
18 Uniqueness of the Catenoid 

Let X : M = Sk- {p1 , · · · ,Pn} '---+ R 3 be a complete minimal surface, where Sk is a 
closed Riemann surface of genus k. We say that X has genus k. 

The catenoid has genus zero by this definition. We have already proved that the 
catenoid is the only embedded complete minimal surface of total curvature -41f and 
is the only minimal surface which is a rotation surface. Schoen [7 4] proved that the 
catenoid is the only complete minimal surf~ce with exactly two annular ends and finite 
total curvature. Thus the catenoid has many special features which describe it uniquely. 

In 1989, Lopez and Ros proved the following remarkable theorem [49]. 

Theo:rem 18.1 The catenoid is the only embedded genus zero non-planar minimal sur­
finite total curvature. 

The proof of Theorem 18.1 is a combination of the flux formula and the maximum 
principle at infinity. We will give a proof here adapted from [71]. 

Another key ingredient in the proof of Theorem 18.1 is deformation. Suppose that 
X: M = Sk- {p1 , · · ·, '-+ R 3 is a minimal surface. If for any loop r c M, Flux(r) 
is a vertical vector, i.e., parallel to (0, 0, 1), then we say that X has vertical flux. By 
Proposition 17.1, we see that X has vertical flux if and only if for any loop r, 

(18.81) 

where g and 17 are the Weierstrass data for X. 
Let A E (0, oo) and 1]).. = A-11], g).. = Ag. Consider the corresponding Enneper­

Vveierstrass representation, 

If X has vertical flux, then we have a family of well defined minimal surfaces, deforma­
tions of the original surface, given by 

(18.82) 

Note that the third coordinate function of X).. does not depend on A. 
A point p EM such that g(p) = 0 or oo is called a vertical point of X. Since g)..= Ag, 

if p is a vertical point of X then p is also a vertical point of X).., and vice versa. VVe 
first investigate the behaviour of X).. when p is a vertical point. 

Lemma 18.2 Suppose that X has vertical fiux and is non-planar. If p is a vertical 
point, then X).. is not an embedding when A is sufficiently large or sufficiently small. 
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Proof. First we assume that g(p) = oo. Let p E D be a coordinate disk in M and 
· z(p) = 0. Without loss of generality, we may assume that g(z) = z-k on D and k > 0. 

By Theorem 14.1, TJ should have a zero of order 2k at p, so we can write TJ = z2kh(z)dz, 
where h is holomorphic on D and h(O) # 0. Make a change of coordinate on D by 
( = A-1/kz, then 

Under these new coordinates, 

w~ = ~Al+1/k((2k _ 1)h(A1fk()d(, w; = 1Al+1/k((2k + 1)h(A1/k()d(, 

w; = Al+1/k(kh(A1fk()d(. 

Now we dilate x>. by a homothety of ratio A-(1+1/k), X>.= A-(1+1/k)XA_ When A--+ 0, 

X>. converges uniformly on compact subsets of C to the minimal surface X 0 : C '---+ R 3 

(note that for fixed z # 0, lim.x--+o A-1/kz = oo and for fixed(, lim.x--+o A1fk( = 0). X 0 is 
determined by the Weierstrass data for X 0 , 

r-k 
go='> ' 

Such data gives a complete non-embedded minimal surface. In fact, by Theorem 11.1, 
TJo should have a pole of order 2 to make X 0 an embedding at ( = oo, but our TJo has a 
pole of order 2k + 2 > 2 at ( = oo. 

Since x>. converges to X 0 uniformly on compact subset when A --+ 0, for A small 
enough, X>., thus X>., is not an embedding. 

When g(p) = 0, the proof is similar and when A is large enough, x>. is not an 
embedding. D 

Exercise : Give a rigorous proof that x>. is not embedded when g(p) = 0 and A is 
large. 

Note that if X has vertical flux and XID-{p} : D- {p} '---+ R 3 is an annular end , 
then X>.ID-{p}: D- {p} '---+ R 3 is also an annular end. 

Next we will study the behaviour of X>. at an embedded end of vertical limiting 
normal. 

Lemma 18.3 Suppose that X : M '---+ R 3 is non-planar and has vertical flux. If 
E = XID-{p} : D- {p} '---+ R 3 is an embedded fiat annular end with vertical limiting 

normal, then E>. = X>.ID-{p} : D- {p} '---+ R 3 is not embedded for A large or small 
enough. 

Proof. Let p E D be a coordinate neighbourhood with z(p) = 0. As before, we first 
assume that g(p) = oo and so g(z) = z-k, k > 1 since Eisa flat end. By Theorem 

88 



14.1, 7] has a zero of order 2k- 2, so 7] = z2k-2 h(z)dz. Again we make the change of 
coordinate ( = A - 1/k z and 

Arguing as before, we dilate x-\ by a homothety of ratio A-(1- 1/kl, X.\= A-(1- 1/k)X-\. 

When A -+ 0, X.\ converges uniformly on compact subsets of C- {0} to the minimal 
surface X 0 : C- {0} Y R 3. X 0 is determined by the Weierstrass data for X 0 , 

;--k 
go=" ' 

Thus by Theorem 14.1, this complete minimal surface has an embedded end at ( = 0 
and a non-embedded end at ( = oo, since at oo 7]o has a pole of 2k > 2. Hence when A 
small enough, X\ is not embedded. 

When g(p) = 0, similar argument gives that when/\ large enough, 
de d. 

is not embed­
D 

Lemma ]_8.4 Suppose that X: M = S~c- {p1 , · · · ,Pn} Y R 3 is embedded and all ends 
have vertical normal. If X has vertical flu.T, then X\ is an embedding for all A > 0. 

Proofo First note that since X is embedded, at each puncture Pi, 

where c/Jidz = wi. Thus for any deformation X\ we have 

12 rv 1 
I = lzl4. 

This then tells us that each end of X.\ is embedded. By the weak maximum principle at 
infinity (see Remark 15.3), the distance between any two ends of X is positive. Since the 
third coordinate of is independent of A, any two ends of are disjoint. 
Thus outside of a compact set C'.\ c M, X\ is embedded. 

Now let B := {A E (0, oo) I is embedded}. V·.fe want to prove that B is both open 
and closed; then by the connectedness of (0, oo) and 1 E B, we know that B = (0, oo). 

Suppose Ao E B. Since uniformly converges to X\o on sets vvhen 
A -+ Ao, and each X\ is embedded outside of a compact set, it follows for A near Ao 
that X ,x is embedded. 

Now suppose that {An} C B and ---+ ), when n ---+ oo. If is not embedded, 
then there are x and y E M such that x =f. y and (x) = X;:,(y). Let D 1 and 
be disjoint closed disk type neighbourhoods of x and y respectively, such that X,xlni 
is embedded. Since X\n converges uniformly on Di and X.\n(D1) n X.\n(D2 ) = 0, 
by shrinking D; if necessary, X.\n(D;) are disjoint graphs on the same plane domain, 
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and limn-+oo X An (X) = limn-+oo X An (y) _ By the maximum principle (Theorem 4A and 
Remark 4.6), X>.(Dl) = (D2 ). This shows that the image XA(M) is an embedded 
minimal surface of finite total curvature and XA: M--+ XA(M) is a finite sheet covering. 
But outside a compact set, XA is one to one, so this covering is single sheeted, that is 
X A must be embedded. This proves that B is also closed, hence also proves this lemma. 
D 

Now we can prove Theorem 18.1. 

Proof of Theorem 18.1. Without loss of generality, we may assume that all ends of 
X have vertical limiting normals. Let C S0 = C U { oo} be disjoint open disks such 
that Pi E Di- Then are generators of H1 (M). By (17.80), X has vertical on 
each 8Di, hence has vertical flux on any loop, i.e., X has vertical flux. 

Since X is Lemma 18.4 x>· is embedded for any )\ E (0, oo). By 
Lemma 18.2 and Lemma g -I 0 or oo on M and X does not have flat ends. We 
claim that X has exactly two catenoid ends. 

In since g -I 0 or oo on ne·ver vanishes on M where X = (X1 , X2 , 

Suppose X has more than two catenoid ends. Let Pt := y, z) E R 3 1 z = t}; there is 
anN> 0 such that if t < -Nor t > JV then X(M) n has at least two components. 

Morse ( -oo,-N) or X3 1(JV, oo) has at least two components since X 3 

on M. Again Morse theory, M = X3 1 (R) has at least two 
the fact that M is connected. 

X must have at least two catenoid so X has 
two catenoid ends. 

Now the total curvature formula , X has total curvature -4n. By Corol­
D X must be a catenoid. The proof is complete. 
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