20 The Second Variation and Stability

We now introduce the concept of stability of minimal surfaces which will play an important role in the proof of several theorems in the remainder of these notes.

Let Ω be a precompact domain in a Riemann surface $M, X: \Omega \rightarrow \mathbb{R}^{3}$ a minimal surface. From the calculus of variations definition of a minimal surface, we know that X is a minimal surface if and only if the area A of X is a stationary point of the area functional $A(t)$ for any variation $X(t)$. Note that being stationary does not mean that X has minimum area among all surfaces with the same boundary.

To study when X has locally minimum area, naturally we study the second variation, namely the second derivative $A^{\prime \prime}(0)$ of the area functional for any variation family $X(t)$. From calculus we know that if $A^{\prime \prime}(0)>0$ then $A(0)$ is a local minimum. Note that the word local is significant, there are minimal surfaces such that $A^{\prime \prime}(0)>0$ for any variation family, yet those surfaces do not have minimum area. Hence we define that X is stable if $A^{\prime \prime}(0)>0$ for all possible variation families $X(t)$, otherwise X is unstable. Sometimes one says X is almost stable if $A^{\prime \prime}(0) \geq 0$.

It is important to express the formula for the second variation of X via the geometric quantities of X. Let $\left(u^{1}, u^{2}\right)$ be the local coordinates of Ω. We use the fact that X is conformal harmonic, and write $\Lambda^{2}=\left|X_{1}\right|^{2}=\left|X_{2}\right|^{2}, \triangle=D_{11}+D_{22}$.

From (3.4),

$$
\frac{d A(t)}{d t}=-2 \int_{\Omega} H(t)(E(t) \bullet N(t)) d A_{t}
$$

where $E(t)=\partial X(t) / \partial t, H(t)$ is the mean curvature of $X(t)$, and $N(t)$ is the Gauss map of $X(t)$. Let $E=\alpha X_{1}+\beta X_{2}+\gamma N$. Since $H(0)=0$ we have

$$
\left.\frac{d^{2} A(t)}{d t^{2}}\right|_{t=0}=-\left.2 \int_{\Omega} \frac{d H(t)}{d t}\right|_{t=0}(E \bullet N) d A_{0}
$$

where we write $E=E(0)$, etc. Now suppose that each $X(t)$ is a. C^{2} surface, and the first and second fundamental forms are given on an isothermal coordinate chart U by

$$
g_{i j}(t)=X_{i}(t) \bullet X_{j}(t), \quad\left(g^{i j}(t)\right)=\left(g_{i j}(t)\right)^{-1}, \quad h_{i j}(t)=X_{i j}(t) \bullet N(t)
$$

Then

$$
H(t)=\frac{1}{2} \sum_{i, j} g^{i j}(t) h_{i j}(t)
$$

hence

$$
\left.\frac{d H(t)}{d t}\right|_{t=0}=\left.\frac{1}{2} \sum_{i, j} \frac{d g^{i j}(t)}{d t}\right|_{t=0} h_{i j}+\left.\frac{1}{2} \sum_{i, j} g^{i j} \frac{d h_{i j}(t)}{d t}\right|_{t=0},
$$

where we write $g^{i j}(0)=g^{i j}$, etc. From

$$
\sum_{j} g^{i j}(t) g_{j k}(t)=\delta_{i k}, \quad g^{i j}=\Lambda^{-2} \delta_{i j}
$$

we see that

$$
\left.\frac{d g^{i j}(t)}{d t}\right|_{t=0}=-\left.\Lambda^{-4} \frac{d g_{i j}(t)}{d t}\right|_{t=0}=-\Lambda^{-4}\left(E_{i} \bullet X_{j}+E_{j} \bullet X_{i}\right)
$$

Using $h_{11}=-h_{22}$ and $X_{11} \bullet X_{1}=\frac{1}{2} \Lambda_{1}^{2}, X_{11} \bullet X_{2}=-\frac{1}{2} \Lambda_{2}^{2}$, etc., we have

$$
\left.\frac{1}{2} \sum_{i, j} \frac{d g^{i j}(t)}{d t}\right|_{t=0} h_{i j}=\gamma \Lambda^{-4} \sum_{i, j} h_{i j}^{2}-\Lambda^{-2}\left[\alpha_{1} h_{11}+\left(\alpha_{2}+\beta_{1}\right) h_{12}+\beta_{2} h_{22}\right]
$$

One calculates that

$$
\begin{aligned}
\left.\frac{1}{2} \sum_{i j} g^{i j} \frac{d h_{i j}(t)}{d t}\right|_{t=0} & =\left.\frac{1}{2} \sum_{i j} g^{i j} \frac{d X_{i j}(t)}{d t}\right|_{t=0} \bullet N+\left.\frac{1}{2} \sum_{i j} g^{i j} X_{i j} \bullet \frac{d N(t)}{d t}\right|_{t=0} \\
& =\frac{1}{2} \sum_{i} \Lambda^{-2} E_{i i} \bullet N+\left.\frac{1}{2} \sum_{i} \Lambda^{-2} X_{i i} \bullet \frac{d N(t)}{d t}\right|_{t=0} \\
& =\frac{1}{2} \Lambda^{-2} \triangle E \bullet N
\end{aligned}
$$

since $\triangle X=0$. Using $\triangle X_{i}=0$ and $N_{i} \bullet N=0$, we have

$$
\triangle E \bullet N=\triangle \gamma+\gamma \triangle N \bullet N+2\left[\alpha_{1} h_{11}+\left(\alpha_{2}+\beta_{1}\right) h_{12}+\beta_{2} h_{22}\right]
$$

Hence

$$
\left.\frac{d H(t)}{d t}\right|_{t=0}=\gamma \Lambda^{-4} \sum_{i j} h_{i j}^{2}+\frac{1}{2} \Lambda^{-2}(\Delta \gamma+\gamma \Delta N \bullet N)
$$

Since $h_{11}=-h_{22}, \sum_{i j} h_{i j}^{2}=-2 \operatorname{det}\left(h_{i j}\right)=-2 \Lambda^{4} K$, where K is the Gauss curvature. By (8.36), $\triangle N=2 K \Lambda^{2} N$, thus

$$
\left.\frac{d H(t)}{d t}\right|_{t=0}=\frac{1}{2} \Lambda^{-2}\left(\triangle \gamma-2 K \Lambda^{2} \gamma\right)=\frac{1}{2}\left(\triangle_{X} \gamma-2 K \gamma\right)
$$

Since the above formula does not depend on the local coordinates, we have the second variation formula for any variation vector field $E=\alpha X_{1}+\beta X_{2}+\gamma N$, that is

$$
\begin{equation*}
A^{\prime \prime}(0)=-\int_{\Omega} \gamma\left(\triangle_{X} \gamma-2 K \gamma\right) d A_{0} \tag{20.83}
\end{equation*}
$$

We see from (20.83), as in the first variation, that the second variation does not depend on the tangential part of the variation field E.

Let Ω be a plane domain, consider the Dirichlet eigenvalue problem for the second order elliptic operator $L=\triangle-2 K \Lambda^{2}$,

$$
\begin{cases}L u+\lambda u=0, & \text { in } \quad \Omega \tag{20.84}\\ u=0, & \text { on } \partial \Omega\end{cases}
$$

The classical theory of eigenvalues (see Appendix) says that there is a sequence

$$
\lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \cdots \leq \lambda_{n} \leq \cdots,
$$

$\lambda_{n} \rightarrow \infty$ as $n \rightarrow \infty$, such that (20.84) has solution if and only if $\lambda=\lambda_{n}$ for some $n \geq 1$. Moreover, we can select smooth ϕ_{n} as the solution of (20.84) when $\lambda=\lambda_{n}$ (ϕ_{n} is called the eigenfunction corresponding to λ_{n}), such that $\left\{\phi_{n}\right\}$ is orthonormal in $L^{2}(\Omega)$ and spans $W_{0}^{1,2}(\Omega)$. Thus if $\gamma \in W_{0}^{1,2}(\Omega) \subset L^{2}(\Omega)$ it can be decomposed as

$$
\gamma=\sum_{n=1}^{\infty} a_{n} \phi_{n} .
$$

and if γ is also smooth, then

$$
L \gamma=\sum_{n=1}^{\infty} a_{n} L \phi_{n}=-\sum_{n=1}^{\infty} a_{n} \lambda_{n} \phi_{n} .
$$

We have that

$$
A^{\prime \prime}(0)=-\int_{\Omega} \gamma L \gamma d u^{1} \wedge d u^{2}=\int_{\Omega}\left(\sum_{n=1}^{\infty} a_{n} \phi_{n}\right)\left(\sum_{m=1}^{\infty} a_{m} \lambda_{m} \phi_{m}\right) d u^{1} \wedge d u^{2}=\sum_{n=1}^{\infty} a_{n}^{2} \lambda_{n} .
$$

Hence if $\lambda_{n}>0$, we will have for any variation vector field $E=\alpha X_{1}+\beta X_{2}+\gamma N$ with smooth $\gamma \in W_{0}^{1,2}(\Omega)$, that $A^{\prime \prime}(0)>0$, and hence locally X has minimum surface area.

Of course, if L has a negative eigenvalue, say $\lambda_{1}<0$, taking $\gamma=\phi_{1}$, we have

$$
A^{\prime \prime}(0)=\lambda_{1}<0,
$$

and so X cannot have minimum area.
Note that $\triangle_{X}=\Lambda^{-2} \triangle$ is intrinsically defined on the surface X. Based on the discussion above, we have definition equivalent to that given in the beginning of this section:

Definition 20.1 A minimal surface $X: \Omega \hookrightarrow \mathbf{R}^{3}$ is stable on a precompact domain $U \subset \Omega$ if the first eigenvalue of $L_{X}=\triangle_{X}-2 K$ in U is positive. That is, if

$$
\begin{cases}L_{X} u+\lambda u=0, & \text { in } \quad U \\ u=0, & \text { on } \quad \partial U\end{cases}
$$

has a non-trivial solution, then $\lambda>0$.
In general, if $\bar{\Omega}$ is not compact, we say that X is stable on Ω if it is stable on any precompact subdomain of Ω.

For a minimal surface $X: \Omega \hookrightarrow \mathbf{R}^{3}$, the Gauss map $N \rightarrow S^{2}$ is anti-conformal. We can consider N as a surface though it may have finite branch points. The first fundamental form induced by N is

$$
\left|N_{1} \wedge N_{2}\right| \delta_{i j}=-K \Lambda^{2} \delta_{i j}
$$

Hence the S^{2} Laplacian \triangle_{S} induced by N on Ω is

$$
\triangle_{S}=-K^{-1} \Lambda^{-2} \triangle=-K^{-1} \triangle_{X}
$$

The sphere metric induced by N then is $d S=-K d A_{0}$ on Ω. Suppose $K<0$ on Ω, then since N is anti-holomorphic, by the area formula,

$$
A^{\prime \prime}(0)=-\int_{\Omega} \gamma\left(\triangle_{X} \gamma-2 K \gamma\right) d A_{0}=-\int_{N(\Omega)} \#\left(N^{-1}(x)\right) \gamma\left(\triangle_{S} \gamma+2 \gamma\right)(x) d S(x)
$$

Thus the corresponding operator L_{S} on $N(\Omega)$ is

$$
L_{S}=-K^{-1} L_{X}=\triangle_{S}+2
$$

If $N: U \subset \Omega \rightarrow S^{2}$ is one to one, then clearly $A^{\prime \prime}(0)>0$ if and only if all eigenvalues of \triangle_{S} on $N(\Omega)$ are larger than 2. And the eigenvalue problem becomes

$$
\begin{cases}\triangle_{S} u+(2+\lambda) u=0, & \text { in } \quad N(U) \\ u=0, & \text { on } \quad \partial N(U)\end{cases}
$$

It is well known that if the area of $N(U)$ is less than 2π, then the first eigenvalue of \triangle_{S} is larger than 2, thus have proved:

Theorem 20.2 Let $X: \Omega \hookrightarrow \mathbb{R}^{3}$ be a minimal surface and $U \subset \Omega$ be such that $N: U \rightarrow S^{2}$ is one to one and the area of $N(U)$ is less than 2π. Then $X: U \hookrightarrow \mathbb{R}^{3}$ is stable.

Since N is locally one to one except at points p such that $K(p)=0$, we see that at any point $p \in \Omega$ such that $K(p) \neq 0$, there is a neighbourhood $U \ni p$, such that $X: U \hookrightarrow \mathbb{R}^{3}$ is stable.

Note that if N is one to one, then

$$
\operatorname{Area}(N(U))=-\int_{U} K d A
$$

so if N is one to one on U and the area of $N(U)$ is less than 2π, then $-\int_{U} K d A<2 \pi$. Barbosa and do Carmo [2] proved:

Theorem 20.3 If $-\int_{U} K d A<2 \pi$, then X is stable on U.
In fact, Barbosa and do Carmo proved a stronger version of Theorem 20.3 in [2]:

Theorem 20.4 If $\operatorname{Area}(N(U))<2 \pi$, then X is stable on U.
Theorem 20.3 is stronger than Theorem 20.2 since N is not assumed to be one to one on U. Note that the converse of Theorem 20.3 is not true, there are stable minimal surfaces whose total curvature is less then -2π. See, for example, [61], page 99.

Let $X: M \hookrightarrow \mathbf{R}^{3}$ be a minimal surface. A Jacobi field is a function u defineded on M such that

$$
L_{X} u=0 .
$$

Note that each component of N is a Jacobi field. Whenever we have a Jacobi field u on M, we are interested in the nodal set $Z:=u^{-1}(0) \subset M$ of u. The reason is that each component of $M-Z$ is a domain (nodal domain) $\Omega \subset M$ such that on Ω the u does not change sign and it vanishes on $\partial \Omega$. If u is continuous on $\bar{\Omega}$, then by the properties of eigenvalues (see Appendix) the first eigenvalue of L_{X} on Ω is zero, and any domain $\Omega^{\prime} \supset \bar{\Omega}$ will have negative first eigenvalue. Thus such Ω and $\Omega^{\prime} \supset \Omega$ are unstable. By Theorem 20.3, the total curvature of X on Ω is less than or equal to -2π. Similarly, any domain $\Omega^{\prime} \subset \Omega$ such that $\Omega-\Omega^{\prime}$ has positive area, will have positive first eigenvalue, and therefore is stable. We will apply these comments in the proof of Shiffman's theorems.

In [4], do Carmo and Peng proved that the only stable complete minimal surface in \mathbb{R}^{3} is plane. This is a generalized version of Bernstein's theorem, which says that a complete minimal graph (which is stable by Theorem 20.4) must be a plane.

Thus all complete non-planar minimal surfaces $X: M \hookrightarrow \mathbb{R}^{3}$ are unstable. A measure of how unstable is a surface, is the index. If $\Omega \subset M$ is precompact, then index (Ω) is the number of negative eigenvalues of L_{X} on Ω, counting the multiplicity. Hence the index is the dimension of the subspace of $L^{2}(\Omega)$ spanned by the eigenfunctions corresponding to negative eigenvalues. The index of M then is defined as

$$
\begin{equation*}
\operatorname{index}(M)=\operatorname{lub}_{\Omega \subset M} \operatorname{index}(\Omega) \tag{20.85}
\end{equation*}
$$

where lub means the least upper bound and Ω is taken over all precompact domains in M.

A theorem of Fischer-Colbrie [19] says that a complete minimal surface $X: M \hookrightarrow \mathbb{R}^{3}$ has finite index if and only if it has finite total curvature.

Let g and η be the Weierstrass data of a complete minimal surface of finite total curvature $X: M \hookrightarrow \mathbb{R}^{3}$ and $k=\operatorname{deg} g$. A theorem of Tysk [79] says that

$$
\text { index of } M \leq C \cdot k
$$

for some constant C. Tysk [79] proved that C can be taken as $C=7.68183$. The number 7.68183 is certainly not optimal, since for a catenoid $k=1$ and the index is also 1, see Theorem 27.8. A good problem then is what is the optimal value of C ? A guess is that $C=1$.

