32 Appendix The Eigenvalue Problem

In order to discuss the stabilities of a minimal surface, we need some general knowledge
of the (Dirichlet) eigenvalues of a self-adjoint second order elliptic operator.
Let © € R™ be a bounded domain and L be a self-adjoint second order elliptic
operator
Lu = Di(aijD]»u + b'u) — b Dyu + cu,

where (a¥) is symmetric. We suppose that L satisfies

a’ (z)&€ > MEP, Yz e Q, £ € RY, (32.186)
3 la¥ (@) P < A2 2A—2i (Ib'@)]? + A e(@)]) <2, Vo eQ, (32.187)
=1

for some constants A, A, v > 0.
Define (u,v) = J,uvdz, and a quadratic form on H = H(Q) = W,*(Q) by

L(u,v) = /Q(a,ijDiuDjv + b'uD;v + b'vDyu — cuv)dz = —(Lu, v).

The ratio

J(u) =

%(—w, uz0, u€H,

U, u)
is called the Rayleigh quotient of L.

By (32.186) and (32.187) we see that J is bounded from below. In fact, writing
b= (b,---,b") and |b]? = 3; |b|?, we have

L(u,u) = [(aijDiuDju + 2b'uD;u — cu?)dx

JYL

Vv

i [A\DUP - (%)\IDUP oAb + cu2)] dz
(by (32.186) and Schwarz's inequality)
1
/Q <§A\Du|2 - /\u2|u|2) dz (by (32.187)) (32.188)

v

v

A

<§C"1 - /\y2> / |u|?dz (by Poincaré’s inequality).
o)

Hence we may define

A= inf J. (32.189)

We claim now that A; is the minimum eigenvalue of L on H; that is, there exists
a non-trivial v € H such that Lu + \ju = 0 and )\; is the smallest number for which
this is possible. To show this we choose a minimizing sequence {u,,} C H such that
|tmlzz = 1 and J(um) — A1
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By (32.188) and |um|z2 = 1, we have
%/Q]DumIQda: <200 + L (U, Um) < 20002 + |Ay]),

hence {u,,} is bounded in H. Thus by the compactness of the embedding H — L?(),
a subsequence, which we still note as {un,} itself, converges in L?(2) to a function u
with |u|r2 = 1. Since Q(u) = L(u,u) is quadratic, we also have for any [, m,

Q (U512) + 0 (ML) = 2@ + Qlun).

2
Since
U+ Um\ U+ U, U1+Um>
Q( 2 >_£( 2 2

. UL+ Um U+ Up\ U+ U U+ Uy
g (e ) (e i)

we have 1 n )

U — U, Uy + Uy,

Q(*5™) < 3 Q) + QM) — M[*=2 [, 0.

Again by (32.188),

%/Q |ID(uw — up)|Pdz < L(U — U, ug — Um) + 2)\1/2/ lup — U |*dz

IA

4Q < ) + 227 |up — U |32 — 0,

and so we see that {u,,} is a Cauchy sequence in H. Hence u,, — v in H, and moreover
Let v € H and consider
L(u+tv,u+tv) Qu)+ 2tL(u,v) + *Q(v)

J(u+tv) = (u+tv,u + tv) - (u,u) + 2t(u,v) + t2(v,v)

By (32.189), we have

0=

dJ(u + tv) , _ 2L(u,v) (u,u) — 2(u, v)Q(u)

(a,u)? = 2[L(u,v) — A\ (u,v)],

ie.,
a¥DyuD;v + b'uD;v + b'vDyu — cuv — M\juv)dz = 0.
J
Q

Integrating by parts we obtain

/Q [Dj (aijDiu + bju) — b Du+ cu + /\1u] vdx = /Q(Lu + A\u)vdz = 0.
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By the arbitrariness of v € H, we must have Lu + A\ju = 0.
On the other hand, suppose v € H satisfies Lv + ov = 0 (such a o is called an
eigenvalue and v is called an eigenfunction corresponding to o). Then

0= /Q(Lv + ov)vdr = —L(v,v) + o(v,v).

We have
o=J) > iI}lIfJ(u) = Ay,

and thus A; is the minimum eigenvalue.
Let A be an eigenvalue, the eigenspace V) corresponding to A is defined by

{ue H|Lu+ lu = 0}.

If we arrange (as we will always do) the eigenvalues of L in increasing order A;, g,
-+, and designate their corresponding eigenspaces by Vi, Vs, ---, we may characterize
the eigenvalues of L through the formula

Am = inf{J(u) ’u #0, (u,v)=0, Ywve{Vi, -+, V_1}}. (32.190)

We summarize the above in the following result. Readers can refer to the books [21]
(Theorem 8.37, p 214) and [10] (Chapter V, especially page 424 ).

Theorem 32.1 Let L be a self-adjoint operator satisfying (32.186) and (32.187). Then
L has a countably infinite discrete set of eigenvalues, & = {A\n}, given by (32.190).
Whose eigenfunctions span Wol’Q(Q). Furthermore, dim V,,, < 0o and lim,,_yeo A = 00.

We also need the Harnack inequality,

Theorem 32.2 (See [21] Corollary 8.21, page 199) Assume L satisfies (32.186) and
(32.187), u € WhH2(Q) satisfies u > 0 in Q, and Lu = 0 in . Then for any Q' CC
we have

supu < Cinf u,

Qo Qf

where C' = C(n, A/ X\, v, 0, Q).
Theorem 32.3 Given vy, -+ -, vs_1 € H, let
p=inf{J(u)|ve H, u#0, (u,v;)=0, 1<i<k—1}.

Then we have A, < u.
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Proof. Take ¢; as the i-th eigenfunction corresponding to the i-th eigenvalue A;, 1 <
i < k. We can assume that ¢;’s are orthonormal in L?(2). We can select k constants
dy, - -, dg, not all zero, such that

k
Zdi/qbivjdw:O, 1<j<k—1.
i-1 Y0

Let ¢; = di(Th_; d?)7*/* and define f = ¥, ci¢i. Then (f,f) = £E,cZ = 1, and
(f,v;)) =0for 1 <i <k —1. By the definition of ;1 we have

k k
=1 =1

O
Theorem 32.4 Let Qy, ---, Q, be pairwise disjoint domains in Q. Considering the
eigenvalue problem for each ); and arrange all the eigenvalues of Qq, -+, Qu, in an

INCcreasing sequence
v SUp <

then we have
/\kgvk for kZl

Proof. Choose ; to be the eigenfunction corresponding to v; in the related domain
and extend 1; by 0 such that ¢; € H = W01’2(Q) for 1 <4 < k. We can assume that
the 1;’s are orthonormal. For any hy, -+, hx—_; € H, as in the proof of Theorem 32.3
we can select ¢; not all zero, and f = Y& | c;h; such that (f, f) = 1 and (f, h;) = 0 for
1 <j <k—1. If we select h; as the i-th eigenfunction corresponding to A;, then by
Theorem 32.3 and (32.190),

k
e <J(f)=L(F, f) =D Gvi < vy,
=1

O

Combining the above with the Harnack inequality, we have an immediate corollary:

Corollary 32.5 If Q' C Q, and the eigenvalues of L on H(Q) are X, X}, ---, then
ANo>Amy, m=1, 2, 3---.
If Q' C Q is a proper subdomain, i.e., @ — (¥ contains an non-empty open set, then

N> Amy, m=1, 2, 3---.
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Remark 32.6 We have neglected the boundary regularity of subdomains in the the-
orems, but it is true that if w on €' satisfies Lu + Au = 0 and u|sg = 0, then
u € Wy () € H. See [5], page 21. '

Let ¥ = 5% and L = Ay, be the spherebLaplacian, Q=X and 9Q = @. Then it is
well known that A\; = 0 and Ay = 2. Hence we have

Corollary 32.7 Let Q2 C % be a proper domain, then the second eigenvalue of the
sphere Laplacian on § is larger than 2.

Let u,, be the m-th eigenfunction corresponding to the m-th eigenvalue \,,. Define the
nodal set of U, as Zy, = {z € Q: up(z) =0}

Theorem 32.8 ([10], p 452) Z,, divides the domain Q2 into no more than m subdo-
mMains.

Proof. Suppose Z,, divides §2 into more than m subdomains; label them as €, €,
oo, Qu, k> m, and let Z,, UUL, Q; = Q.

Since u,, does not change sign on each €;, 1 < ¢ < k, Harnack’s inequality tells
us that u,, #Z 0 on Q; (in fact, the nodal set has measure zero). Hence for each Q;,
1 < i< m, we can define a v; € H by v; = u,, on §;, and v; = 0 elsewhere. Define

w; = Hvi”;%v,-, then (w;,w;) = 1. We see that w; satisfies Lw; + Apw; = 0. Since
Jowiw;dz = 6%, {w;}i, is linearly independent.

For the m — 1 eigenfunctions wy, -, Um_1 in H corresponding to the first m — 1
eigenvalues, as in the proof of Theorem 32.3, we can select m constants ¢y, - - -, ¢p, 10t

all zero, such that

Zci/wiujd:z:zO, 1<j<m—1,

=1 79
and Y70, ¢Z = 1. Define ¢ = 372, cow;; then (¢,¢) = £, ¢ = 1 and (¢,u;) = 0 for
1<i<m-—1 LetQ =IntUr, Q; then ¢ € H(Q) C H(Q). Notice that ' is a

proper subdomain of €2, since the ; are nonempty subdomains of Q for m+1 < < k.
By (32.190) we have

A < J(B) = L(d,¢) = — /Q oLodz = — 3 cic; /Q w; Lw;dz
= - 3 C?/\m ’LU,?dCL' = Y C?/\m = Am.

Hence ¢ is an eigenfunction corresponding to the m-th eigenvalue, but ¢[(2 — Q') =0
contradicts Harnack’s inequality. This contradiction proves the theorem. O

Corollary 32.9 The first eigenfunction ¢1 corresponding to the first eigenvalue does
not change sign in . All other eigenfunctions must change sign in Q. Moreover,
dim ‘/,\1 =1.
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Proof. ¢; does not change sign by Theorem 32.8. This also shows that the eigenfunc-
tions corresponding to the first eigenvalue must be either positive or negative, but two
of them cannot orthogonal to each other, thus dim V), = 1. Let ¢; be the i-th eigen-
function where ¢ > 1, then by (é1,¢;) = 0 we know that ¢; has to change sign in Q.
a
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