29 Shiffman’s Theorems

Recall that we defined a CBA as a minimal annulus A € S(—1,1) such that A(1) =
AN P and A(—-1) = AN P_; are continuous convex Jordan curves. In the article [76]
published in 1956, Max Shiffman proved three elegant theorems about a CBA. They
are as follows:

Theorem 29.1 If A is a CBA, then AN P, is a strictly conver Jordan curve for every
—1 <t < 1. In particular, X : Ap — S(=1,1) is an embedding.

Theorem 29.2 If A is a CBA and I’ = 0A is a union of circles, then ANP; is a circle
for every —1 <t < 1.

Theorem 29.3 If A is a CBA and I' = J0A is symmetric with respect to a plane
perpendicular to xy-plane, then A is symmetric with respect to the same plane.

We are going to prove the three Shiffman’s theorems by means of the Enneper-
Weierstrass representation. We have already proved a weaker version of Theorem 29.1,
namely Theorem 27.2

Let us first prove Theorem 29.1. We follow the proof of Shiffman. We will write the
immersion as X = (z,y,2). For any ¢ = re? € Ag, since X is conformal, by (27.124)
we have

zp+yp =17z + ) +

(log B)*
The immersion X : Agp — S(—1,1) satisfies

1
2 I — 29.150
x9+y0_ (10gR)2 ( )
Since X is continuous on Ag, A(1) and A(—1) are convex and hence rectifiable. More-
over, z(R, 0) and y(R, §) are functions of bounded variation. Thus zy(R, §) and ye(R, 6)
exist almost everywhere. Let I denote the set on which z4(R, 8) and ys(R, 0) both exist.
We will first prove that:

Lemma 29.4 For any 6 € 1,

}i;l;%wg(’l”, (9) = xg(R, 6), 7lgl’}l%g,/g(’)”, 9) = yg(R, 9), (29.151)

and
1

(29.152)
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Proof. Let T and 7§ be harmonic functions defined over the disk Dg := r < R with
boundary values given by z(R, ) and y(R, 6) respectively. The functions z(r, 0) —Z(r, 9)
and y(r,0) — y(r, 0), being harmonic in Ag and having the boundary value 0 on r = R,
can be extended across r = R by reflection. Thus

.739(7’, 9) - 59(T7 9) - 07 yo(r, 9) - ?9(73 9) —0

asr — R.
Let P be the Poisson kernel of Dg,

1 R% — 2

i
P(Re',re?) = o1 R? + 1% — 2Rr cos(¢ — )

Then the harmonic function T can be expressed as

z(r,0) = /0% z(R, ¢)P(Re™, re?)dg.
Differentiating, we have
2T oP
To(r,0) = [ a(R,6)55dé = — /0 z(R, ¢ d¢ / Pda(R, ).

It follows, as in the proof of theorem of Fatou (see [59] pages 198 -200) that

hl’I}l%_fg(T, 0) = zo(R, 0)

r—r

on I. Similarly for ys. From (29.150) it is obvious that (29.152) is true. i

Consider the harmonic function (r, ), the angle of the tangent vector of AN P,
with the positive z-axis. We denote the angle defined by the tangent direction at A(1)
by ¥(R,0) on I. Because of the convexity of A(1), ¥(R,6) is a monotonic function
of 8 on I of period £27. We can assume that the period is 27, and we shall call the
orientation described on A(1) as 6 varies from 0 to 27 the positive orientation of A(1).
The following lemma will be proved.

Lemma 29.5 The period of ¥(r,0) is exactly 2w, and

lim ¢(r,0) = ¢ (R,0) for 0 € I.
r—R
The single valued function ¥(r,0) — 0 is a bounded harmonic function in Ag.

Proof. Consider the convex curve A(1). Select a point Q; on A(1) at which there is a
unique supporting line L of A(1), and let Q3 be a point on A(1) where a line parallel
to L, but not coinciding with L, is a supporting line of A(1). Select a direction not
included among the directions of all the supporting lines of A(1) at the point Q3 and
let @y and @4 be two points of A(1) at which there are supporting lines, distinct from
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each other, in this direction. The numbering is such that Qq, @2, Q3, @4 occur in the
positive orientation around A(1). Consider these four supporting lines as taken in the
positive direction in describing A(1), and let angles made by them with the positive
z-axis be ay, aa, a1 + 7, as + 7, respectively, where

g <o<oa+rm<ay+T.

Let the points on the circle » = R which are mapped onto @1, @2, @3, Q4, be denoted

by 1, g2, g3, qa, respectively. On the circle r = R denote the open arc from ¢; to g3

(taken in the positive orientation and therefore including ¢3) by Bj, the open arc from

g2 to q4 by Bs, from q¢3 to ¢; by Bs, and from g4 to go by By. Finally, let C; be a closed

arc on r = R contained in B;, ¢ = 1, 2, 3, 4, such that the C; together cover r = R.
Note that

(x97y9) = (Zﬁg + yg)l/Q(COS wa sin w)a
(ys, —20) = (z5 + y3)"/*(sin ¢, — cos ).

Consider first the function
Yi(r,0) = y(r,0) cosag — z(r,0) sin oy, (29.153)
which is a harmonic function of (r,60) in Ag. Then

% = yp(r,0) cosa; — zy(r,0) sin oy
(yo, —24)(r,6)®(cos ay, sin o)
= (x5 +y3)"*(sin v, — cos ) e (cos g, sin o)

= (a7 +y3)"sin(y — ). (29.154)

On the arc By of r = R, the function Y;(R, 6) is a monotonically increasing function
of 0, since the arc By corresponds to the portion of A(1) from @ to @3; thus oy < 9 <

a1 + m. In analogy to the proof of Lemma 29.4, the formula for 39&(19;’—9) is

%%ﬁl _ (/B +/CBI) PAYi(R, ) (20.155)

where C'B is the complement of By. The first integral in (29.155) is > 0 for all (r,0),
since Y1(R, ¢) is an increasing function of ¢ in Bj; the second integral in (29.155)
approaches 0 as (r,0) approaches an interior point of B;. Thus

8?1 (T, 9)

) ) S
lim inf —g 20
It follows that likewise oY (r.6)
. . 17
_— > (0. .
lim (T,;)njCl 50 2 0 (29.156)
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Take a positive € and €; = (log R) e such that

. . [ —Qp apFT =
6 = arcsin € < min

2 2
By (29.156) there is a region R; in Ag, enclosing Cy, for which

Y1 (r, 0)
20~
From (29.150) and (29.154) we therefore see that

—€1, (T’, 9) S Rl.

sin(¢y —a;) > —e in Ry. (29.157)
Selecting a determination of ¢ at a particular point of Ry, we have
—0 < ’(/J - < 7T+ 6 in R;. (29158)

A similar argument applies to each of the other arcs Bs, Bs, By of the circle r = R,
with ag, ay + 7, ag + m, respectively, replacing «; in (29.153)-(29.158). On B, the
function Y5 = ycos ag — xsin a5 is an increasing function of 6, leading to the result

9Y3(r, 0)

li inf ————~>0.
i (r,(;)n—>02 o0 -

There is, therefore, a region Ry of Ag, enclosing Cs, for which

0Ys(r, 0
—%—)‘ > —€1, (T‘, 9) (S RQ.

And we have, analogously to (29.157),
sin(y) — ap) > —¢ in Ry.

But this means, from (29.158), begin with an already determined % in the region com-
mon to Ry, Ry, that '
—0<YP—ay<m+§ in Ry.

Similar arguments apply successively to the determination of the regions R3, R4 and
of the corresponding inequalities for :

—0<tYp—(a1+7m)<m+din Ry, —6<t¢—(ae+7m)<m+6 in Ry. (29.159)

Therefore, in the portion common to R4 and Ry, the value of 1 returns to its initial
value plus exactly 27, or the period of ¢ is exactly 2.

The regions R;, Ry, R3, R4, together form a neighbourhood of the circle r = R in
Ag.
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A similar argument as the above applies to the inner circle r = 1/R and A(—1). By
continuity, ¢ has period 27 for every 1/R < r < R.

Let 6 be a value in the set I and take the limit of 1(r,d) as r — R. By (29.151),
(29.152) the limit of ¢ (r, 0) is (R, §) modulo 27. But the inequalities (29.157), (29.158),
(29.159) show that the limit must be exactly ¢(R, ). The lemma is proved. O

We can now establish the inequality
Ye(r,0) >0 (29.160)

everywhere in the interior of Ag. Let G = G(R, ¢, 1,0) be the Green’s function for the
annular ring Ag, with singularity at (r,0). In its dependence on ¢ and 6, G is a function
of ¢ — 6. We have

W(r,0) —0 = /a AR[¢(T,¢)—¢]2—GdS (29.161)

. e
_ /T:RW(R,@"¢]R%d¢+/r:R_l[w(R 8) ~ GRS dg,

where v is the inward normal. This follows by considering the analogous formula for an
interior annular ring, and performing the passage to the limit. Differentiating (29.162)
with respect to 8, using 9(0G/dv)/00 = —0(0G/dv)/I¢p, and intergrating by parts, we
find

aG
vo—1= [ REAW(R6) - g+ [ ROSZAW(R™,9) -]
or PYe
z/)e:/r:Ra—RdwRqs | SZRau(R,g),
since / aGRng / 8GR_1¢ %d 1
R OV R oA Ov

Since G /v > 0 and ¥(R, ¢), ¥(R™!, ¢) are monotonic increasing functions of ¢ of
period 27, inequality (29.160) is obtained. Thus each A(t) is a closed strictly convex
curve and has total curvature 27, so it must be a Jordan curve. Therefore, X must be
an embedding. Theorem 29.1 is proved. O

Theorem 29.2 is a special case of Theorem 30.1 in the next section, so we will
postpone the proof until then. Instead we will prove Theorem 29.3 next.
Proof of Theorem 29.3 : We can assume that 0A is symmetric with respect to the
zz-plane. By Theorem 29.1, each A(z) is a strictly convex Jordan curve for —1 < z < 1;
hence there are exactly two points on AN P, at which the supporting lines of A(z) are
perpendicular to the zz-plane. Varying z we get two curves on A, say a; and ap. Let
P be the orthogonal projection on the zz-plane. The A consists of two pieces of graphs
on the domain Q = P(A) C zz-plane, thus we have (z,y;(z, 2),2), ¢ = 1, 2. Moreover,
90 =T’y UTy, where I'; is the projection of A(1) U A(—1) and 'y = P(ay U a). It is
clear that on I's the graphs (z,y;(z, ), z) are perpendicular to the zz-plane.
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Now assume that A(1) and A(—1) are strictly convex. Reflecting the graph generated
by 2 about the xz-plane we get a minimal graph generated by 2 = —y5 : 2 = R. On
', we have 7, = y; by the boundary symmetry. A theorem of Giusti ([22] Lemma 2.2)
says that if (z,v1(x, 2), 2) and (z, §2(z, 2), 2) are perpendicular to the zz-plane on I'y
and y; > 7, on ['1, then y; > 7> on 2. Since y; = 2 on I'y, we have y; = 7, in Q.

If A(1) or A(—1) is not strictly convex, then by continuity of the surface, we know
that for any ¢ > 0 there is a § > 0 so small that y;(z,1 — t) > @a(z,1 — t) — € and
yi(x, —1+1t) > oz, —1+t)—e for 0 < t < 6. Thus on QN{(z, 2) . —1406 < z<1-6},
y1 > Jo. Letting ¢ — 0, we have y; > ¢ in Q. Changing the role of y; and §», we have
Y1 = f2 in .

But y; = §» means that A is symmetric about the xz-plane, the proof is complete.
0
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