21 The Cone Lemma

Let X_c be the cone in \mathbb{R}^3 defined by the equation

$$x_1^2 + x_2^2 = (x_3/c)^2, \quad c \neq 0.$$

The complement of X_c consists of three components, two of which are convex. We label the third region W_c and note that W_c contains $P^0 - \{0\}$, where $P^t = \{x_3 = t\}$ for $t \in \mathbf{R}$. Suppose $M \subset W_c$ is a noncompact, properly immersed minimal annulus with compact boundary.

Note that as $c \to 0$, $X_c - \{0\}$ collapses to a double covering of $P^0 - \{0\}$. Note also that any horizontal plane or vertical catenoid is eventually disjoint from any X_c , hence eventually contained in W_c , no matter how small c is (by "eventually" we mean "outside of a compact set"). Since any embedded complete minimal annular end of finite total curvature is asymptotic to a plane or a catenoid (a graph with logarithmic growth), it follows that, after suitable rotation, such an end is eventually contained in any W_c . By Jorge and Meeks' theorem, Theorem 12.1, it is easy to see that a minimally immersed end of finite total curvature with a horizontal limit tangent plane is also eventually contained in every X_c . The Cone Lemma [29] shows that this property implies that the annular end must have finite total curvature if it is proper. Hence after a rotation if necessary, a proper minimal annular end has finite total curvature if and only if it is eventually contained in every X_c .

Let
$$A := \{ z \in \mathbb{C} \mid 1 \le |z| < \infty \}.$$

Theorem 21.1 (The Cone Lemma) Let $X: A \hookrightarrow \mathbb{R}^3$ be a properly immersed minimal annulus with compact boundary. If M:=X(A) is eventually contained in W_c for a sufficiently small c, then X has finite total curvature.

In order to prove the Cone Lemma we need to introduce the concept of foliation.

Definition 21.2 Let M be a C^{∞} manifold of dimension 3. A C^k , $1 \leq k \leq \infty$, foliation of M is a set of leaves $\{\mathcal{L}_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ in M that satisfies the following conditions:

- 1. $\{\mathcal{L}_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ is a collection of disjoint 2-submanifolds.
- 2. $\bigcup_{\alpha \in \mathcal{A}} \mathcal{L}_{\alpha} = M$.
- 3. For all points $p \in M$ there exists a neighbourhood U of M and class C^k coordinate system (x_1, x_2, x_3) of U such that $\mathcal{L}_{\alpha} \cap U$ is empty or is the solution of $x_3 = \text{constant}$ in U.

Before proving Theorem 21.1, we will state a fact about the catenoid. Let C be the unit circle in P^0 centred at (0,0). Let C_h be the translate of C in the plane P^h . There is an $h_2 > 0$ such that for $0 < h < h_2$ there are two catenoids bounded by C_{-h} and C_h ; one is stable and the other is unstable. While the C_{-h_2} and C_{h_2} bound only one

catenoid. When $h > h_2$, there is no catenoid bounded by C_{-h} and C_h . It is known that $h_2 \cong 0.6627435$. For more details, see for example [60], §515.

As we will see later, by Schffman's second theorem, Theorem 29.2, any minimal annulus bounded by C_{-h} and C_h must be a catenoid. Thus there is no minimal annulus bounded by C_{-h} and C_h when $h > h_2$.

We describe a technical result that will be used in the proof of the Cone Lemma. Let γ_t be the circle of radius t in P^0 , centred at the origin. Let C_t^{ϵ} be the stable catenoid whose boundary circles consists of the vertical translates of γ_t by $(0,0,\pm\epsilon)$. Let Δ_{ϵ} be the solid torus bounded by subsets of C_2^{ϵ} , C_4^{ϵ} , P^{ϵ} , and $P^{-\epsilon}$. Note that $\partial \Delta_{\epsilon}$ consists of two planar annuli and the two catenoids C_2^{ϵ} and C_4^{ϵ} . Let $K^0 \subset P^0$ be the annulus bounded by γ_2 and γ_4 . Let δ be any smooth Jordan curve in K^0 that is homotopic to γ_2 in K^0 .

Proposition 21.3 For $\epsilon > 0$ sufficiently small, Δ_{ϵ} can be foliated by compact minimal annuli A_t , $2 \le t \le 4$, with the following properties:

- 1. $A_t = C_t^{\epsilon}$, for t sufficiently close to 2 or to 4;
- 2. Each A_t meets P^0 orthogonally;
- 3. A_3 meets P^0 in a smooth Jordan curve that converges to δ , in the C^0 -norm, as $\epsilon \to 0$.
- 4. By selecting suitable δ , the foliation of Δ_{ϵ} satisfies the following: for any $q \in P^0 \{0\}$, |q| > 4, and any line l through q, we may rotate Δ_{ϵ} around the x_3 -axis so that $\overline{0q}$ intersects $\alpha_3^0 = A_3 \cap P^0$ in a point p, where $T_p A_3 \cap P^0$ is a line parallel to l.

This proposition is proved in [29], its proof involves several facts about solutions to the Douglas-Plateau problem. Since we are not going to discuss this interesting problem in this lecture notes, we will skip the proof. Readers who are interested in the Douglas-Plateau problem can refer to [55], [56], [53] and [54].

Proof of Theorem 21.1. We begin by normalizing the problem.

Let C(1) be the vertical catenoid with waist-circle of radius 1 and denote by C the compact component of $W_c \cap C(1)$. Choose c > 0 small enough so that C is a radial graph and foliate W_c by the leaves $\{t \cdot C\}$, $0 < t < \infty$. For convenience, we write C_t for $t \cdot C$.

Claim 1. After a homothetic shrinking of M (but not of the foliation) and a discarding of a compact subset of M:

- 1. $\partial M \subset C_1 = C$;
- 2. $M \subset \bigcup_{1 \le t \le \infty} C_t$;

3. $M \cap C_t$ consists of a single closed immersed curve for $t \geq 1$.

Proof of Claim 1. Choose T_0 large enough so that $\partial M = X(\partial A)$ lies in the bounded component of $W_c - C_{T_0}$. Without loss of generality, we may assume that C_{T_0} intersects M transversally. Denote by Z the closure of the unbounded component of $W_c - C_{T_0}$; that is, $Z = \bigcup_{t \geq T_0} C_t$. Define $f: Z \to [T_0, \infty)$ to be the function whose level set at t is C_t . Since the C_t are minimal surfaces, the maximum principle (Theorem 4.4) implies that $f \circ X|_{X^{-1}(Z)}$ has no interior maxima or minima. Moreover, by Theorem 4.4, the intersection of two minimal surfaces in a neighbourhood of a point of tangency consists of j curves, $j \geq 2$, intersecting at that point in equal angles. This implies that $f \circ X|_{X^{-1}(Z)}$ has only index-1 critical points with multiplicity equal to j-1. Therefore, f may have at most k-1 critical points, where k is the first Betti number of $X^{-1}(Z)$, by elementary Morse theory. Consequently, outside of a compact subset of $X^{-1}(Z)$, $f \circ X|_{X^{-1}(Z)}$ is free of critical points. This means that there exists a $T_1 > 0$ such that for $t \geq T_1$, $C_t \cap M$ consists of a finite number of closed immersed curves. Since M has one end, each $C_t \cap M$, $t > T_1$, must consist of a single closed immersed curve. By a similar argument as in the proof of Lemma 11.9 and Theorem 12.1, this time using the maximum principle for minimal surfaces, each $X^{-1}(C_t)$ is a homotopically non-trivial Jordan curve in A and $A' = \bigcup_{t>T_1} X^{-1}(C_t) \subset A$ is an annulus. Conformally $A' \cong A$ since they are both equivalent to the punctured disk.

Discarding the compact subsurface $M \cap (\bigcup_{t \leq T_1} C_t)$ we get X(A'). Now rescaling by a factor of T_1^{-1} , we satisfy conditions 1, 2, and 3 by denoting M = X(A').

We will write A' as A for convenience.

Because M is properly immersed and projection from W_c to $P^0 - \{0\}$ is also proper, the projection $\Pi \circ X : A \to P^0 - \{0\}$ is a proper map.

Claim 2. The mapping Π is a submersion outside of a compact set, provided c > 0 is sufficiently small.

Before proving Claim 2, we will show that the theorem follows from it. By Theorem 19.2, the Gauss map N of X either takes on all points of $\mathbb{C} \cup \{\infty\}$, except for at most a set of capacity zero, or it has a unique limiting value. In the latter case, X must have finite total curvature as remarked in Remark 19.3. But Claim 2 implies that, outside of some compact set B, the Gauss map of $X: A-X^{-1}(B) \hookrightarrow \mathbb{R}^3$ will not take values in the great circle $S^1 \subset S^2$. Since X is proper, $X^{-1}(B)$ is compact. Taking the connected component W in $A-X^{-1}(B)$ which is connected to ∞ , we infer that the image N(W) is contained in a hemisphere, so the first case of Theorem 19.2 is precluded. Hence, X has finite total curvature.

Proof of Claim 2. In this proof, we will need at several points to restrict the size of c > 0. At each point, we will continue to assume that $M \subset W_c$. Let $\Delta := \Delta_{\epsilon}$ be the foliated annulus from Proposition 21.3. Reduce the size of c so that the Δ has its top and bottom boundaries disjoint from W_c . Let K be the intersection of W_c with the vertical cylinder over the disk of radius 4 in P^0 . Note $\Delta \cap W_c \subset K$. Shrink c > 0 even more if necessary, so that the following is true. If the distance from $q \in K$ to P^0

is τ , then the vertical translation of Δ by τ has the property that its top and bottom boundaries are disjoint from W_c .

Suppose now that $\Pi: M \to P^0$ is not a submersion outside of any compact set. This is equivalent to the statement that the points on M with vertical tangent plane form an unbounded set. In particular, there is a point $p \in M - K$ whose tangent plane is vertical.

If \hat{p} is the projection of p onto P^0 , we can assume that $|\hat{p}| > 4$. According to Proposition 21.3, we may rotate M about the vertical axis so that the following holds: the line $0\hat{p}$ intersects α_3 at a point where the tangent line to α_3 is parallel to $T_pM \cap P^0$. We perform this rotation of M and shrink M so that \hat{p} actually lies on α_3 . Since the original M satisfied the conditions of Calim 1, and the foliation $\{C_t \mid 0 < t < \infty\}$ is rotationally symmetric, it follows easily that the modified M also satisfies condition 3 of Claim 1. We also discard $M \cap \bigcup_{t < 1} C_t$. We will refer to this modified surface as M. It is clear that to prove the claim, it is sufficient to prove it for this modified surface.

Vertically translate Δ so that \hat{p} coincides with p, and label this translated torus $\hat{\Delta}$. Also translate the foliation A_t of Δ to be a foliation \hat{A}_t of $\hat{\Delta}$. Recall that we have chosen c>0 small enough so that the top and bottom boundaries of $\hat{\Delta}$ are disjoint from W_c . Also recall that for t near 2 and 4, the leaves of the foliation of $\hat{\Delta}$ are catenoids. Make c smaller, if necessary, to insure that these catenoids are radial graphs.

We will now extend \hat{A}_t to be a smooth foliation of a region that contains $\bigcup_{4 \leq t < \infty} C_t$. Let $\hat{A}_t = \frac{t}{4}\hat{A}_4$, $t \geq 4$, be the homothetic expansion of \hat{A}_t . The boundary $\partial \hat{A}_2$ consists of two concentric circles. By making c > 0 smaller if necessary, we may insure that C is a subset of a stable catenoid \hat{C} , whose boundaries are concentric circles exterior to W_c on the parallel planes that contain $\partial \hat{A}_2$. We interpolate between $\partial \hat{A}_2$ and $\partial \hat{C}$ with a smooth family, each member of which is a pair of circles centred on the vertical axis. The vertical distance between circles in each pair is an increasing function of t, $1 \leq t \leq 2$. Note that each pair of circles bounds a unique stable catenoid. Label that catenoid \hat{A}_t , $1 \leq t \leq 2$. It is evident that this family may be chosen to insure that the resulting foliation $\{\hat{A}_t \mid 1 \leq t < \infty\}$ is smooth. By construction, $M \subset \bigcup_{1 \leq t < \infty} \hat{A}_t$, $\partial M \subset \hat{A}_1$, and \hat{A}_3 is tangent to M at p.

Let h be the smooth function, defined on the union of the leaves \hat{A}_t , whose level set at t is \hat{A}_t . Restriction of h to M yields a proper function $h \circ X$ on A that satisfies $h \circ X \geq 1$ and is equal to 1 precisely on ∂A . Repeating the argument in the proof of Claim 1 will show that all the critical points of h have index 1, possibly with multiplicity. However, A is an annulus and $(h \circ X)^{-1}(1) = \partial A$, so by elementary Morse theory, it follows that $h \circ X$ can have no critical points. But \hat{A}_3 is tangent to M at $p = X(q) \in M$, which shows that q is a critical point of $h \circ X$. This contradiction completes the proof of Claim 2 and also of the theorem.

Remark 21.4 Let X_c and W_c be as in the Cone Lemma, and M be a proper, connected, complete minimal surface with compact boundary. Then by Theorem 16.1, M is eventually disjoint from X_c is equivalent to the fact that M is eventually contained

in W_c . Thus suppose that M is a proper, connected, complete minimal surface with compact boundary and finite topology. If after a rotation if necessary, M is eventually disjoint from X_c , for some c > 0 sufficiently small, then M has finite total curvature.