27 Minimal Annuli in a Slab

Recall that a catenoid is a rotation surface, hence is foliated by circles in parallel planes.
A good question to ask is whether there are other minimal annuli which can be foliated
by circles. It was B. Riemann [72] and Enneper [14] who solved this problem very
satisfactorily. The answer is that there is only one one-parameter family of such surfaces
up to a homothety. Fach minimal annuli in this one-parameter family is contained in
a slab and foliated by circles, and its boundary is a pair of parallel straight lines.
Rotating repeatly about these boundary straight lines gives a one-parameter family of
singly periodic minimal surface; these surfaces are called Riemann’s examples.

For the details of the proof of existence and other properties of Riemann’s examples,
see [61], section 5.4, Cyclic minimal surfaces. For constructions of Riemann’s examples
using the Weierstrass functions please see [25]. It is also known that a pair of parallel
straight lines can only bound a piece of Riemann’s example, if they bound any minimal
annulus at all, see for example, [17].

Now we are going to study minimal annuli in a slab. Let P, = {(z,y,2) € R3|z =
t} and S(t1,t2) = {(z,9,2) € R3[t; < 2 < ty, 1 < to}. Consider a minimal annulus
X : Ar = S(t1,ts) such that X({|z| = 1/R}) C P, X({|z| = R}) C P, and X is
continuous on Ar. We will call such a minimal annulus a minimal annulus in a slab.
By a homothety we can normalize £, and ¢5 such that t; = —1 and ¢, = 1. We will
denote the image X(Ag) C S(—1,1) by A and let A(t) = ANP, for -1 <t < 1.
When discussing a minimal annulus in a slab, we often just refer to it by the image
A = X(Ag).

We want to derive the Enneper-Weierstrass representation of a minimal annulus in
a slab. Let A be a minimal annulus in a slab. The third coordinate function X3 is
harmonic, X3|{|z]:1/R} = —1, and X3|{!Z|:R} = 1. By uniqueness of solutions to the
Dirichlet problem

Au =0 in Int(Ag)

ul{jzl=1/ry = —1, U|{|z1—R} =1,

where Int(Ap) is the interior of Ag, we have X3 = log |z, and

log R

1 1
10g2> dz = l——g‘—R‘; dz

ws = f(2)g(z)dz = QQX?’ dz = 4 (

Oz dz \log R

Hence f(z) = Here of course g is the Gauss map in the Enneper-Weierstrass

representation lggnlzzj‘((Z) )dz = 7. Thus by (6.26) we have
wi = ra(;—9)dz
Wy = epas(s t9)dz (27.124)
Wy = logRid’z
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The immersion is given by

;1 1
X(p) = ( (2 —9), —(=+g), ;)dz+C, (27.125)

logR 2zg 2z°g

where C = (a,b,0) € R3. Since X is well defined, for v = {|z| = 1} C Ag,

1.1 1,1 1 - :
R / S 2)dz=0. 27.12
(5:G-91 5G+a, L)as (27.126)
On the other hand, if ¢ and f are meromorphic and holomorphic functions in Ag,
such that (27.124) defines three holomorphic 1-forms and (27.126) is satisfied, then
(27.125) defines a minimal annulus in the slab S(-1,1).
The conformal factor of a minimal annulus in a slab is

1 1 2
A2=————<—+ g) ) , 27.127
Thog BPTE \Jg] 1! (27.127)
and the Gauss curvature is
4logR|z||gng'|r
K= |—S gl 27.128
[ 0+ g (27.128)

One observation about the Gauss map of a minimal annulus in a slab is:

Proposition 27.1 Let A be a minimal annulus in a slab such that X is smooth up to
the boundary (in fact, C* will be enough), then the Gauss map g of A has no zeros or
poles on Ag. Furthermore, |g| and |g|™' are both bounded.

Proof. From (27.125) we see that for any —1 < ¢t < 1, A(t) = AN P; is the image
X ({|]z] = R'}). From Corollary 4.5 we get immediately that g has no zeros or poles in
Int(Ag), because otherwise the preimage of A(t) will have an equiangular system of at
least order 4 at the pole or zero points.

Since X is continuous on Ag, A is compact. It remains only to prove that on the
boundary of A, the Gauss map N is not perpendicular to the xy-plane. Since our
boundary is smooth, the projection of the boundary into the zy plane satisfies the
sphere condition, inner or outer. By boundary regularity theory, X is C** «a € (0,1),
up to the boundary (see [12], Vol. 2, Chapter 7), hence at every boundary point there
is a well defined normal direction. '

Near any boundary point p that has a vertical normal, the surface is a graph over a
small open disk D C P; with p on D, assuming that p € A(1). Then we can use the
minimal surface equation (4.8). We write (z,y,2) € A, where z = z(z,y) satisfies

(1+ Zz)zzx — 2252y Zay + (L + 22) 2y = 0.
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Since X3, the third coordinate function of A, is harmonic, by the maximum principle
we have for any (z,y) € D that z(z,y) < 1 = z(p). Define a uniformly elliptic operator
on a smaller domain if necessary, A

Lu = (1+ 2))tar — 2202y Uay + (1 + 22 )ty

Then z satisfies Lz = 0. It is well known that

0z
ov
where v is the outward normal to 9D at p (see [21], Lemma 4, page 34). But this means
that the normal is not vertical. This contradiction proves that IV is never vertical on the
boundary of A. Since X is smooth, g and g~' are continuous up to boundary (we can

see this by g = 7oN); hence by the maximum principle both |g| and |g|~! are bounded.
O

(p) >0,

If a minimal annulus A in a slab satisfies that A(—1) and A(1) are continuous convex
Jordan curves, we will call A a conver boundary minimal annulus or CBA.

Theorem 27.2 If A is a CBA and I' = 0A is smooth, then AN P; is a strictly convex
Jordan curve for every —1 <t < 1. In particular, X : Ap <= S(—1,1) is an embedding.

Proof. By Proposition 9.2 we have A = X (Ag) for some R > 1. And by regularity
theory, X is smooth up to the boundary. At any point of A(t) = AN P, -1 <t <1,
draw a tangent vector to the curve A(t), and let 1) be the angle made by this tangent
vector with the positive z-axis. The 1 may be a multivalued function, but we will see
that it is harmonic. To see this, consider the unit normal vector 7 of the curve A(t),
and its angle with the positive z-axis ¢. If we orient the surface such that the normal
is inward to the unbounded component of S(—1,1) — A, then we have ¢ = ¢ + 7/2.
By Proposition 27.1, g # 0 or co on Ag, hence the unit normal vector 7 must be
T;LI € C =2 R? in complex form. Because ¢ = argg = Slogg, ¢ is harmonic and so is 9.

Now suppose that s is the arc length parameter of the curve A(t) and notice that
by (27.125) X Y(A(t)) = {2z : |2| = r = R'}. Writing z = re®, we can calculate the
curvature of A; as follows:

K = ¢5—¢5~ds(\flogg)—\s<dslogg>—\s dleggds

! z de ! '
. (%%E) -G (%izr"lA‘1> — rIATIR (%) .

Here we have used the facts that on the curve {|z| = r = R'},

% =ire’ =iz, and ds= Aldz| = Ard.
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Since h = R (z%) = rAk is harmonic and rA > 0, we see that if I" is smooth (in fact

C?* is enough) convex then h > 0 on AR, and hence by the maximum principle, A > 0
in Int(Ag) and so k = r"*A7'h is also positive. Thus A(t) is locally strictly convex.
Since I' = A(1) U A(—1) consists of two Jordan curves, we have

/|z|=Ri1 kds = 2.

By continuity it must be that
/|| kds =2r for —1<t<1.
z|=Rt

This proves that A(t) must be simple. Since x > 0 on A(¢), we conclude that A(t) is a
strictly convex Jordan curve for —1 < ¢ < 1. O

Remark 27.3 We have used the non-trivial regularity theorem which says that if 9A
is C%® then X : Ag — S(—1,1) is also C**. See [12] II, Theorem 1, page 33.

Theorem 27.4 Let A be a CBA and A be smooth. Then there is a p > 1 such that
the Gauss map g : Ag — C is a conformal diffeomorphismto Q C A, ={2€ C:1/p <
2| < o}

Proof. By Proposition 27.1, |g| and |g|~! are both bounded, and so we need only prove
that ¢ is a diffeomorphism. Indeed, by Theorem 27.2,

r AT R(2g' /g9) = k > 0,

and so ¢’ # 0 in Int(Ag) and hence g is a local diffeomorphism.

Consider the set v = {z : ¢(z) = const}. Since argg = ¢ = ¢ — 7/2 is strictly
increasing on each {|z| = r} C Int(Ag) (remember that Kk = ¢5 > 0, in fact ¢ takes
every value between 0 and 27 on {|z] = r} exactly once), we see that «y is a smooth
Jordan arc connecting {|z| = 1/R} and {|z| = R}. Let { be the unit tangent vector
of v and 7 its unit normal vector, such that (f; ) has positive orientation. Then since
log g = log|g| + iarg g is holomorphic, we have —7log|g| = i¢ = 0 and so tlog|g| # 0
on v, as otherwise we would have ¢’ = 0. Thus whenever argg(z;) = argg(z2) and
21 # 29, then log|g(21)] # log|g(22)], so g(z1) # g(z2). The holomorphic function g is a
one-to-one local diffeomorphism, hence is a conformal diffeomorphism. O

Corollary 27.5 The total Gauss curvature of a CBA is larger than —4.

One interesting corollary of Theorem 27.4 is that

Corollary 27.6 If A is a CBA with smooth boundary then the second eigenvalue of L 4
18 positive.
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Proof. By Theorem 27.4, N is an anti-conformal diffeomorphism. By Corollary 32.7
of Appendix, the second eigenvalue of Ag on (N(Ag)) is larger than 2, thus Ay(A) > 0.
- :

Remember that the index of A is
Index(A) = > dimV,(4),

A<0

where V) is the eigenspace corresponding to the eigenvalue A.
Corollary 27.7 Let A be a CBA, then

0, if A is stable or almost stable;
Index(A) = (27.129)
1, if A is unstable.

Proof. We need only prove the unstable case. First assume that A is smooth. By
Corollary 32.9 of Appendix and Corollary 27.6, dim V3, = 1 and A2(A4) > 0, hence
Index(A) < 1. But if A is unstable, Index(A4) > 1, thus Index(A) = 1.

If 0A is only continuous, we define a family of diffeomorphisms of A into itself by

fi(2) = fi(re?®) =r7le? 0<t< 1.

Then fo =Id4,, fi(Ar) C fs(Ag) for 0 < s <t <1, and limy,; fi(ARr) = {2 : |z| = 1};
thus lim;—,; Vol(f:(Ag)) = 0.

Using the embedding X, we get a family of diffeomorphisms of A into A, ¢; =
XofioX™1 0 <t <1, satisfying ¢;(4) = AN S(t — 1,1 —t). Note that by Theorem
29.1 of Section 29, each ¢;(A), 0 < t < 1is a CBA and has smooth boundary, we can
use Theorem 27.4 and Corollary 27.6. Moreover, we have

1. ¢y = identity;

2. ¢i(A) Ces(A), for0<s<t<1,

3. lim;1 Vol(ci(A)) = 0.

Recall that nullity(c;(A)) = dim Vp(ct(A)). By a theorem of Morse, Simons, and Smale
(see [46], p 52) we have that

Index(A) = > nullity(c;(4)).
>0
If ¢;(A) is almost stable then 0 is the first eigenvalue of ¢;(A), so by Corollary 32.9 of
Appendix, nullity(c;(A)) = dim Vy(c:(A4)) = 1. For any s > ¢, ¢;(A) C c:(A) is a proper
subdomain, so A1(cs(A)) > A(c(A)) = 0 and nullity(cs(A)) = 0. If ¢;(A) is unstable
and nullity(c;(A4)) > 0, then 0 is at least the second eigenvalue of ¢;(A), contradicts
Corollary 27.6. Hence we have proved that at most one ¢t € (0,1) can be such that
nullity(c:(A)) = 1 and for the other ¢ we must have nullity(c;(A)) = 0. We conclude
that Index(A) < 1. But if A is unstable, Index(A) > 1, thus Index(A4) = 1. O
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Theorem 27.8 The index of the catenoid is 1.

Proof. Let C be the catenoid given by Example 14.2. C(t) := CNS(—t,t) is a CBA for
t > 0. Thus index(C(t)) < 1. Since any precompact domain B in C — {0} is contained
in some Ag, it follows X (B) C X(Ag) = C(log R). By the definition of index of C, see
(20.85), we have index(C) < 1.

Since g(z) = z is one-to-one we know by Section 20 that any precompact domain Q C
52 —{(0,0,1), (0,0, —1)} such that the first eigenvalue of Ag, A\ (2) < 2, corresponding
to an unstable precompact domain on C. Since the first eigenvalue of Ag on S? is
0, there are plenty precompact domains in S? — {(0,0,1), (0,0,—1)} with the first
eigenvalue less than 2, a consequence of the fact that A; is continuously dependent on
domains. Thus C' is not stable and index(C) > 1. i
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