26 Isoperimetric Inequalities for Minimal Surfaces

It is well known that for a plane Jordan curve with length L, the area A enclosed
by the curve is less than or equal to L?/4w, with equality holding if and only if the
curve is a circle. In this section we give such isoperimetric inequalities for simply or
doubly connected minimal surfaces. For more general discussions and applications of
the isoperimetric inequalities the reader can see [69].

The proof of the next theorem is from [68].

Theorem 26.1 Let M C R3? be an immersed simply connected minimal surface with
C = 0M a closed curve. Let L be the arclength of C, A the area of M, then

L? —47A > 0. (26.118)

Proof. From (3.6) we have

2A = / (X — a)efids
C

for any a € R3. Here X is the coordinate function of M, 7 is the outward unit conormal
to C and ds is the line element of C. Select a € C. We need prove that

27T/C(X —a)eiids < L%

Let z(s) be the parametrisation of C' by arclength and z(0) = z(L) = a. We want to
select suitable frames in each TE(S)R3. For this purpose, let B(s) : Ty M — Tys)M be
the linear mapping which rotates 7 by /2 and is zero in Ta;%s)' If we let (73, B7i, N) be
the orthonormal basis of Tm(s)R?’, then B has the matrix form

0 -1 0
1 0 0
0 0 0

From this it is clear that
1. |Bv| < Ivl for any v € R®.
2. ue By = —veDBu.
Let (ey, e, e3)(s) be vector fields along C' such that

™

¢(s) = pBeils), i=1,2,3, (26.119)
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and (ey,es,e3)(0) is an orthonormal basis of R®. Then property 2 guarantees that
(e; ® €j)(s) is a constant, thus (e, es, e3)(s) is an orthonormal basis of R?® for any

s € [0, L]. We can write
3

Then

= f:c’(s)OB[x(s) —al + ;ci(s)z - ﬁB[:c(s) — ale B[z(s) — a]
2r PRI 2

= T 90 Blas) —d] + L0 - Tile(s) ol
+75 (I=(s) - al” = [Bla(s) - alP?)
2T ™o,

— Ta:'(s)'B[x(s) —al+ ; [02(3)2 - L—ZC% (3)}
+z (12() = af” = [Bla(s) - a]f*) .

Thus we have
2 2 (omBla(s)—a) = ¢ (9)F=3: [l = T3H0)| - T (jte) - aP = 1B(e(6) = ).
Since Bx/(s) = —7,
[o(5) — aleit = ~[a(s) — alo Ba'(s) = (s)o Bla(s) o],
we find that ;
o /C(X — a)eiids = 271'/0 2'(s)e Blz(s) — a] ds
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—L/OLg[c;(s Lzz ]s~—/ j2(s) - af? — |Bla(s) — al*) ds.

The fact z(0) = a and z'(0) exists give that ¢;(0) =0, ¢;(0) € R, i =1, 2, 3, thus the

functions

bi(s) = _als)
sin (%)
are well defined for ¢+ = 1, 2, 3. Using the identities

/ 2 : 2 / T d 2 :
c(s) —ﬁcz(s) = bl(s)?sin’ —-+ LE—(IJ (s) Sm—L—)

— () 2ain2 _i( _)
= b;(s)”sin L+Ld (s)cotL )

and |B[z(s) — a]| < |z(s) — al, we obtain

L2——27r/[()——a]onds>LZ/ bi(s)? sin® —~ds>0.

O

Remark 26.2 This isoperimetric inequality is also true for simply connected minimal

surfaces in R", n > 3. The proof is the same as above. See [68].

Next we study the doubly connected case, the proof is from [70]. We will use the

notation in the last section.

Theorem 26.3 Let A be the area of a minimal annulus X : A — R3 L, and Ly the
length of its boundary curves Cy and Cy, and let L = Ly + Lo. If Flux(X) = 0 or there

are no planes separating the two boundary curves, then
L2+ LI > 4rA

or, equivalently,
L? —4nA > 2L, L.

For arbitrary minimal annulus, we have

— 47 A > 2L, Ly(1 — log2).

Proof. From the area formula (3.6) we have

2A = . Xefids + Xonds.
1
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In the proof of Theorem 26.1, we have
M, = L2 27r/ (X —pr)efids >0, M,:= L2 —~27r/ (X — py)eiids > 0,
el Ca

where p; € C;. (Note that we did not use that C; encloses a simply connected minimal
surface in the proof of the above inequalities.) Now remember that

- ﬁds:/ 7 ds = Flux(X).
Cy Co

We have

L2+ L% — 4nA = My + My — 27(p; — p1)eFlux(X).
So if Flux(X) = 0, then we have (26.120). If Flux(X) # 0, then take a plane P,
defined by zeFlux(X) = d. All d € R such that P, N C; # 0 form two closed intervals
in R. If no planes separate C; and Cs, then these two intervals have common points,
and thus we can find p; € C; such that p; e Flux(X) = pyeFlux(X); again we get
(26.120).

Now we consider the case that Flux(X) # 0 and there is a plane separating C; and
Cy. Note that after a homothety, both sides of (26.122) are multiplied by a positive
constant, thus by Corollary 25.3 we can assume that

Flux(X) = (0,0, 2m).
So we have X3(r) = logr. This implies that the planes P, := {z3 = logr;} intersect C;
respectively. Thus selecting p; € P; N C;, we have
27 (py — p1) e Flux(X) = 472(logry — logry) = 47% log Z—Q,
1

and
L2+ L2~ 47A = M, + M, — 472 log :—2 (26.123)
i

We now apply Theorem 25.10. Recall that 7 < 1 <7 and that L(r) is a minimum for

r=1. We let 1
Ki2=ﬂ'(7’i+—>, 1=1, 2,
T;

be the lengths of the corresponding boundary circles on the standard catenoid. Then

7_‘_27"_2_ < K1Ky < 471_2?”__2.
™ ™
By Theorem 25.10 and Lemma 25.8, K1 Ky < LyL,. Finally, if we let k; = L;/7, we
have

2L1Ly — 47%log 2 _ 272 <k}1k2 — 2log 2)
1 ™1

2 (Iukz - 2log Kf(z)
™

27(2(k1]€2 — 210g k)le)
21%k1ko (1 — log 2).

vV IV Vv
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The last inequality follows from the elementary fact that
2logz < zlog2 for z > 4,
combined with K; > 27, kiky = LiLy/7? > K1 K,/m?* > 4. Substituting in (26.123)

gives (26.122), and the theorem is proved. a

Remark 26.4 The inequalities (26.120) and (26.121) are also true for minimal annuli
in R", n > 3, satisfying the corresponding conditions. The proof is similar, see [70].
The inequality (26.122) is true in R? since we have Theorem 25.10, thus if Theorem
25.10 is true in R™ then (26.122) is also true in R™.
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