T 57 <C T G Mg
In order to control ci - cé - 2ru which vanishes in the Euclidean case,

we need the following result which follows from [BK].

LEMMA 2.6.1 Put e(r) := %—KAr3 sinh (2Ar)

sin (2Kx)
(2.6.6) ey - (exp;lm + ru) | (x) £ €(x)
(2.6.7) log = (o tn = rw | (o) <€)
(2.6.8) l—ci - (exp;lx - ra) | (p(x)) < €(x)
-1 -1
(2.6.9) l—c2 - (exp “x + ru) | (q(x)) £ €(x)

Proof of Lemma 2.6.1 1et v ¢ TxM , c(t) = exp tv , c¢(l) = g , where ¢ is
some point in M . Let w e TXM and w{t) be the parallel vector field
along c(t) .

We first want to estimate d(F(w), G(w)) , where

F(w)

expx(v + w)

G(w) equ(W(l))
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We consider the family of geodesics
c(s,t) = ech(t)(S o (w(t) + (1 - t) c(t)))
and the coxrresponding Jacobi fields
J () = &(s,t) .

The initial conditions are

Jt(o) = &(t)
(2.6.10)
D 9 .
as J (0) = T Bs c(0,t) = -c(t) .
noxrm

We let Jt (s) Dbe the component of Jt(s) which is orthogonal to

c'(s,t) .

Since the curve c¢(l,t) Jjoins F(w) and G(w) and has tangent vector

3.1 = J::lom(l) , because Jzan(l) = 0 (this follows from (2.6.10))
L ghorm
(2.6.11) a(F(w), G(w)) < J o, (D fat .
0
We now want to apply (2.2.14). Since Ic'l is notnecessarily equal to 1, we have to

rescale c(»,t) , i.e. to look at the geodesics 7Y (s,t)= ckpfrT,t) and the Jacobi

Fields S(S,t)= J(Tg%Tyt). This amounts to replacing A by Alc‘l in (2.2.14).

Since by (2.6.10) Jt(O) + Jé(O) =0 , {(2.2.14) yields, putting

sinh x 1 .
—————— — % sinh x ,
b4 3

IN

o= max(lw[, |v + w|) , and using cosh x -

I norm l norm

(2.6.12) | < ] <]e] - % A sinh(Ap) .

Moreover,

norm 9c|2 _ j3¢;2  ,9¢;2 ac Eg 2
A e R - - R R )

it

[v|2 lw+ (1 - 1) v[2 - <v,w + (1 - t) ﬁ>2

= |v]? |w)? - <ve? .
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Therefore, (2.6.11) and (2.6.12) imply

(2.6.13) d(F(w), G(w)) <

[v]e|w| « A sinh(A(|v] + |w]))* sin X(v,w) .

W

In (2.6.13), we then put v = exp;lm, w = tru .
Then

F(w) = exp_ (exp;lm + yu)

G (w)

]
it

expm(iru) px) or qg(x) resp.

T ci R
exp ¢} Or exp C) resp

Therefore, (2.6.6) and (2.6.7) follow from (2.6.13) and (2.3.2). (2.6.8) and
{2.6.9) follow in a similar manner.
g.e.d.

We now continue the proof of Thm. 2.6.1:
(2.6.6) and (2.6.7) yield
(2.6.14) lci - - 2ru| (x) < 26(x) ,

and similarly from (2.6.8) and (2.6.9), if p denctes parallel transport

along radial geodesics

(2.6.15) lpci ~ pch - 2rul (m) < 2e(x) .

(2.6.15) and Ici'+ cél < 4r  imply

(2.6.16) lcé‘2 - !

12 + <pcé + pc! 2ru>| < 8rel(xr) .

l'
since |#| < |¥] , (2.6.5), (2.6.14), and (2.6.16) then yield
. 3 .
<grad £ - u, ¥> | =7z e(x) |v]

i.e. (2.6.2).

Differentiating (2.6.5), we get
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2 ” .2
(2.6.17) Jia-l(y(t)) = <ey + cj, e = o} + 2> [53% + "E?ﬂ
dt dr 2
+ —g—-<c' -cl, > - —3~'<c' + !, 21>
02 2 1’ s=0 2 72 1’ s=1
r 4y
-t I - 3, V> - LJD o+ J!, 2rw>
2r T2 1’ 5=0 2 2 1’ s=1
4r
o4 .2 2
5 & (c2 ci ) .
4y

In the course of (2.6.5), we cbtained

_d_ 12_ !2 J—— ] 1 5 — [ I ¥ g
gt (63 mep) = oo<ey bops AW ) - ey o 2, -
Hence
42 i ;2
(2.6.18) Sy ()) = <e! 4+ e, o - !+ 2ruy |—= 4 e
2 2 17 %2 1 2 3
dt 4y 2r
1 (2% .
+________ L I A
2r €3 7 C1r YPemo

+ <ﬁi,Jl>(O)--<3é,J2>(O) - <Ui,Jl>(l) + <Ué,J2>(l)}
Since £ = riP + iz , with (2.3.4)

. .2 o] 2
(—r +A—£§} < ll—— (3 + wr ctgh(wr)) .

k4r2 2r 4r3
(2.6.14) then gives
(2.6.19) <c! + ¢!, ol - o + 2ru> |—% + | < 22E) (3 4 cegnwr)) |¥]3
2 1 2 1 2 3 2
4r 2y r
Furthermore, since
(J(s) = peJ(0) = sJ"'(s}))' = sR(c',J) c' ,

s
|3(s) = p 3(0) - s3'(s)| < A% | |? J olay| .
0

Using
sin(klc'ls) sin(Kle' | (1 - 8))
IJ(S)I = IJ(l)] sin(klc']) * [J(O)l sin(kle' )
<2 max(|3@ ], la@]) -SBE&D

sin {2Kr)
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which follows from (2.2.8), we get

, A2r252 sin(Kr)
(2.6.20) |J(s) = p J(0) - s J'(s)]| < s rex(lg@ ], Ja@]

and similarly

|3(1-5) - p J(1) + (I-s) J'(1-8)|
is estimated by the same quantity.

We are now ready to control the second term of (2.6.18). First

41zl 5

27 . . .
(2.6.21) —£r-<cé - ol P o+ <abu, | < 5

e(xr)

Next

(2.6.22) <p Jl(l) - Jl(O), Jl(0)> - <p Jz(l) - J2(0), J2(0)>
- <Jl(l) - P Jl(O), Jl(l)> + <J2(l) - P J2(0). J2(l)>

-4 <y, > =0,

since Ji(O) =Y , ql(l) = ru , Jz(l) = -¥u .
Since |%| < |¥| ., (2.6.20), (2.6.21), and (2.6.22) then give
(2.6.23) |<Ji(0), Jl(0)> - <J§(O), J2(0)> - <Ji(l), J1(1)>
+ LI, T 1)>+3—ii< el
PAREIEPY r <oy = ey P
< 4€(r) . 2 r2 sin(Kx) |.l2

r 4 sin(2Kr) )

(2.6.18), (2.6.19), and (2.6.23) finally yield

8e (r) 2e(x) 2 sin(Kr) .12
{—;;;— + —-;5—— wr ctgh{wr) + 2A rEIHTEEETJ |71

In

2
—g—z—k(‘{(t))l
dt

IN

l2

[9KA sinh (2Ax)

sin(2kr) OF Ctgh(wr)]-r P

Thus, (2.6.3) is proved.

For any geodesic ¢
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2 (Ale(®)) - t <grad &, E()>) = -t DR(&,E) .

Taking the radial geodesic from m to x , we then see that (2.6.4) follows
from (2.6.3).

g.e.d.

For later purposes, we also need to investigate how almost linear
functions depend on the base point m . To emphasize this dependence, we now
use a subscript m , i.e. write Qm(x) for the corresponding almost linear
function. Let now Y(t) be a geodesic arc, u(t) a parallel unit vector

field along <Yy(t) and QY(t)(x) the corresponding almost linear functions.

LEMMA 2.6.2 For =z e B(Y(t), P) , P < min(i(y(t)), m/2K)

(2.6.24) ‘a% by @] s 5+e 220%y .
Proof 1Let pt) = d(y(t), z)
p(t) = eXPy () (p(t) u(t))
qlt) = expy(t)(—p(t) u(t)) .
Then
(2.6.25) by @ = ZE%ET (@ (z,q(t)) - a2(z,p(t))) .

We lcok at the family of geodesics

c(s,t) = exp (sp(t) u(v)) .

Y(t)

The corresponding Jacobi field Jt(s) = g% c(s,t) then satisfies

I (0) = ¥(t)
-é% Jt(O) = p(t) ult) , since u(t) is parallel along Y
Jt(l) = p(t) .
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R D . . .
In particular, gg-Jt(O) is tangential to the geodesic c¢{(-,t) . Thus,

1]
J:orm(o) and J:orm(o) are linearly dependent, and (2.2.13) implies

(2.6.26) |pl < |p] + coshthp) |¥] .

and the same inequality holds for |§| .

(2.6.24) then follows from (2.6.26), |p| < |¥] , and d(z,a(t)) ,
d{z,p(t)) < 2p(t) .
q.e.da‘
Actually, one can even show the stronger estimate
d A2 2

(2.6.27) EE-QY(t)(z) -<u(t)y, | < ¢ o .

The proof is rather tedious, however, and hence left out, since we do not

need (2.6.27) in the sequel.

2.7 APPROXIMATE FUNDAMENTAL SOLUTIONS AND REPRESENTATION FORMULAE

We first apply Lemma 2.3.2 to construct approximate fundamental

solutions of the Laplace and the heat equation on manifolds.

LEMMA 2.7.1 Tet B(m,p) be as in Lemma 2.3.2. N° := max(k®, w?) , and let

A be the Laplace-Beltrami operator on M , and n = dim M , h(x) := d(x,m)2 .
(2.7.1) [A log r(x)]| < 212 for x¥m ifn=2
{(2.7.2) |A r(x)znnl < E%E 22 rz—n(x) for x#m 2fn=3
and ’
9}l ,-n/2 _hix) 2 hi{x) ,~-n/2 _hx)
(2.7.3) HA— %}h em{ jﬁ%]lszA ﬁﬁ_t a@[ TE%

for (x,t) ¥ (m,0) .

The proof follows through a straightforward computation from Lemma 2.3.2.

q.e.d.
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We now derive approximate versions of Green's representation formula,

first in the elliptic case.

LEMMA 2.7.2 ILet B(m,p) be as above, h(x) = d(x,m)2 . Let wn denote the

volume of the unit sphere in ®. If ¢ e C2(B(m,p), mR) , then

(2.7.4) Zf n=2 Iwz ¢ (m) + J Ad * log E%?l
B(m,PQ)
- %J o] < 20? J o]
9B (m, p) B(m,P)
(2.7.5) Zf n 23 l(n~2)wn ¢ (m) + j Ad [——in—_?~ nl—z)
B (m, P) ¥ (x) o
_ (n-2) J o] <22 )2 J lol
ot I 3B m, 0) 2 B(m,0) r(x)" 2

We note that the error term is of lower order than the other two terms

which are the same as in the Euclidean version of the Green representation

formula.

Proof we shall prove only (2.7.5) for simplicity. We put

gx) = r(x?™® - 2,

Then for € > 0

J (ghd - PAg) = J <g grad ¢ - ¢ grad g, da> .
B(m, ) \B(m,¢€) 3(B(m,P)\B(m,E))
Now
IJ dAg| < ‘—‘;—21\2 J —n—lg—L— by (2.7.2)
B(m, ) \B(m,€) B(m,P) r (x)

gloB(m,p) = 0

n-2

f ¢ <grad g, 40> = == f b
9B (m, p) p 9B (m, P)

lim

f g <grad ¢, d0> = 0
€+0 ‘0B (m,€)
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lim

I 6 <grad g, do> = (n-2)w_ ¢ (m)
>0 B(m,€)

and (2.7.5) follows.
g.e.d.

In the parabolic case, the corresponding version is
LEMMA 2.7.3 Let B(m,p) be as above,

Blm,p,ty,t) == {(x,7) € B(m,p) X [to.tl},

3=, € B0, B, $lx,0) € C(It,t], T

Then

(2.7.6) | ¢/FD® ¢m,t) + J [A - 'a?t"] o (x,T) (£-1) /2
B(mlpltolt)

2 2
S C.3 1 il R
[exp[ 4(t—T)] exp[4(t_T)]] dx dT

Cn J ] Cn J
< o] + lo(x,1) |
™2 I, 0t 1) o Jrxy=p
t £T<t
-n/2 0
+ (t—to) J l¢(x,t0)l dx
B(m, D)
2 2
2 ro(x) -n/2 r (%)
+ 2A [ o(x,T) | T (E=T) exp{* - )-
B(m,p,to,t) ‘ l (t=T) 4 (t~-T)

Here, c, 18 a constant depending only on n .

Proof we put

2

2
g(x,0) = O-n/z[exp[-éféfl} - exp[— %54] .

Let € > 0 . Then

f {g(xlt_T) [A = 8—?[] ¢(X1T) - C‘)(X,T) [A + -é%} g(X,t-T)} dx dt
B(m:pltort_s) :

J Lg(x,t-T) grad ¢(x,T) - ¢(x,T) grad g(x,t-1), d3> at
r(x)=p '

<T<t~
tO_T_t €
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+I M&m¢m¢%)w~f Bty (emt ) 2
T=t=

T=
tO

r(x)<p

rZ(X) p2
[exp{' 4(t—-to)] - exP[' 4(t-t0)” dx .

r{x)<p

Now

o (x,T) (A + -é%] g(x,t-T) dx 4T
B(m,p,to,t~€) .

2 2
2 r(x) -n/2 r (%)
< 20 f |6 (x,T) | (£=T) exp{— ] dx dr
B(m, 0ty t) (=) 4=
by (2.7.3)

g{x,t-T) = 0 if ri{x) =p

2
. /2 r (%) 2r (x) e
[ ~ & (x,T) (t~T) exp[ ZTE:?T} ZYE:¥7-<grad r(x), do>
r(x)=p
tOSTSt
o[ el
< d(x,T)
o ey =p
tOSTSt
since
(2.7.7) exp (~-y) < Sy yfa fory >0, o2
] -n/2
Pz, T) == [(t-T) exp[ - }} dx dt
JB(m,p,to,t) ot : T
2
= -y /2 -1 e .n._ 0
B(m,p,t t)¢(X'T)[(t R EXP[ 4(’5””]}[ 2+4(t—T)] e dr
1 v OI

C
3
o2 B(m, 0,y t)

' 2 2
-n/2 r (x) | _ - P
d(x,tg) (E=t ) [exp[- 4(t_to)] exp{ 4(t—t0))] dx

IA

[$(x,T)] ax art by (2.7.7) again

Jfr(x)sp

-n/2
< (t-t.) J lo(x,t )| ax
0 0
T=t

0
r(x)<p

2 2
[t ol 200 ol ) o
r(x)<p

> /am” ¢m,t) as €+ 0
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and (2.7.6) follows.

g.e.d.

For a later purpose, we also note the following formula

(2.7.8) /AM™ ¢(m,t) + —31 o (x,T) (t-1) /2
3'1')

o -
B(mrprtolt)

v’ (x) 02
[exp[- m] - exp [— m]) dx dt

2
-n/2 r(x) -
- O(x,t.) (t=-t ) n exp[— ——»:———] dx
JB(m,p) o 0 T oale-ty)
— ol + =2 o0,
< ¢ + f O (x,T)
o2 B(m,p,t,,t) o™ r =0

STt

+ c J [d(x,t )| ax
" B (m,p) 0

2
+ 242 J | (x,7) | %Eé%% (£-1) /2
B(m,p,t . ,t)
(0]
2
r (x)
exp{— ZTE:;T} dxz dt .

(2.7.8) also follows from the preceding proof by handling the boundary term at

t = tO in a different way.

We now use almost linear functions in order to also obtain an approximate
version of the derivative of Green's function. This is important for

obtaining derivative estimates for functions on manifolds.
LEMMA 2.7.4 Let B(m,p) be as before. For x e B(m,p) , x # m , we define
a(x) = Lx) () " - p ),

where (x) 18 an almost linear function.

Then
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2 " sinh (2Ar)

n+l
on K sin{(2Kr)

IA

{2.7.9) |Aal wr ctgh(wr) r for x #m .

Proof

(2.7.10) grad a = grad 2(r ™ = p ™) = nef ¥ 72 graa £ (£ = ta(s,m?)
and

Aa = ~2nr_n‘2 <grad £, grad £ + A%*’(r“n - p'n)

- n%r—n—z Af + n{n+2) L :r“n”4 Igrad f12
and hence
|Aa] < [Aﬂlrmn + 2n r*n~21£ - <grad £, grad %] + n|2] r"n—z |Af - n]

since grad £ = -exp;l m and ]grad fl =vr , cf, (2.3.3).

(2.7.9) then follows from (2.6.3), (2.6.4), and (2.3.4).

Qqee.d,

We now can prove that the gradient bound that is obtained in the
Euclidean case by differentiating Green's representation formula, again holds

on Riemannian manifolds up to a small error term.

LEMMA 2.7.5 Suppose h « CZ(B(m,p), ®) , where B(m,p) satisfies the same

assumptions as before.

Then
(2.7.11)  w_ |grad him| < —n;j [hie) - hm| +J *ﬁ}_ll'
o 49B(m,p) B(m,p)
v o2 j !h(-;_; him) |
B{m,0) r (=)

Here c 1is a constant which depends only on n and Mp .

Proof Por simplicity, we assume h{m) = O.
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Let £ be an almost linear function with

(2.7.12) <grad 2(m), grad h(m)> = lgrad h (m) |

-n

and let a(x) = 2(x) (r(x)“n - 0P ") . Then for € > 0

J (a*Ah ~ heda) = I <a grad h - h grad a, d8>
B(m,P)\B(m, €) 3(B(m,P)\B(m,€))
Now

f |a'Ah| < f m—l-égj_—i since |9,(x)1 < r(x)

B(m, P) B(m,p) r(x)

J [neda| < c*A? J ———I—llrl;_—l— by (2.7.9)

B(m,p) B(m,p) r(x)

al3B(m,p) =0

|<n grad a, ad>|=-

J n[ ] by (2:7.10) .
3B (m, P) P /9B (m,P)

> >
Furthexrmore by (2.6.4) and since dO0 = % grad f- ldol

>
>
-—]-'x;<£°grad h, 40> - %<grad 2, grad £> '—i- <grad h, grad £> '-l—%%
r r
3. 1 e
< . . .
sc°r o |grad h dO[
and hence, using (2.7.12),
- -
1lim J <a grad h, 40> = [grad h(m)| °j n-1 cosze aw™ 1
€+0 ‘9B (m,€) IS

N Igrad h(m)| .
Finally, since h(x) = <grad h, grad £> + O(x(x)%) , using (2.7.10)

>
lim f <h grad a, d0> = lim J <grad h, grad £>
€*0 ‘9B(m,€) €+0 Y 9B (m,€)

n~-2

- - >
<grad L °r ® - nel ey grad £, dO>

=0 _(1-n) |grad h(m)|, using (2.6.4) as before.
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The preceding estimates easily imply (2.7.11), noting wn = nan .

g.e.d.
2.8 REGULARITY PROPERTIES OF COORDINATES. HARMONIC COORDINATES

In this section, we are concerned with regularity properties of
coordinates on manifolds. Eventually, we shall show that harmonic
coordinates, i.e. ones for which the coordinate functions are harmonic,

possess best possible regularity properties.

We start by noting that Riemannian normal coordinates have rather poor
regularity properties. Namely, in [JK1] there was displayed the following
example of a two-dimensional metric with HOlder continuous curvature which

itself is only HOlder continuous in normal coordinates, but not bettex:

d52 = dr2 + Gz(r,¢) d¢2

with
) 21+ 2 sin®)?  for 0sbsT  (0<a<1)
G (r,9) = 5
x for W< < 2T .
For this metric
. o
Grr __.L.SZHI_SE.&_; for OSd)STl'
K=——G—= 1+ sin ¢
0 for m< ¢ < 2m .

The reason for this phenomenon is that the formula for K in normal

coordinates does not involve any derivatives of G with respect to ¢ .

Our aim is to construct coordinates for which we can control - in
contrast to normal coordinates - the Christoffel symbols in terms of

curvature bounds.

Let us first derive some general identities for any coordinate map

H = (hl,...,hn) : (B,<e,e>) > Bf], where B 1is the coordinate domain and
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<*,°> the Riemannian metric. If v ¢ TPB , then its coordinates are

v o= dhl(p)v . Thus <v,w> = gij v wj ; and choosing v = w = e v where

(ek) is an orthonormal basis of TPB , we get

(2.8.1) gjk = <grad h7, grad n> = an’ grad hk .

Moreover

(2.8.2) D2 H = <D grad H,w> = v(dH°w) = dH°D w
v,w v v

v{dH*w) - dH de -~ di*I'(v,w)

]

- dH°I'(v,w)

since dH = id is linear.
Hence we see that the Christoffel symbols [ are given by the second
derivatives of the coordinate functions. Thus, we have to contrxol those

second derivatives for suitable coordinates.

We first construct coordinates by almost linear functions. Let

U= 1{u yese U } be an orthonormal basis of T M , and 2. ,...,% the
1 n m 1 n

corresponding almost linear functions.
We define L : B(m,p) ~>*TmM = Eﬁ via

(2.8.3) Lix) = li(x)'ui(x) .

Then, if P denotes parallel transport along radial geodesics, from Thm.

2.6.1
— sinh (2Ar) 2
(2.8.4) lar - p(w ] < 2/n xA sin(2cn) © %)
2 bl i h 21\.
(2.8.5) Ip“L(x) | < 9v/n kA ‘s;fn((z»fi)’ wr ctgh (ux) °x (x)

Note that the injectivity radius of p also enters, namely by restricting the
size of the domain of definition of & . (2.8.4) implies that L is

invertible on some ball B(m,8) , where 6 depends on A , n, and the
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injectivity radius. Hence L defines coordinates on this ball, and the .

corresponding Christoffel symbols are bounded because of (258.2) and (2.8.5).

If we average this construction over all orthonormal bases U of TmM .
then the coordinates become canonical, since independent of a particular

choice of U , while keeping the estimates (2.8.4) and (2.8.5).
We call these coordinates almost linear coordinates.

Let now L : B(p,R) ~ TPM = ®' be almost linear coordinates. We then
take the harmonic map
H : B(p,R) » R

with
H|3B(p,R) = L|9B(p,R) .

We want to show that for some suitably chosen R , H 1is injective, i.e. a

coordinate map.

THEOREM 2.8.1 For each p e M there emists some R > 0 , depending only on
A% = max(|K|) ( K is the sectional curvature of M ), i(p) (the
injectivity radius of pl, and n = dim M , with the property that on
B(p,R) there exist harmonic coordinates.

Proof Let & be almost linear on some ball B(p,R) . We solve

Ah =0 in B(p,R)

h|8B(p,R) = &|3B(p,R) .

Assuming R < g% and putting k = h-2 , (2.6.3) implies

sinh(Ad(x,p))

(2.8.6)  |Ak| = 9nA% « Ad(x,p) ctgh(Ad(x,p)) * k.

e d(x,p) .

On the other hand, for

90 = ch’ (@ (xp) - B))
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by Lemma 2.3.2

M) = el (38° (x,p) (a-1) A ctg(Ad(x,p)) + 64) .

For given R < R < é% , we can calculate ¢

9 = cO(A-RO,n) for which k % ¢

0
is sub- or superharmonic, resp. Since kit ¢|3B(p,R) = 0 , the maximum

principle implies

(2.8.7) ko] < o] s o p? &

and for %, € 9B (p,R) , %, € B(p,R)

. |k(x,) = k(x,) | o |otx) |

(2.8.8) L - 29 — < 3cOA2 &
[%y = %] |%1 = 5]

or

(2.8.9) lk(x) | < 3¢ 4% B® d(x,,3B(p,R))

B ® 2 - O 2' 7 .

Let x ¢ B(p,R) , p := d(x,0B(p,R)) .. Lemma 2.7.5, applied to B(x,p) yields

lk(y) - k(x| ay + J el
B(x,p) d(x,vy)

+ cl(Ap,n) J ky) = k(x) dy

B(x,p) d(x,y)n-l

w |grad k(=) | < 2 J
n o™ JoB(x, p)

and hence with (2.8.6) and (2.8.9)

2R2.

|grad k(=) | < 02A

Here c, = CZ(ARO,n) remains bounded for fixed n and RO + 0 .

(2.6.2) then implies

(2.8.10) lgrad n(x) - u(x)| < c3A2 R,

ey = c3(A'RO,n) .

Let {ei} be an orthonormal basis of TPM . ot corresponding almost

linear functions and h' harmonic functions with hllaB(p,R) = 21|BB(9,R) .
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Putting H(x) = hl(x)ei , (2.8.10) implies
. — a2 2
{(2.8.11) ldH - 1dl < 03 Vn A° R on B{p,R) .
We then average again over orthonormal bases of TpM .

As for almost linear coordinates, we see that harmonic coordinates exist
on fixed balls, the radius of which depends only on i(p) (since R < i(p) is
necessary for the above constructions), A2 ;, and n .

g.e.d.

If (gik) is the metric tensor for the harmonic coordinates constructed

above, then from (2.8.1) and (2.8.10)

(2.8.12) lglk - lel [<grad ht - ut, grad > - <a', grad hk - uk>|

A

2 2 2 2 2 2
(2+c31\. R)c3A R —c4A R .

(2.8.12) implies

<
ngik“w - c4nA2 R2
and hence
9 2 C4A2R2
(2.8.13) Iy ~ Gikl < c4A R "gikum < .

1 - c4nA2 R2
We now want to estimate the Christoffel symbols for harmonic coordinates.

LEMMA 2.8.1 Iet H = (h',...,n™ be harmonic coordinates. Then, if (e,)

is an orthonormal frame, satisfying V i(ej) =0 at x

e
(2.8.14) AgtF = A<grad nt, graa n'>
=2r_ nt v owa2nt 65,
mn T m n 32754
[ [=] e e e’ e

where Rmn is the Ricci tensor.

The proof uses the calculations presented in 1.6.
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LEMMA 2.8.2 There exists some Ry > 0 , depending only on n , 22 s ilp) s

with the property that for all R < R, on B(p,R) there exist harmonic

0
coordinates the metric tensor g of which satisfies

2 2
CSA R

(2.8.15) lae@) | < s mem

for x € B{p,R) ,

where cg = cS(n,ARO) .

Proof since

(2.8.16) e, <grad h', grad B> = n'. . b,
Sz’ ejegl eJ eJ J Q’
e e

in normal coordinates, (2.8.10) and (2.8.14) imply

(2.8.17) |Ag] < 2lricl (1 + c3A3R2)2 + %—(1 + c3A2R2) lag|? .
We now use a method of Heinz [Hzl] to cobtain (2.8.15).
Let W= max  d(x,0B(p,R)) |dg(x)] .

xeB(p,RO)

Then there is some % € B(p,RO) with

(2.8.18) B o= d(x,,0B(p,R))) iag(xl)l ,
and

u
(2.8.19) lag@) | = = .

0

Let 4 := d(xl,BB(p,ROH ; l.e. §'= |dg(xl)| .

By Lemma 2.7.5, applied to B(xl,de) , 0<0<1

C
(2.8.20) &« —= J lgta - gtz | + o J lageal il
ae d(x,x,)=d46 B{x.,d0) d(x,x.)
1 1 1
2 lgG) = glx)) |
+ c7A ——
B(xl,de) d(x,x,)

it

: I + II + III .
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By (2.8.12)
c8A2R2
b=—g
by (2.8.17)
2 P
IT < c_ a8 (Iricll + |ag|®) < c_lricl a8 + 2¢c_ 46 =~ ,
9 9 97 g2

if we choose © < % , since then for x e B(xl,de) d(x,BB(p,RO)) > d(1-0) =
and by (2.8.12) again
4 2
<
III < clOA R® a6 .
Hence

1 2.2 . 2,2 4.2 2.2 2
< =
(2.8.21) u < 5 (c8A R® + 09||R1c" a“e” + clOA R® 4°0%) + 2c99u

2
1 22 u
Y al“R® + pb T -

a and b depend only on n and ARO (for R < RO ) .

We now choose RO so small that

(2.8.22) abAzRé <1.

Then (2.8.21) implies that for each 0 < % either

1-7/1 - abA2R2

W<

bb
oxr
L1 +V1 - ab’R? ., 1+Y1 - ab/*g?
> 2 2
b b
=: Y -

On the other hand, for each ul > U there is some 0. < 3 with

0 1
1—|/1—ab/\2R2<Ll <l+/l-abA2R2
bel 1 bel .

Hence the second possibility cannot hold for any 8 < % , and the first one

therefore is valid for each 6 < % , in particular for 6 = % , and

YN
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U< 2aA2R2 .
(2.8.15) then follows from the definition of u .

g.e.d.

Lemmata 2.8.1 and 2.8.2 now imply in conjunction with linear elliptic
theory, that dgij is Holder continuous on balls B(p,R) , R < RO with any
exponent O € (0,1) . We only have to observe that the Laplace-Beltrami
operator, written in harmonic (or almost linear) coordinates, now is a
divergence type elliptic operator with Cl-coefficients while the right-hand
side of (2.8.14) is bounded since the Christoffel symbols can be expressed in
terms of dgik . The corresponding estimates for the Green's functions of A
can be found in [GW]. The important point is that even the Holder norm of
dgik for harmonic coordinates depends only on the dimension, the injectivity

radius, and curvature bounds, but does not involve any curvature

derivatives.

. . 2 .
We want to present a simple proof of this result for o = 3 using

almost linear functions.

Let us first define the notion of Holder continuity in a way which is
invariant under renormalizations. A map £ : B{p,R) » Y is called Holder

continuous with exponent o , if for all x,v ¢ B{(p,R)
- o
A(£(x), £(y) < const. - a(x,m? .

Similarly, the k-th derivative of £ is Holder continuous, if

1~ (k+0ai)

IDk £f(x) - Dk f(y)i < const. R d(x,y)m .

THEOREM 2.8.2 Let p e X. There exists Ry >0, depending solely on the
ingectivity fadius of p ,. the dimension n of the considered mariifold % and

bounds for the sectional curvature on B(p,RO) with the property that for
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R < RO there exist harmonic coordinates on B(p,R) the metric tensor

g = (gij) of which satisfies on each ball B{p,(1-8)R)
c(AR_,n)
2.2
(2.8.23) |ag| < ———— NR" .
C2/3 62

In particular, the Holder norms of the corresponding Christoffel symbols are

bounded in terms of ARO and n .

Proof Let x be a basepoint, U = (ul,...,un) be an orthonormal base of
TXX , and denote by Lx(z) = (Qi(z),...,li(z)) the corresponding vector

valued almost linear function. Finally, put
b_(z) = L_(z) =d(x z)mn
x X ! :

We now want to estimate Igrad v(x) - grad v(y)l for vwvi(z) = glj(z) . The

claim then follows from (2.8.12) and Lemma 2.8.2.

Let x,yY € B(p,R) , m be the average of x,y , i.e. that point on the

geodesic arc joining x and y with equal distance to both of them, and

/3 2/3

p = C'd(x,y)l °R , where C will be chosen later.

As in the proof of Lemma 2.7.5, we obtain

(2.8.24) wn[grad v(x) - grad v(y)| < lim [J {(v(z) - v(x) Mb_(2)
€¥0 ‘B(m,p)\B(m,E)

- (v(z) - v(¥)) Aby(z>} az| + IJ (b, (2) = b (2)) Av(z) dz|

B(m,p)
+ If (b_(z) - b_(z)) <grad v(z), ao>|
9B(m,p) ¥ Y
+ [J {(v(z) - v(x)) <grad b_(z), a> - (viz) - viy))
BB(mrp)

N
» <grad by(z), ac>}|
=: I + II + III + IV .

First of all, by Lemmata 2.7.4 and 2.8.2



(2.8.25) Ic<

(Note that we do not exploit the difference Abx - Aby in I, since we
control only the absolute value of Ab , as we do not want to admit

dependence of the estimates on curvature derivatives.)

Choosing w.l.0.g. x and y close together and C suitably, we can

assume

1/3 R2/3 < S8R .

(2.8.26) 5d(x,y) < p = C°d(x,y)
We then split II into

(2.8.27)

| -]
B(m, 0) JB(m,5<il<x,y)> B(m,0)\B(m,5d (x,7))

-+
IIa IIb

(2.8.15), (2,8.17) and the definition of b give

AR
SR

. 5 2.2y2
(2.8.28) IIa < CllA d(x,y)(l + } .

For IIb, we write
2 (z) - & (2)
(2.8.29) b _(2) - b_(z) = =T s L (z)[ e n}
Y d(x,z) d(x,z) d(y,z)

and use Lemma 2.6.2 and (2.8.15), (2.8.17) to get

c 2 2
o 12 AR -0

o 1
< d(x,y) P
b 1-0 (§R)2

(2.8.30) IT
taking d(x,z), d(y,z) 2 d(x,y) on B(m,p)\B(m,5d(x,y)) into account.

Similarly, we get

013A2R2 -1
(2.8.31) IIT < g d(x,y)°p .
R
Finally, we write the integrand of IV as

(v(z) = v(x)) (grad bxz - grad byz) - (v(x) = v(y)) grad by(z) .
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If we use the splitting of (2.8.29), then the only nontrivial expression to
estimate is

|grad L. (2) - grad zy(z)] .

For this purpose, let Y(t) be the geodesic arc from x to y and let Pt

be the parallel transport along geodesics emanating from 7Y(t) . Then from

(2.6.2)
2
lat o) (@ - Bou® @] < ey avw,a)” .
Moreover
IPt-u(t) (z) = P_cu() (z)] < ey Aly(t),z)-dly(t),v(D) .
Thus
2
]grad Qx(z) - grad Qy(z)] < 16 o} for =z € oB(m,pP) .
Altogether, we get
017A?R2 22 -1
(2.8.32) Iv < ——~gﬁ~—'(A o+ d(x,y)°0 ) .
Putting everything together, and using p = Cd(x,y)l/3 R2/3
2_2
c, AR
I+ II + III + IV < —1—5-3—5—-— {/\2ch2 + %] g /3 d(x,y)z/3 .
§

This is just the right power of R , since grad v contains the second
derivatives of the coordinate functions hi . This finishes the proof.
qg.e.d.
Moreover, we note that once having proved Thm. 2.8.2 or Lemma 2.8.2,

(2.8.14) in conjunction with linear elliptic theory implies

THEOREM 2.8.2 Let R < R, , where R

5 18 chosen as in Thm. 2.8.2, and let

g = (gij) be the metric temsor of the corresponding harmonic coordinates on

B(p,R) . If the Riemann curvature tensor on B(p,R) <is of class & on

k+ k+1+
c+R (k e N, Be (0,1) , then g e C L+

+2+
J+2+B

(for every o e (0,1)) or

g e€ . resp., in the interior of B(p,R) . The corresponding estimates
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depend in addition to the quantities mentioned in Thm. 2.8.2 on the & or

k-t
C B-norm, resp., of the curvature tensor.

That harmonic coordinates possess best possible regularity properties
was first pointed out by de Turck-Kazdan [dTK]. The explicit construction
implying the existence of harmonic coordinates on fixed (curvature controlled)

balls and the explicit estimates of this section are due to Jost-Karcher [JK1].

Finally, for later purposes, we need still another construction of
coordinates. We want to introduce coordinates with curvature controlled

Christoffel symbols in a neighbourhood of a point ¢ ¢ B(p,M) , without using

any information of the geometry outside B(p,M) . We suppose again that
M < g% , M < i(p) . In case dip,q) < #M , we taken an arbitrary orthonormal

base erreeeey of TqY (B(p,M)CY, dim ¥ = n) . If d(p,q) > M , we choose
S RARERLN in such a way that I e, is tangent to the geodesic from g to

p . We now want to show that the geodesics expp(t'ei) stay inside B(p,M)
for t < to , where to > 0 can be estimated from below in terms of w , M,
and n . Indeed, by the Rauch-Toponogow Comparison Theorem (cf. [GKM],

p.lo4f),
W~ ~
s < ~tee.
d(p, equt ei) < d (p, equt el) y

where the right hand side is the distance in the comparison triangle in the
plane of constant curvature -wz , with dw(ﬁ,ﬁ) = d{p,q) ., éi having the

same angle with the geodesic form ¢ to P as e, has with the geodesic

from ¢ to p . Consequently

cosh (wd (p, exgqtei)) < cosh wt ° cosh(wd(p,q)) - %~sinh wt ° sinh(wd(p,q))

in

cosh wt ° sinh WM - %~sinh wt ° sinh WM ,

if t £ iM

IA

cosh WM ,

if t <t , say.
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Then, for t < t0 = min(E,%M) B d(p,equtei) < M , and consequently the

geodesics exp stay inside B(p,M)}) for t £ t_ .

qes 0
LEMMA 2.8.4 In a neighbourhood B(g,T) N B(p,M) of q € B(p,M) , we can
define local coordinates for which the Christoffel symbols are bounded in

absolute value and T > 0 18 bounded from below, both in terms of W , K ,_

n, M only, via

1 2 2
ki(s) := EE; (d" (s, equ tO ei) d"(s,q)) .

Proof By Lemma 2.3.2
(2.8.33) Ip%k, (s)] < ¥ corn &

i t 2

0

if d(s,q) £ iM , and
(2.8.34) dqu is an isometry ,

n
where k = (k kn) : B(p,M) > R .

1rt et

This easily implies a lower bound 7T for the radius of the set on which k
is injective. Furthermore, the Christoffel symbols are given by D2k (cE.
(2.8.2)), and hence the bound on the Christoffel symbols follows from

(2.8.33).

g.e.d.



