23 Annular Ends Lying above Catenoid Ends

The Cone Lemma (Theorem 21.1) gives a criterion for a minimal surface to have finite
total curvature by looking at the picture of its image. In this section we will give another
such criterion due to Fang and Meeks [18].

Consider the family of catenoids

Ci={(z,y,2) e R’ | ?2% + t>y* = cosh®(t2)},

for ¢ > 0. We will show that a properly immersed, complete minimal annulus with
one compact boundary that lies above some C; must have finite total curvature. More
precisely:

Theorem 23.1 Let
W, = {(z,y,2) € R® | 2% + t*y? < cosh®(tz), z > 0}.

Suppose X: M — R? is a complete, proper minimal immersion of an annulus with
smooth compact boundary such that the image is contained in Wy for some t > 0. Then
M has finite total curvature.

We will break the proof of Theorem 23.1 into several lemmas. First let us fix the
notation.

Let C be a catenoid in R? with the z-axis as symmetry axis. Let W be the closure
of the component of R® — C' that contains the z-axis. Let H = {(z,y,2) € R® | z > 0}
and H be its closure.

Conformally we can write M = {( € C|0 < r; < [{| < ro}. The smooth compact
boundary of X corresponding to || = r;. Complete means that X o has infinite arc
length as  diverges to |[(| = 72. Let A = X(M).

After homothetically shrinking or expanding C and A, we can assume that C is the
standard catenoid, i.e., C' has the conformal structure of C — {0} and is embedded in
R3 as follows:

F:C—-{0}—=R3

F(() =R (/fwl,/fwz,/fwg) +(~1,0,0),

1(1—-¢2
%:5( €2>

where 1) a
1
dc, w2=5 I dg, w3=*C—-

The Gauss map of C is

c _ 1 o 2 _
N€(¢) = e IC|2(2§RC,2\$C> I<I" = 1)

All lemmas in the following having the same assumptions as for Theorem 23.1.
The first lemma, is the key point of the proof of Theorem 23.1.
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Lemma 23.2 Let p € Int(M) and P be the tangent plane of A through X (p) and
suppose PNOA = 0. Then the component of PN A that contains X (p) is noncompact.

Proof. Since A is noncompact, we may assume that A is not part of a plane. If 7@
is the normal vector of P, then h = (X — X(p))e# is a harmonic function on M
and X“1(AN P) = h7'(0). Since h is harmonic and h~}(0) C Int(M), the maximum
principle implies that every component of A71(0) is a one-dimension analytic subvariety
of M. Suppose that the component of PN A containing X (p) is compact. Let A denote
the preimage of this component on M. Note that A is compact since X is proper.
Furthermore, by Corollary 4.6, p is a critical point of the harmonic function h, thus A
is a singular compact analytic one-dimensional variety in M. But the complement of any
such singular variety in the annulus M disconnects M into at least three components.
One of the components of M — A has {|(| = r2} as a component of its boundary, another
contains {|¢| = r1} and at least one, say ¥, has compact closure & and h|8% = 0. By
the maximum principle, X (X) C P, which forces A to be contained in the plane P.
This contradiction proves the lemma. O

The second lemma clarifies the conformal type of M and gives a specific representation
of the third coordinate function Xs;.

Lemma 23.3 If A C WNH then A contains a proper subannulus A' that is conformally
parametrized by E = {¢ € C||¢| > 1}. Moreover, in this parametrization G : E < R3
of A', the third component of G is

G3(¢) = alog ||+ b
for somea, be R, a>0,b>0.

Proof. Since X = (X1, X3, X3) : M — R3 is a proper minimal immersion and A =
X(M)cWnH, X3 : M — R is a proper harmonic function.

We claim that X3 is unbounded. In fact, if X3 is bounded, then A = X (M) is
contained in a compact set, contradicting the fact that X is proper.

Then by properness and A C W N H, X3(() = oo as |{| = r2. If ry < o0, letting
gij = €X36,;, we get a complete flat metric on M. By Proposition 10.6 this is impossible.
Thus r9 = oo.

We claim that if X3(¢) > ¢ := maxceam{X3(¢)}, then DX3(¢) # (0,0). In fact,
if DX5(¢) = (0,0), then the tangent plane P of A at X(() is horizontal, hence by
Lemma 23.2 ANP should have an uncompact component, which contradicts that A C W
and X is proper.

Now let ¢ > ¢; > ¢. Theny = X;'(c;) and vy, = X3 *(t) are compact one-dimensional
submanifolds of M and thus are Jordan curves. The annulus A; bounded by ~ and ;
is conformally Mg == {1 < [(| < R(t)} for some R(t) > 1. Let f; : Ay — Mg be the
conformal diffeomorphism.
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Solving a Dirichlet problem on Mg we have

Xy0 7€) = €1 + oy log ]

This shows that for any ¢ > s > ¢, fi(7s) is the circle
] = R(t)(se)/t=en)

hence f; sends A, to Mpg(s), where
R(s) = R(t)ls—en)/(t=en),

In particular,
t—cy S—

log R(t) logR(s)

Since the modulus of A, must be R(s), we know that f;|, = f,. Thus we can define a
conformal diffeomorphism

f:JA4—E={eC||¢|>1}

t>c1
such that
Xz0f () =c1+alogl¢], a= t-a for any t> c;.
' log R(t)’
Taking b = ¢; and G = Xof~!, we have proved the lemma. O

Suppose A’ is the subannulus of A described in Lemma 23.3. Since A and A’ both
have finite total curvature or both have infinite total curvature, we will assume, without
loss of generality, that A = A'.

Suppose now that A has infinite total curvature. We will exhibit a family of tangent
planes P, of A at G(p,) such that the component of P,NA containing G(p,,) is compact.
Furthermore, for n large enough, P, N A = (). The existence of such tangent planes
contradicts Lemma 23.2.

For the part of C in H we have the following non-parametric expression: z? + ¢% =
cosh? z, z > 0. Hence, at any point p = (z,y, z) € C N H, the normal vector is

—( 1)
—Zgy, —Zy, 1),
Jr+z2+22

where z, = 2z/sinh 2z, z, = 2y/sinh 2z, and

N®(p) =

1+ 22 + 22 = (sinh® 2z + 4 cosh® )/ sinh® 2z = [4 cosh® z(sinh® z + 1)]/ sinh® 22
= 4 cosh® z/(4 cosh? zsinh® 2) = cosh® 2/ sinh® 2.
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Suppose p = (,y,2) € C N H. Let 0(p) be the angle such that

inh
c0s0(p) = N(p)(0,0,1) = — e = 002

m ~ coshz’
sinf(p) = 4/1 — cos?8(p) = L .
cosh z

Thus sin f(p) is independent of z and y. We denote it by sin 6(z). For py = (o, yo, 20) €
ANWNH, z > 1, consider the solid cylinders

Then

L = {(z,y,2) € R®| 2% + 9 < cosh®(z + 1)},

L ={(z,y,2z) € L |20 -1<z< 2+ 1}.
If P is a plane passing through py = (¢, yo, 20) and vp is the normal vector of P, define
—7/2 < Up < /2 by the formula cos ¥Up = |vpe(0,0,1)|.

Lemma 23.4 If zy is large and

1 _ sind(z)

Upl < =
2| 16 cosh 2 16’

then the component of P N A that contains py is compact and PN AOA = (.

Proof. Since py = (2o, %o, 20) € L7°, for any (z,y,2) € PN IL* we have

Sin]\I/pl

|z — 20| < 2cosh(zp + 1) tan |¥p| = 2 cosh(z + 1)cos TG

1
16 cosh zg ?

Since cos |[Up| > 1 and |¥p| <

cosh(zg + 1)

— 2 < 4 .
|z = 2l 16 cosh 2

Note that cosh(zp+1) = cosh zp cosh 1+sinh zysinh 1, sinh 1 < cosh 1 < 2, and sinh 25 <
cosh zp. Hence, cosh(zy+1) < 4 cosh 2p, and so |z — 2| < 1. Hence, PNJL*® = PNIL}
and PN L% = PN L{° This implies that the component v of AN P that contains pg
must be compact (since v C PN L{® and L5 is compact).

Let 20 — 1 > maxzeaa{|z|}, then clearly PN oA = 0. O

Now we prove Theorem 23.1.

Proof of Theorem 23.1. Assume A has infinite total curvature. Let g : E — CU{oo}
be the Gauss map of A composed with stereographic projection. Similarly define g :
C—{0} — CU{oo} to be the Gauss map of C composed with stereographic projection.
Recall, in fact, that in our original parametrization F' of C, §({) = ¢ for ( € C — {0}.
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Since A has infinite total curvature, g has an essential singularity at co. Recall that
the Gauss map of C is

1

= TR R 23K - )

NE(©)

for ( € E, and the Gauss map of A is

1
NA) = ——— (2R , 25 , 2_1).
(€)= T 2RO 296(0) la( )P~ 1
Also, recall that sin 0(z,y, z) = ——. For any (z,y, z) = F((), cos0(z) = N(0,0,1) =
b s0

sinf(z) = /1 —cos?6(z) = . _ZJTQI_P (23.86)

Similarly define the angle —7/2 < ¢(¢) < 7/2 such that cos¢(¢) = N4 e (0,0,1) =

L9©OP=1 " hen ‘
sin ¢(¢) = 1/1 — cos? p(¢) = T% (23.87)

1+{g(¢)[?"
Since z = G3(¢) = alog|(| + b = F3(¢* - expb), for some a > 0, b > 0,

sing(¢) ¢ expb| (1+1/Jc° - expp
o)~ 190 ( T 0P ) (23.88)

Choose a positive integer m > a. Since (¢™-expb)/g(¢) has an essential singularity
at 0o, there is a divergent sequence {(,} such that |(T* - expb|/|g(¢,)| — 0 as n — oo.

Delete a ray [ in C such that ! does not contain any (,. Then on C — 1, {° is
well-defined and

Gz expbl _ |G -expy
]

as n — oo. In particular, g((,) — co asn — 0. So 0(F3(¢%-expb)) = 0, ¢(¢.) — 0 as
n — 0o. We see by (23.88) and (23.89) that

() _ 9, sin ¢(C)
sin O(F(Ca-expb))  sin ¢(Cy) (sin O(F(Ce - exp b))) -0, (23.90)

as n — oo. Here sin 0(F5((2expb)) = sinf(z,) = 1/ coshz, , and z, = F3((?expb) =
G3(¢,) — 00 as n — oo.

By Lemma 23.4, we can choose n so large that the tangent plane of A at G((,) does
not intersect dA. By (23.90), we can also choose n so that

$(£n)
sin @(F({ne - exp b))

-0 (23.89)

< 1/16.
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It follows from Lemma 23.4 that the tangent plane of A at G({,) will have a compact
component that contains G((,). The existence of such a tangent plane contradicts
Lemma 23.2. This contradiction proves the theorem. O

Remark 23.5 Rosenberg and Toubiana [73] have shown that there exist minimally
immersed annuli in H with proper third coordinate function which have infinite total
curvature. Theorem 23.1 shows that such annuli do not lie above any catenoid.
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