
20 The Second Variation and Stability 

We now introduce the concept of stability of minimal surfaces which will play an im
portant role in the proof of several theorems in the remainder of these notes. 

Let Sl be a precompact domain in a Riemann surface X : Sl --+ R 3 a minimal 
surface. From the calculus of variations definition of a minimal surface, we know that 
X is a minimal surface if and only if the area A of X is a stationary point of the area 
functional A(t) for any variation X(t). Note that being stationary does not mean that 
X has minimum area among all surfaces with the same boundary. 

To study when X has locally minimum area, naturally we study the second variation, 
namely the second derivative A" ( 0) of the area functional for any variation family X ( t). 
From calculus we know that if A"(O) > 0 then A(O) is a local minimum. Note that 
the word local is significant, there are minimal surfaces such that A"(O) > 0 for any 
variation family, yet those surfaces do not have minimum area. Hence we define that 
X is stable if (0) > 0 for all possible variation families X(t), othervvise X is zmstable. 
Sometimes one says X is almost stable if A" (0) 2: 0. 

It is important to express the formula for the second variation of X via the geometric 
quantities of X. Let (u1 , u2 ) be the local coordinates of fl. We use the fact that X is 
conformal harmonic, and write A2 = IX1I 2 = IX2I 2 , 6. = Dn + D22· 

From (3.4), 
dA(t) 1 -- = -2 H(t)(E(t)ii!N(t)) dAt, 

dt [! 

where E(t) = oX(t)jot, H(t) is the mean curvature of X(t), and 
map of X(t). Let E = aX1 + (3_ .. '{2 + 1N. Since H(O) = 0 we have 

d2 A(t) I = -2 [ dH(t) I r E®N) dAo, 
t=O Jn di t=O \ 

is the Gauss 

where we write E = E(O), etc. Now suppose that each X(t) is a and the 
first and second fundamental forms are given on an isothermal coordinate chart U 

Then 

hence 
dH(t) I = ~ "\"' dgij(t) I h + ~"' ijdh;j(t) I 

dt t=O 2 L._. dt t=O "1 2 L._. g dt t=C' 
1-,J 'l,J 

where we write gij (0) = gij, etc. From 

Llj(t)gjk(t) = 6;k, gij = A- 26;j, 
j 
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we see that 

dgij(t) I =-A -4d%(t) I =-A -4(E('I;X + EeX). 
dt t==O dt t==O ' J J ' 

Using hn = -h22 and Xn G~X1 = ~Ai, Xn ODX2 =-~A~, etc., we have 

One calculates that 

~ L ij dhij(t) I 
2 .. g dt t==O 

'1 

since LX= 0. Using Lc.Xi = 0 and ®N = 0, we have 

Hence 
dH ( t) I = "A -4 ~ 

dt t==O - y L.~ 
'] 

Since = -2 = -2A4 K, where K is the Gauss curvature. 
By (8.36), LN = thus 

dH(t)l 1 _2 2 1 
~ t==O = 2A (L'f- 2KA 'f)= 2 (Lx 'f- 2K'f). 

Since the above formula not depend on the local coordinates, we have the second 
variation formula for any variation vector field E = + + "(N, that is 

A"(O) = -1 'f(Lx'f- 2K'f)dA0 . 
:\1 

(20.83) 

We see from (20.83), as in the first variation, that the second variation does not 
depend on the tangential part of the variation field E. 

Let S1 be a domain, consider the Dirichlet eigenvalue problem for the second 
order elliptic operator L = L - 2K A2 , 

{ 
Lu + Au = 0, in 

u = 0, on 
(20.84) 

an 
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The classical theory of eigenvalues (see Appendix) says that there is a sequence 

An ---+ co as n ---+ co, such that (20.84) has solution if and only if A = An for some n 2': 1. 
Moreover, we can select smooth ¢n as the solution of (20.84) when A= An (¢n is called 
the eigenfunction corresponding to , such that { ¢n} is orthonormal in L2 (D) and 
spans W~'2 (D). Thus if ryE W~'2 (D) c L 2 (fl) it can be decomposed as 

and if 1 is also smooth, then 

00 00 

= L anL¢n = - L 
n=l n=l 

Vle have that 

(0) =-in 00 

n=l 

Hence if > 0, we will have for any variation vector field E = o:X1 + vv-ith 
smooth 1 E W01'2 (0), that A"(O) > 0, and hence locally X has minimum 

Of course, if L has a negative eigenvalue, say < 0, taking 1 = , we have 

and so X cannot have minimum area. 
Note that U.x = A - 2 6. is intrinsically defined on the surface X. Based on the 

discussion above, we have definition to that given in the beginning of this 
section: 

Definition 20.1 A minimal surface X : n '---> R 3 is stable on a precompact domain 
U c fl if the first eigenvalue of = U.x - 2K in U is positive. That if 

{ 
LX'u +AU = 0, m 

u = 0, on 

has a non-trivial solution, then )\ > 0. 

u 

au 

In general, if fl is not compact, v.re say that X is stable on n if it is 
precompact subdomain of :0. 
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For a minimal surface X : D '---+ R 3 , the Gauss map N -+ 5 2 is anti-conformal. 
We can consider N as a surface though it may have finite branch points. The first 
fundamental form induced by N is 

Hence the 5 2 Laplacian 6 5 induced by N on D is 

The sphere metric induced by N then is dS = - K dA0 on 0. Suppose K < 0 on 
then since N is anti-holomorphic, by the area formula, 

A"(O) = -1!(Dx!- 2K!)dAo. =- f #(N-1(x))J(6sl + 2!)(x)dS(x). 
n jN(D) 

Thus the corresponding operator Ls on N(D) is 

Ls = -K-1Lx = 6s + 2. 

If N: U c D-+ 5 2 is one to one, then clearly A"(O) > 0 if and only if all eigenvalues 
of 6 5 on N(D) are larger than 2. And the eigenvalue problem becomes 

{ 
Dsu + (2 + A.)u = 0, in 

u = 0, on 

N(U) 

oN(U) 

It is well known that if the area of N(U) is less than 2n, then the first eigenvalue 
6 5 is larger than 2, thus have proved: 

Theorem 20"2 Let X : 0 '-/ R 3 be a minimal surface and U C D be such that 
N: U-+ 5 2 is one to one and the area of N(U) is less than 2n. Then X : U '---+ R 3 zs 
stable. 

Since N is locally one to one except at points p such that K (p) = 0, we see that 
at any point p E D such that #- 0, there is a neighbourhood U 3 p, such that 
X : U '---+ R 3 is stable. 

Note that if N is one to one, then 

Area(N(U)) =- fu 
so if N is one to one on U and the area of N ( U) is less than 2n, then - J u K dA < 2n. 
Barbosa and do Carmo [2] proved: 

Theorem 20.3 If- fu KdA < 2n, then X is stable on U. 

In fact, Barbosa and do Carmo proved a stronger version of Theorem 20.3 in [2]: 
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Theorem 20.4 If Area(N(U)) < 21r, then X is stable on U. 

Theorem 20.3 is stronger than Theorem 20.2 since N is not assumed to be one to 
one on U. Note that the converse of Theorem 20.3 is not true, there are stable minimal 
surfaces whose total curvature is less then -27r. See, for example, [61], page 99. 

Let X : lvf '---+ R 3 be a minimal surface. A Jacobi field is a function u defineded on 
M such that 

Lxu = 0. 

Note that each component of N is a Jacobi field. Whenever we have a Jacobi field u 
on 1\!l, we are interested in the nodal set Z := u-1(0) C M of u. The reason is that 
each component of M - Z is a domain (nodal domain) n c M such that on 0 the 
u does not change sign and it vanishes on an. If u is continuous on 0, then the 
properties of eigenvalues (see Appendix) the first eigenvalue of Lx on D is zero, and 
any domain 0' :::> D will have negative first eigenvalue. Thus such 0 and :::> 0 are 
unstable. By Theorem 20.3, the total curvature of X on n is less than or equal to -21r. 
Similarly, any domain D' c n such that 0 - has positive area, will have positive 
first eigenvalue, and therefore is stable. We will apply these comments in the proof of 
Shiffman's theorems. 

In [4], do Carma and Peng proved that the only stable complete minimal surface 
in R 3 is plane. This is a generalized version of Bernstein's theorem, which says that a 
complete minimal graph (which is stable by Theorem 20.4) must be a 

Thus all complete non-planar minimal surfaces X : M '---+ R 3 are uastable. A 
measure of how unstable is a surface, is the index. If Q C M is pn?comr)ac 
index(O) is the number of negative eigenvalues of Lx on 0, counting the 
Hence the index is the dimension ofthe subspace of L2 (0) spanned the 
enr-r"~'"~"'"'~'"'"'b to negative eigenvalues. The index of M then is defined as 

index(M) = lubocMindex(D), 

where lub means the least upper bound and Dis taken over all precompact domains in 
M. 

A theorem of Fischer-Colbrie [19] says that a complete minimal surface X · Af '--7 R 3 

has finite index if and only if it has finite total curvature. 
Let g and rJ be the Weierstrass data of a complete minimal of finite total 

curvature X : M '---+ R 3 and k = deg g. A theorem of Tysk [79] says that 

index of M :S: C · k. 

for some constant C. Tysk [79] proved that C can be taken as C = 7.68183. 'The 
number 7.68183 is certainly not optimal, since for a catenoid k = 1 and the index is 
also 1, see Theorem 27,8. A good problem then is what is the optimal value of C? A 
guess is that C = 1. 
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