
29 Shiffman's Theorems 

Recall that we defined a CBA as a minimal annulus A E S( -1, 1) such that A(1) = 
An P 1 and A( -1) =An P_1 are continuous convex Jordan curves. In the article [76] 
published in 1956, Max Shiffman proved three elegant theorems about a CBA. They 
are as follows: 

Theorem 29.1 If A is a CBA, then An Pt is a strictly convex Jordan curve for every 
-1 < t < 1. In particular, X: AR Y S(-1, 1) is an embedding. 

Theorem 29.2 If A is a CBA and r = oA is a union of circles, then An Pt is a circle 
for every -1 :::; t:::; 1. 

Theorem 29.3 If A is a CBA and r = oA is symmetric with respect to a plane 
perpendicular to xy-plane, then A is symmetric with respect to the same plane. 

We are going to prove the three Shiffman's theorems by means of the Enneper­
Weierstrass representation. We have already proved a weaker version of Theorem 29.1, 
namely Theorem 27.2 

Let us first prove Theorem 29.1. We follow the proof of Shiffman. We will write the 
immersion as X = (x, y, z). For any ( = reie E AR, since X is conformal, by (27.124) 
we have 

,2 + 2 _ 2 ( 2 I 2) + 1 
Xe Ye - r x,. ' Y,. (log R)2 

The immersion X: AR Y S( -1, 1) satisfies 

2 2 1 
Xe + Ye ~ (log R)2. (29.150) 

Since X is continuous on AR, A(1) and A( -1) are convex and hence rectifiable. More­
over, x(R, e) and y(R, e) are functions of bounded variation. Thus x0 (R, e) and y8(R, e) 
exist almost everywhere. Let I denote the set on which x 8 (R, e) and Ye(R, e) both exist. 
We will first prove that: 

Lemma 29.4 For any e E I, 

lim xe(r, e) = .Te(R, e), lim Ye(r, e)= Ye(R, 8), 
r~R r~R 

(29.151) 

and 
2 2 1 

Xe(R, e)+ Ye(R, e) ~ (log R)2. (29.152) 
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Proof. Let x and y be harmonic functions defined over the disk DR := r :S R with 
·· boundary values given by x(R, B) and y(R, B) respectively. The functions x(r, B) -x(r, B) 

and y(r, B)- y(r, B), being harmonic in AR and having the boundary value 0 on r = R, 
can be extended across r = R by reflection. Thus 

xo(r, B)- xo(r, B) -+ 0, Yo(r, B) - y0 (r, B) -+ 0, 

as r-+ R. 
Let P be the Poisson kernel of DR, 

P(Reicf> reio) = ~ R2 - r2 
' 2n R2 + r 2 - 2Rrcos(¢- B) 

Then the harmonic function x can be expressed as 

{271" 
x(r, B)= lo x(R, ¢)P(Reicf>, rei0 )d¢ .. 

Differentiating, we have 

{k 8P {k 8P {k 
x 0 (r, B)= lo x(R, ¢) 8B d¢ =- lo x(R, ¢) 8¢ d¢ = lo Pdx(R, ¢). 

It follows, as in the proof of theorem of Fatou (see [59] pages 198 -200) that 

lim x0(r, B) = xo(R, B) 
r-+R 

on I. Similarly for y0 . From (29.150) it is obvious that (29.152) is true. D 

Consider the harmonic function '1/J(r, B), the angle of the tangent vector of An Pt 
with the positive x-axis. We denote the angle defined by the tangent direction at A(1) 
by 'l/;(R, B) on I. Because of the convexity of A(1), 'l/;(R, B) is a monotonic function 
of B on I of period ±2n. We can assume that the period is 2n, and we shall call the 
orientation described on A(1) as B varies from 0 to 2n the positive orientation of A(1). 
The following lemma will be proved. 

Lemma 29.5 The period of '1/J(r, B) is exactly 2n, and 

lim '1/J(r, B) = 'l/;(R, B) for B E I. 
r-+R 

The single valued function '1/J(r, B) - B is a bounded harmonic function in AR· 

Proof. Consider the convex curve A(1). Select a point Q1 on A(1) at which there is a 
unique supporting line L of A(1), and let Q3 be a point on A(1) where a line parallel 
to L, but not coinciding with L, is a supporting line of A(1). Select a direction not 
included among the directions of all the supporting lines of A(1) at the point Q3 and 
let Q2 and Q4 be two points of A(1) at which there are supporting lines, distinct from 
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each other, in this direction. The numbering is such that Q1 , Q2 , Q3 , Q4 occur in the 
positive orientation around A(1). Consider these four supporting lines as taken in the 
positive direction in describing A(1), and let angles made by them with the positive 
x-axis be a 1 , a 2 , a 1 + 1r, a 2 + 1r, respectively, where 

Let the points on the circle r = R which are mapped onto Q1 , Q2 , Q3 , Q4 , be denoted 
by q1 , q2 , q3 , q4 , respectively. On the circle r = R denote the open arc from q1 to q3 

(taken in the positive orientation and therefore including q2 ) by B1 , the open arc from 
q2 to q4 by B2, from q3 to q1 by B3, and from q4 to q2 by B4 . Finally, let Ci be a closed 
arc on r = R contained in Bi, i = 1, 2, 3, 4, such that the C; together cover r = R. 

Note that 
(xe, Ye) = (x~ + y~) 1 1 2 (cos1/J, sin 1/J), 

(ye, -xo) = (x~ + y~) 1 12 (sin 1/J,- cos 1/J). 

Consider first the function 

y1 (r, e) = y(r, e) cos 0:1 - x(r, e) sin 0:1, 

which is a harmonic function of (r, e) in AR. Then 

8Y1 (r, e) 
ae Ye(r, e) cos et1- xe(r, e) sin et1 

(ye, -Xe) (r, e) <11> (COS et1, sin et1) 

(x~ + y~) 1 12 (sin 1/J,- cos 1/J)"'" (cos a 1 , sin a I) 
(x~ + y~) 1 12 sin('l/J- a1). 

(29.153) 

(29.154) 

On the arc B 1 of r = R, the function Y1 ( R, e) is a monotonically increasing function 
of e, since the arc B 1 corresponds to the portion of A(1) from Q1 to Q3 ; thus a 1 ::; 1/J::; 

a 1 +Jr. In analogy to the proof of Lemma 29.4, the formula for aV1~,e) is 

(29.155) 

where CB1 is the complement of B1 . The first integral in (29.155) is 2: 0 for all (r,13), 
since Y1 (R, ¢) is an increasing function of ¢ in B1 ; the second integral in (29.155) 
approaches 0 as ( r, 8) approaches an interior point of B1 . Thus 

l . . f 8Y1(r, e) > 0 lm 111 . 
(r,O)--+C1 8() -

It follows that likewise 
l. . f 8Y1 (r,8) >O 
1m m . 

(r,8)--+C1 8e - (29.156) 
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Take a positive E and E1 = (log R)-1E such that 

. . ( cx2 - cx1 cx1 + 1r - Ctz) 6 = arcsm E < mm 2 , 2 . 

By (29.156) there is a region Rl in AR, enclosing cl, for which 

8Y1(r, e) ae > -El, (r, e) E R1. 

From (29.150) and (29.154) we therefore see that 

sin('l,b-cxl)>-E in R1 . (29.157) 

Selecting a determination of 1,b at a particular point of R1, we have 

(29.158) 

A similar argument applies to each of the other arcs B 2 , B3 , B 4 of the circle r = R, 
with cx2 , cx1 + n, cx2 + n, respectively, replacing cx1 in (29.153)-(29.158). On B 2 the 
function Y2 = y cos ();2 - X sin ();2 is an increasing function of e' leading to the result 

l. . f 8Yz(r, 8) > O 1m m . 
(r,O)-+C2 (I() -

There is, therefore, a region R2 of AR, enclosing C2 , for which 

And we have, analogously to (29.157), 

sin( 1,b- cx2 ) > -E m R2. 

But this means, from (29.158), begin with an already determined 1,b in the region com­
mon to R1, R2, that 

-6 < 1,b- Ctz < 1r + 6 in R2. 

Similar arguments apply successively to the determination of the regions R3 , R 4 and 
of the corresponding inequalities for 

(29.159) 

Therefore, in the portion common to R4 and R1, the value of 1,b returns to its initial 
value plus exactly 2n, or the period of 1,b is exactly 2n. 

The regions R 11 R2 , R 3 , R4 , together form a neighbourhood of the circle r = R in 

AR· 
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A similar argument as the above applies to the inner circler= 1IR and A(-1). By 
continuity, 1/J has period 2JT for every 11 R :::; r :::; R. 

Let e be a value ih the set I and take the limit of 1/J(r, e) as r ---+ R. By (29.151), 
(29.152) the limit of 1/J(r, e) is 1/J(R, e) modulo 2JT. But the inequalities (29.157), (29.158), 
(29.159) show that the limit must be exactly 1/J(R, e). The lemma is proved. 0 

We can now establish the inequality 

1/Je(r, e) > 0 (29.160) 

everywhere in the interior of AR· Let G = G(R, ¢, r, e) be the Green's function for the 
annular ring AR, with singularity at (r, e). In its dependence on¢ and e, G is a function 
of¢- e. We have 

where v is the inward normaL This follows by considering the analogous formula for an 
interior annular ring, and performing the passage to the limit. Differentiating (29.162) 
with respect to e, using 8( ac I 8v) I ae = -8( ac I av) I 8¢, and intergrating by parts, we 
find 

'i/Jo- 1 = i=R R~~ d['I/J(R, ¢)- ¢] + l=R-1 R- 1 ~~ d['I/J(R- 1, ¢)- ¢] 

or 
[ 8G 1 8G 

1/Je = Jr=R OV R d?j;(R, ¢) + r=R-1 8v R-1d'ljJ(R-1' ¢)' 

since 

1 8G Rd¢ + 1. 8G R-ld¢ = f 8G ds = 1. 
r=R OV r=R-1 OV laAR 8v 

Since 8GI8v > 0 and 1/J(R, ¢), 7/J(R-1 , ¢) are monotonic increasing functions of¢ 
period 2JT, inequality (29.160) is obtained. Thus each A(t) is a closed strictly convex 
curve and has total curvature 2JT, so it must be a Jordan curve. Therefore, X must be 
an embedding. Theorem 29.1 is proved. 0 

Theorem 29.2 is a special case of Theorem 30.1 in the next section, so we will 
postpone the proof until then. Instead we will prove Theorem 29.3 nexL 
Proof of Theorem 29.3 : We can assume that 8A is with respect to the 
xz-plane. By Theorem 29.1, each A ( z) is a strictly convex Jordan curve for -1 < z < 1; 
hence there are exactly two points on A n Pz at which the supporting lines of are 
perpendicular to the xz-plane. Varying z we get two curves on A, say o:1 and 0:2. Let 
P be the orthogonal projection on the xz-plane. The A consists of two pieces of graphs 
on the domain 0 = P(A) C xz-plane, thus we have (x, Yi(x, z), z), i = 1, 2. Moreover, 
f)fl = r 1 u r 2, where r 1 is the projection of A(l) u A( -1) and r2 = P(a1 u o:2). It is 
clear that on r 2 the graphs (x, Yi(x, z), z) are perpendicular to the xz-plane. 
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Now assume that A(1) and A( -1) are strictly convex. Reflecting the graph generated 
·· by y2 about the xz-plane we get a minimal graph generated by fh = -yz : S1 ---+ R. On 

f 1 , we have f;2 = y1 by the boundary symmetry. A theorem of Giusti ([22] Lemma 2.2) 
says that if (x, y1 (x, z), z) and (x, fh(x, z), z) are perpendicular to the xz-plane on f 2 

and y1 2: fJz on r 1, then Y1 2: fJ2 on S1. Since Y1 = fJz on f 1, we have Y1 = fJz in D. 
If A(l) or A( -1) is not strictly convex, then by continuity of the surface, we know 

that for any E > 0 there is a 6 > 0 so small that y1 (x, 1 - t) 2: f;2 (x, 1 - t) - E and 

y1 (x, -l+t) 2: f;2 (x, -1+t) -E for 0 < t < 6. Thus on Dn{(x, z) \-1+5 < z < 1-o}, 
y1 2: f;2. Letting E ---+ 0, we have Y1 2: fJ2 in D. Changing the role of Y1 and fJ2, we have 
Y1 = fJ2 in D. 

But y1 = f;2 means that A is symmetric about the xz-plane, the proof is complete. 
D 
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