
27 Minimal Annuli in a Slab 

Recall that a catenoid is a rotation surface, hence is foliated bycircles in parallel planes. 
A good question to ask is whether there are other minimal annuli which can be foliated 
by circles. It was B. Riemann [72] and Enneper [14] who solved this problem very 
satisfactorily. The answer is that there is only one one-parameter family of such surfaces 
up to a homothety. Each minimal annuli in this one-parameter family is contained in 
a slab and foliated by circles, and its boundary is a pair of parallel straight lines. 
Rotating repeatly about these boundary straight lines gives a one-parameter family of 
singly periodic minimal surface; these surfaces are called Riemann's examples. 

For the details of the proof of existence and other properties of Riemann's examples, 
see [61], section 5.4, Cyclic minimal surfaces. For constructions of Riemann's examples 
using the Weierstrass functions please see [25]. It is also known that a pair of parallel 
straight lines can only bound a piece of Riemann's example, if they bound any minimal 
annulus at all, see for example, [17]. 

Now we are going to study minimal annuli in a slab. Let Pt = {(x, y, z) E R 3 lz = 
t} and S(t1 , t2 ) = {(x, y, z) E R 3 lt1 :::; z :::; t2 , t1 < t 2}. Consider a minimal annulus 
X : AR Y S(t1, t2) such that X( {lzl = 1/ R}) c Ptj) X( {lzl = R}) c Pt2 and X is 
continuous on AR· We will call such a minimal annulus a minimal annulus in a slab. 
By a homothety we can normalize t1 and t 2 such that t 1 = -1 and t2 = 1. We will 
denote the image X(AR) c S( -1, 1) by A and let A(t) = An Pt for -1 :::; t :::; 1. 
When discussing a minimal annulus in a slab, we often just refer to it by the image 
A= X(AR)· 

We want to derive the Enneper-Weierstrass representation of a minimal annulus in 
a slab. Let A be a minimal annulus in a slab. The third coordinate function X 3 is 
harmonic, X 3 l{lzl=l/R} -1, and X 3 klzi=R} = 1. By uniqueness of solutions to the 
Dirichlet problem 

{ 
6u= 0 

ul{lzl=l/R} = -1, Uj{lzi=R} = 1, 

where Int(AR) is the interior of AR, we have X 3 = lo~R log lzl, and 

8 3 d(l ) 11 
w3 = f(z)g(z)dz = 2 ozX dz = dz log R log z dz = log R-;- dz. 

Hence f ( z) = lo~ R zg(z)" Here of course g is the Gauss map in the Enneper-Weierstrass 
representation and f(z)dz ='fl. Thus by (6.26) we have 

wl - 1-.l(l- g)dz 
logR 2z g 

W2 1 i e + )dz 
JogR 2z g g (27.124) 

W3 1 ld 
!ogRz z. 
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The immersion is given by 

X(p) = -~J,P -(--g), -(-+g), - dz+C, 1 ( 1 1 i 1 1) 
log R 1 2z g 2z g z 

(27.125) 

where C = (a,b,O) E R 3 . Since X is well defined, for ry = {lzl = 1} cAR, 

1 ( 1 1 i 1 1) __, 
~ -(--g), -(-+g), - dz=O. 

7 2z g 2z g z 
(27.126) 

On the other hand, if g and f are meromorphic and holomorphic functions in AR, 
such that (27.124) defines three holomorphic 1-forms and (27.i26) is satisfied, then 
(27.125) defines a minimal annulus in the slab S(-1, 1). 

The conformal factor of a minimal annulus in a slab is 

and the Gauss curvature is 

K = _ [4logRizllgll9'1] 2 

(1 + lgl2)2 

One observation about the Gauss map of a minimal annulus in a slab is: 

(27.127) 

(27.128) 

Proposition 27.1 Let A be a minimal annulus in a slab such that X is smooth up to 
the boundary (in fact, C 2 will be enough), then the Gauss map g of A has no zeros or 
poles on AR. Furthermore, lgl and lgl-1 are both bounded. 

Proof. From (27.125) we see that for any -1 ::; t::; 1,A(t) =An Pt is the image 
X( {lzl = Rt} ). From Corollary 4.5 we get immediately that g has no zeros or poles in 
Int(AR), because otherwise the preimage of A(t) will have an equiangular system of at 
least order 4 at the pole or zero points. 

Since X is continuous on AR, A is compact. It remains only to prove that on the 
boundary of A, the Gauss map N is not perpendicular to the xy-plane. Since our 
boundary is smooth, the projection of the boundary into the xy plane satisfies the 
sphere condition, inner or outer. By boundary regularity theory, X is C 1'"', a E (0, 1), 
up to the boundary (see [12], Vol. 2, Chapter 7), hence at every boundary point there 
is a well defined normal direction. · 

Near any boundary point p that has a vertical normal, the surface is a graph over a 
small open disk D c P1 with p on oD, assuming that p E A(1). Then we can use the 
minimal surface equation (4.8). We write (x,y,z) E A, where z = z(x,y) satisfies 
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Since X 3 , the third coordinate function of A, is harmonic, by the maximum principle 
we have for any (x, y) ED that z(x, y) < 1 = z(p). Define a uniformly elliptic operator 
on a smaller domain if necessary, 

Lu = (1 + z~)uxx - 2zxZyUxy + (1 + z;)uyy· 

Then z satisfies Lz = 0. It is well known that 

8z 
8v (p) > O, 

where vis the outward normal to 8D at p (see [21], Lemma 4, page 34). But this means 
that the normal is not vertical. This contradiction proves that N is never vertical on the 
boundary of A. Since X is smooth, g and g-1 are continuous up to boundary (we can 
see this by g =ToN); hence by the maximum principle both lgl and lgl-1 are bounded. 
D 

If a minimal annulus A in a slab satisfies that A( -1) and A(1) are continuous convex 
Jordan curves, we will call A a convex boundary minimal annulus or CBA. 

Theorem 27.2 If A is a CBA and r = 8A is smooth, then An Pt is a strictly convex 
Jordan curve for every -1 < t < 1. In particular, X: AR Y 5( -1, 1) is an embedding. 

Proof. By Proposition 9.2 we have A = X(AR) for some R > 1. And by regularity 
theory, X is smooth up to the boundary. At any point of A(t) =An Pt, --1 :::; t:::; 1, 
draw a tangent vector to the curve A(t), and let 1/J be the angle made by this tangent 
vector with the positive x-axis. The 1/J may be a multivalued function, but we will see 
that it is harmonic. To see this, consider the unit normal vector n of the curve A(t), 
and its angle with the positive x-axis ¢. If we orient the surface such that the normal 
is inward to the unbounded component of S ( -1, 1) - A, then we have 1/J = ¢ + 1r /2. 
By Proposition 27.1, g f 0 or oo on AR, hence the unit normal vector n must be 
i!r E C ~ R 2 in complex form. Because ¢ = arg g = CS log g, ¢is harmonic and so is 1/J. 

Now suppose that s is the arc length parameter of the curve A(t) and notice that 
by (27.125) x-1 (A(t)) = {z : lzl = r = Rt}. Writing z = rei0 , we can calculate the 
curvature of At as follows: 

K, = 1/Js =cPs= ~(CS!ogg) = CS (~logg) = CS (~loggdz) 
ds ds dz ds 

G (g' dz de) _ G (g',. -lA-1) _ -1A-11n ( g') ::s --- - ::s -1zr - r :n z- . 
g~~ g g 

Here we have used the facts that on the curve {lzl = r = Rt}, 

dz . ;e . 
de = zre = zz, and ds = Aldzl = Arde. 
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Since h = 2R ( z f) = r A"' is harmonic and r A > 0, we see that if r is smooth (in fact 
· C2,a is enough) convex then h 2: 0 on oAR, and hence by the maximum principle, h > 0 

in Int(AR) and so"'= r-1A-1h is also positive. Thus A.(t) is locally strictly convex. 
Since r = A(I) U A( -1) consists of two Jordan curves, we have 

r "'ds = 21r. 
}JzJ=R±l 

By continuity it must be that 

{ K,dS = 21f for - 1 S t S 1. 
JJzJ=Rt 

This proves that A(t) must be simple. Since "'> 0 on A(t), we conclude that A(t) is a 
strictly convex Jordan curve for -1 < t < 1. D 

Remark 27.3 We have used the non-trivial regularity theorem which says that if oA 
is C2,a then X: AR '---+ S( -1, I) is also C2,a. See [12] II, Theorem 1, page 33. 

Theorem 27.4 Let A be a CBA and oA be smooth. Then there is a p > 1 such that 
the Gauss map g : AR -+ C is a conformal diffeomorphism to 0 C Ap = { z E C : 1/ p s 
lzl S p}. 

Proof. By Proposition 27.1, jgj and jgj-1 are both bounded, and so we need only prove 
that g is a diffeomorphism. Indeed, by Theorem 27.2, 

and so g' # 0 in Int(AR) and hence g is a local diffeomorphism. 
Consider the set 'Y = {z : ¢(z) = const}. Since argg = ¢ = 'ljJ- 1rj2 is strictly 

increasing on each {izl = r} C Int(AR) (remember that "' = ¢s > 0, in fact ¢ takes 
every value between 0 and 21r on {izl = r} exactly once), we see that 'Y is a smooth 
Jordan arc connecting {izl = 1/R} and {izl = R}. Let tbe the unit tangent vector 
of 'Y and n its unit normal vector, such that ({, n) has positive orientation. Then since 
logg = logjgj +iargg is holomorphic, we have -filogjgj = {¢ = 0 and so tlogjgj # 0 
on "(, as otherwise we would have g' = 0. Thus whenever arg g(z1 ) = arg g(z2) and 
z1 # z2, then log jg(zl)l #log jg(z2)j, so g(z1) # g(z2). The holomorphic function g is a 
one-to-one local diffeomorphism, hence is a conformal diffeomorphism. D 

Corollary 27.5 The total Gauss curvature of a CBA is larger than -41f. 

One interesting corollary of Theorem 27.4 is that 

Corollary 27.6 If A is a CBA with smooth boundary then the second eigenvalue of LA 
is positive. 
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Proof. By Theorem 27.4, N is an anti-conformal diffeomorphism. By Corollary 32.7 
of Appendix, the second eigenvalue of L-.s on (N(AR)) is larger than 2, thus A2 (A) > 0. 
0 

Remember that the index of A is 

Index(A) = L dimV,\(A), 
A<O 

where VA is the eigenspace corresponding to the eigenvalue A. 

Corollary 27.7 Let A be a CBA, then 

{ 
0, if A is stable or almost stable; 

Index(A) = 
1, if A is unstable. 

(27.129) 

Proof. We need only prove the unstable case. First assume that 8A is smooth. By 
Corollary 32.9 of Appendix and Corollary 27.6, dim V,\1 = 1 and A2 (A) > 0, hence 
Index(A) ::_:; 1. But if A is unstable, Index(A) 2: 1, thus Index(A) = 1. 

If 8A is only continuous, we define a family of diffeomorphisms of AR into itself by 

ft(z) = ft(rei 8 ) = r1-tei8 , 0 ::_:; t < 1. 

Then fa= IdAR' ft(AR) C !s(AR) for 0 ::_:; s < t < 1, and limt--ti ft(AR) = {z: jzj = 1}; 
thus limt--tiVol(ft(AR)) = 0. 

Using the embedding X, we get a family of diffeomorphisms of A into A, c1 = 
X oftox-I, 0 ::_:; t < 1, satisfying c1(A) =An S(t- 1,1- t). Note that by Theorem 
29.1 of Section 29, each Ct(A), 0 < t < 1 is a CBA and has smooth boundary, we can 
use Theorem 27.4 and Corollary 27.6. Moreover, we have 

1. co = identity; 
2. Ct(A) C c5 (A), for 0 ::_:; s < t < 1; 
3. limt--tiVol(ct(A)) = 0. 

Recall that nullity(c1(A)) =dim V0 (c1(A)). By a theorem of Morse, Simons, and Smale 
(see [46], p 52) we have that 

Index(A) = Lnullity(ct(A)). 
t>O 

If ct(A) is almost stable then 0 is the first eigenvalue of Ct(A), so by Corollary 32.9 of 
Appendix, nullity(ct(A)) =dim Vo(ct(A)) = 1. For any s > t, c8 (A) C c1(A) is a proper 
subdomain, so AI (cs(A)) > AI (ct(A)) = 0 and nullity(cs(A)) = 0. If c1(A) is unstable 
and nullity(ct(A)) > 0, then 0 is at least the second eigenvalue of Ct(A), contradicts 
Corollary 27.6. Hence we have proved that at most one t E (0, 1) can be such that 
nullity(ct(A)) = 1 and for the other t we must have nullity(ct(A)) = 0. We conclude 
that Index(A) ::_:; 1. But if A is unstable, Index(A) 2: 1, thus Index(A) = 1. 0 
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Theorem 27.8 The index of the catenoid is 1. 

Proof. Let C be the catenoid given by Example 14.2. C(t) := CnS( -t, t) is a CBA for 
t > 0. Thus index(C(t)) ::::; 1. Since any precompact domain Bin C- {0} is contained 
in some AR, it follows X(B) C X(AR) = C(log R). By the definition of index of C, see 
(20.85), we have index(C) ::::; 1. 

Since g(z) = z is one-to-one we know by Section 20 that any precompact domain 0 c 
5 2 - { (0, 0, 1), (0, 0, -1)} such that the first eigenvalue of t:-,. 8 , .:\1 (0) < 2, corresponding 
to an unstable precompact domain on C. Since the first eigenvalue of 1':-,.8 on 5 2 is 
0, there are plenty precompact domains in 52 - {(0, 0, 1), (0, 0, -1)} with the first 
eigenvalue less than 2, a consequence of the fact that .:\1 is continuously dependent on 
domains. Thus C is not stable and index( C) 2: 1. 0 
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