
25 Minimal Annuli 

The catenoid is topologically an annulus, and is the only embedded complete minimal 
annulus of finite total curvature by Theorem 18.1. Since any complete minimal surface 
has annular end, we want to study minimal surfaces of annular type, with or without 
boundary. 

All the results in this section are due to Osserman and Schiffer [70]. 
First we fix A := {r1 < lzl < r2} C C, 0 < r1 :::; 1 :S r 2 :::; oo (by Lemma 9.1 and 

Proposition 9.2 we can always select such a representation of A). Let X : A -+ R 3 be 
a minimal annulus. Let g and TJ = f(z)dz be the Weierstrass data for X and rPi be as 
(6.15), i = 1, 2, 3. Let 'l/Ji = ZcPi· Write X = (X1, X2, X 3) and let 

t = logr =log lzl. 

We define 
1 i27r X(r) :=- X(rei0)dB. 

27f 0 

Lemma 25.1 

Proof. 

since 

and 

0 

Let C = {I z I = 1} c A. Since C is the generator of the first homology group of A, by 
(17.72), we can define 

Flux(X) Flux( C)= 8' { ¢(z)dz = 8' 1 ¢(z)dz = -i { ¢(z)dz 
Jc izl=r Jlzi=r 

{211" {211" 
Jo ¢(rei0 )rei0dB = Jo 'lj;(rei0 )dB (25.91) 
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where 7/J = z¢, for any r 1 :::; r :::; r 2 . We have used the fact that since X is well defined, 

Lemma 25.2 

Proof. 

dX(r) 
clt 

~1 ¢dz=(O,O,O). 
lzl=r 

clX(r) = dX(r) = __!__ Fl ( v) 
d T d UX J\. . 
t r 2n 

dX(r) 1 121f oX(Teia) 
T--=- T de 
. dr 21f 0 or 
1 ·21f 1 8X(rei1J) 8X(rei8 ) \ 
-. I I ~ cos e + 8 ,_sine) de 
2n lo \ ax y ; 

__!__ r21f ~[rei(} (ax -iax) (rei())l de 
2n lo ox oy J 

1 r2
7r [ . (ax ax') . 1 ~- ) 1 re'8 - - i- (re'8) 1 d(} 

2n 0 \OX oy J 

1 r (ax ax) ~;:;- f -i --i- (z)dz 
L-1f Jizf=r OX 8y 

c;s_!_ ¢(z) dz = __!__Flux( X). 
2n 2n 

Corollary 25.3 Either 
Flux( X) = (0, 0, , 

or· by a homothety, if necessary, we may assume that 

{21r . dX(r) 
L ?jJ(re'8 )de = 2n-1 -· = Flux(X) = (0, 0, 211-). 

JO at 

0 

(25.93) 

Proo[ Assume that Flux(X) o:J 0. By Lemma 25.1, X(r) = log , c2 , + + 
d2 + d3 ), where ci and di are constants, i = 1, 2, 3. Thus the X (r) lle on the 
straght line t(c1 , c2 , c3 ) + , d2 , d3 ). After a linear homothety H : R 3 -+ R 3 , we may 
assume that H[(c1 , c2 , c3 )] = (0, 0, 1) Thus by Lemma 25.2, 

0 
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Remark 25.4 Thus we can always assume that X has vertical flux and that if Flux( X) 1-
0 then 

Flux(X) = (0, 0, 2n) 

after a suitable homothety. We will say that a minimal annulus with the above flux is 
normalised. 

We are interested in the arclength of the closed curve Xllzl=r· By (7.28) 

The arclength L(r) of the closed curve Xllzl=,· is 

L(r) = { ds = {2
7r rAde = f 2

7r ~ (11/!3 1 + l1/!3g1) de. 
Jlzl=r Jo Jo 2 I g 

(25.94) 

Theorem 25.5 For any minimal annulus, 

d2L 
dt2 2:: L. (25.95) 

Equality holds if and only if the surface is the portion of a catenoid bounded by parallel 
coaxial circles, or an annulus in the plane. 

Proof. The same calculation as in the proof of Lemma 25.1 leads to: 

(25.96) 

Now we have 

and 

Since both d2Ljdt2 and L are continuous functions ofr, it follows from (25.93), (25.94), 
(25.96) that in order to prove (25.95) it suffices to prove the following lemma. D 

Lemma 25.6 Let F(z) be holomorphic in A, and satisfy 

fo 2
1r F(rew)de = 0. 

Then on every circle Jzl = r where F has no zeros, the inequality 

fo2
7r r 2 6 !Fide 2:: fo2

7r !Fide 

is valid. Equality holds if and ifF is a constant multiple of z or ljz. 
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Proof. Let G(z) be holomorphic in an annulus, and have the Laurent expansion 

(25.99) 
-00 

Then 

(25.100) 

and 

(25.101) 

Thus 
r2~ r2~ 

lo r2 IG'(rei0)l 2dB?: lo IG(rei0Wde- 27rlaol 2 (25.102) 

and since i:.IGI2 = 4(EPjozoz)(GG) = 4IG'I 2 , 

(25.103) 

Since F f- 0 on lzl = r, we may choose an annulus (by "thickening" this circle) in which 
F f- 0. Since F is holomorphic in this annulus, 

for some integer k. Corresponding to k is even or odd, there are two possibilities: 

either Case 1. F = G2 or Case 2. F = zG2 , 

where G is holomorphic in the annulus. 
Case 1. If G has the expansion (25.99), then the constant term in the expansion of 

F=G2 is 
00 

a~+ 2 L an a-n. 
n=l 

But condition (25.97) is equivalent to the vanishing of the constant term in the Laurent 
expansion of F. Thus 

00 

a~= -2 L an a-n 
n=l 

and 

or 
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Substituting this in (25.103) and using IFI = IGI 2 , yields 

(25.104) 

Thus in Case 1, not only does (25.98) hold but in fact a stronger form is valid, implying 
in particular that the inequality in (25.98) is strict. 

Case 2. Here F = zG2 and IFI = riGI 2 . We have 

Note that 

and 

LIFI IGI 2 L r + r L IGI 2 + 2DroDIGI 2 

r- 1 IGI 2 + 4riG'I 2 + 4r-1 (x, y) • (SR( GG'), -C:S(GG')) 

r- 1 IGI 2 + 4riG'I 2 + 4r-1SR(zGG'). 

4SR fo2
1r [rei0 (G- a0 )G']d8 > -4 fo2

7r ri(G- a0)G'I d() (25.105) 

We have 

> -2 fo2
1r IG- aol 2 d8- 2 fo2

7r r 2 IG'I 2 de. (25.106) 

t" riGI 2 dB+ 4 f 2
7r r 3 IG'I 2 d8 + 4 f 27r rSR(zGG')de 

JO lo Jo 
fo2

rr IFI d() + 4 fo 27r r 3 IG'I 2 d() + 4SR fo27r r[rei8 (G- ao)G']d() 

> fo27r IFI de+ 4 fo27r r31G'I2 de 

-2 fo2
7r ri(G- ao)l 2d8- 2 fo2

7r r 3 IG'I 2 d() 

fo 2
7r IFI de+ 2 fo2

7r I(G- ao)'l2 de- 2 fo2
7r ri(G- aoWde 

> fo27r IFI de. 

The equality holds if and only if (25.105) and (25.106) are both equalities, and 

fo 2
n r 2 I(G- ao)'l 2 d8 = fo2

7r I(G- aoWde. 

In particular, by (25.100) and (25.101), (25.107) holds if and only if 

an = 0 for lnl #- 1 or 0. 
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But if 

then 

-2fo2
7r IG- aol 2 de- 2 fo2

7r r 2 I(G- ao)'l 2 de= -81f(la1l 2r 2 + la-1l 2r-2). 

Comparing these two we have a 1 = 0. 
Thus we have 

and 

G(z) = a_ 1 + ao, 
z 

2 
G2( ) _ a_l 2 aoa-1 

z - 2 + a0 + 2 , 
z z 

Condition (25.97) then implies that a0a_ 1 = 0, so that F is of the form stated. D 

Remark 25.7 Note that in Case 2 the assumption (25.97) is not needed to deduce the 
inequality (25.98). Only in Case 1 did we use it, and there it is clearly necessary since, 
for example, (25.104) is false ifF is a non-zero constant. 

We now complete the proof of Theorem 25.5 by analysing when equality can hold in 
(25.95). Returning to (25.96) we see that for equality to hold in (25.95) we must have 

We therefore have four cases. 
Case 1. 

1/J3 
- = c1z, 1/J3g = b1z. 
g 

Then g is a constant, and so is ¢3 . It follows from (6.15), (6.18) and (6.26) that 

The image surface is in a plane, and the map X : A'---+ R 3 is a complex linear map into 
the plane. 

Case 2. 
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Again g is a constant, but this time 

The image is again a plane, but the map is this time the composition of 11 z with a 
complex linear map. 

Case 3. 

Then we have 'lj;3 = c, g = dl z, and ¢3 = cl z. Thus the Weierstrass data are g = dl z, 
fJ = (¢3lg)dz = (cld)dz. Making change z --t dl(, we see that g(() = (and (cld)dz = 
-c d( I (2• Thus c is real and the surface is part of a catenoid. 

Case 4. 

Again these give g = cz and fJ = b dz I z2 , and the surface is part of a catenoid. 
To prove the isoperimetric inequality for minimal annuli in the next section, we need 

further study the function L(r) for normalised surfaces. 

Lemma 25.8 For a non-zero flux normalised surface, 

L(r) 2: 21r for all r. (25.108) 

Equality can hold for at most one value of r. Moreover L(r0 ) = 21r if and only if the 
circle lzl = r0 maps onto a horizontal plane x3 = c and each radial direction along the 
circle maps· into a vertical direction in R 3 . 

Proof. Since X3(r) = logr, 

o = ~ f 21r[X3 (rei11 ) -logr]de. 
27r Jo 

Thus there is a well defined harmonic function v conjugate to X3 - log r in A such that 
f := X3 -log r + iv is holomorphic in A. Then by the Cauchy-Riemann equations and 
r 2 = zz, we have 

1 • • • X- iy 1 f = (X3 -logr)x + Wx = (X3)x- (logr)x- z(X3)y + z(logr)y = cP3- --2 - = ¢3--
r z 

and 'lj;3(z) = 1 + zf'(z). Since ¢i + ¢~ + ¢~ = 0, we have 

122 



Thus 

(25.109) 

The fact that L(r) can attain the minimum value 211 for at most one value of r is an 
immediate consequence of Theorem 25.5, which says L is a strictly convex function of 
logr. 

L(r0 ) = 211 if and only both of the inequalities in (25.109) become equalities. This 
means 

r A(r ei0) = 1"1'· (r ei0 )1 0 < () < 211 0 0 'f/3 0 ' - - ' 

fo2
7r I ?j;3 ( roeie) !de = I h2

1f ?j;3 ( roei0)del. 

Using the relation ?j;3 (z) = 1 + zf'(z) gives 

211 = fo 2
Jr ?j!3(roei8)dB = fo2

1f 8{[?j;3(roei8)]dB + i h2
7r 'S[?j;3(roei0 )]dB. 

Hence 

and 

(25.110) 

(25.111) 

I h2
1f ?j!3(roei0)dBI I /o2

1f ~[?j;3(roeie)]dBI :::; fo2
1f l~[?j;3(roei8 )]id8 (25.112) 

< h2
7r 17J'!3(roe0)ldB. 

For (25.111) to hold, we must have 

But 

(x + iy)[(X3)x- i(X3)y] = x(X3)x + y(X3)y + i[y(X3)x­

r(X3)r - i(X3)e. 

(25.113) 

(25.114) 

Thus (25.113) holds if and only X 3 (r0ei8 ) is constant, and DX3 is orthogonal to the 
circle izl = r0 . From (25.110), at each point of lzl = ro, 

(25.115) 
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But A= IXrl, and so (25.115) holds if and only if (Xi)r = 0 fori= 1, 2. 
Conversely, Xr is vertical means that (25.115) holds, and this implies (X3)r -1- 0. 

Thus by (25.114), SR?jJ3 cannot change sign on the circle lzl = r0 . The condition that X 3 

is constant on this circle implies (25.113), again using (25.114). These two facts yield 
equality in (25.112), hence in (25.111), while (25.115) gives equality in (25.110). This 
completes the proof of the lemma. D 

To prove the next theorem we need a lemma. 

Lemma 25.9 Let f(t) satisfy f"(t) 2: f(t) in some interval I. Then for all t0 , t in I, 

f(t) 2: f(to) cosh(t- to)+ f'(to) sinh(t- to). (25.116) 

Equality holds for some t1 -1- to if and only if it holds for all t between t0 and t 1 if and 
only if f"(t) = f(t) for all t between to and h. 

Proof. We have 

:t [f'(t) cosh t- f(t) sinh t)] =(!"-f) cosh t 2: 0. 

Hence t > t0 implies 

Thus 

and 

f' ( t) cosh t - f ( t) sinh t 2: .f' (to) cosh to - f ( t 0 ) sinh t0 . 

d ( f(t) ) 1 1 -d -- 2: [f (to) cosh to- f(to) sinh t 01--2-
t cosh t -cosh t 

j_~- f(to) 2: [f'(t0 ) cosh t 0 - f(t0 ) sinh to]( tanh t- tanh to). 
cosh r cosh t 0 

Multiplying out and simplifying, we obtain (25.116). 
An analogous argument holds for t < t 0 . 

For equality to hold, it must hold in (25.117), so that f" =f. 

(25.117) 

D 

Theorem 25.10 Let X : A '---+ R 3 be a minimal annulus. Further assume (by a 
reparametrisation of the form z = (jc if necessary) that L(r) attains a minimum L0 

for r = 1. Then the lengths the bov.ndary curves are greater than or equal to L0 /2n 
times the lengths of the corresponding boundary circles of the standard catenoid (the 
Weierstrass data are g = z, 17 = dz / z2 ) based on the same annulus. Equality can hold 
only if X is itself the standard catenoid. 

Proof. There are three cases, depending on whether L(r) is increasing throughout, 
decreasing throughout, or has an interior minimum. Again using the notation t = log r, 
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the minimum occurs at T = 1 or t = 0. If we use primes to denote derivatives with 
respect tot, then by Theorem 25.5, L"(t) 2: L(t), and by Lemma 25.9, 

L(t) 2: L(O) cosh t + L'(O) sinh t. 

In the case of an interior minimum, then L'(O) = 0, and 

for the values t 1 , t2 corresponding to the boundary curves. But we have seen that for 
the catenoid, the length function is L(t) = 21r cosh t. 

If Lis decreasing, then the boundary values are t = 0 and t = t 1 < 0. Using L'(O) :::; 0 
we obtain L(tr) 2: L(O) cosh t 1 , and the result is again true. A similar procedure applies 
if L is increasing. 

For equality to hold in any of these cases, it follows from Lemma 25.9 that (t) = 
L(t). According to Theorem 25.5, X must be a standard catenoid or else a plane 
annulus. However, a direct computation shows that for the plane annulus one has 
either L(t) = L(O)et, t 2: 0, or L(t) = L(O)e-t, t:::; 0, and which is strictly greater than 
L(O) cosh t. D 
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