
16 The Convex Hull of a Minimal Surface 

Recall that the convex hull H(E) of a set E c Rn is defined as 

H(E) = n H 
ECH 

where H is a halfspace in Rn. Of course, if E is not contained in any halfspace, then 
H(E) = Rn = n0H. 

We want to study the convex hull of a minimal surface. 
Let M be conformally a bounded plane domain and X : M '--+ R 3 be a minimal 

surface such that X is continuous on M. If aM # 0, then a simple application of 
the maximum principle for harmonic functions shows that X(M) c H(X(aM)), where 
H(X(aM)) is the convex hull of X(aM). 
Exercise : Prove this fact. 

Now using the the Halfspace Theorem, we can prove more. 

Theorem 16.1 ([32]) Suppose that M c R 3 is a proper, complete, connected minimal 
surface in R 3 , whose boundary aM, which may be empty, is a compact set. Then exactly 
one of the following holds: 

1. H(M) = R 3 ; 

2. H (M) is a halfspace; 

3. H(M) is a closed slab between two parallel planes; 

4. H(M) is a plane; 

5. H(M) is a compact convex set. This case occurs precisely when M is compact. 

Furthermore, aM has nonempty intersection with each boundary component of H(M). 

Remark 16.2 We note that all of these cases are possible. For 1 and 2; examples are 
the catenoid and half-catenoid. For 3 we could take any of the examples in theorem 
14.8-and consider the portion of these surfaces in the slab lx31 ~ 1. This surface is 
bounded by two Jordan curves. For 4 we have a plane and 5 is the case for any compact 
example. 

Proof of Theorem 16.1. Suppose now that cases 1, 4 and 5 do not occur. To prove 
that case 2 or case 3 must occur we need show that if H1 and H2 are distinct smallest 
halfspaces containing M, then g = aH1 and P2 = aH2 are parallel planes. Suppose 
now that P1 and P2 are not parallel planes. We shall derive a contradiction. 

The interior of M cannot have a point in common with P1 U P2 . (If it did then the 
maximum principle for minimal surface (see Theorem 4.4 and Remark 4.6) implies it 
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would have to lie entirely on one plane or the other, contradicting the assumption that 
4 does not hold. Let C =HI n H2. 

After a rotation, if necessary, we may assume that C lies in the halfspace x 3 :2: 0, 
that the boundary of Cis a graph over the xix2-plane and that P1 n P2 is the x 1-axis. 
After (if necessary) a translation of M, parallel to the xi-axis, oM lies in the halfspace 
XI :S -1. (This translation leaves C invariant.) In particular 0 ~ M, and since M is 
closed (recall that properness implies that Jl!I is closed in R 3 ), there exists an s > 0 such 

that MnBs = 0, where Bs = {(xi,X2,x3) I (xi -s) 2 +x§+x~ :S s2}. Let rs = [)Bsnac. 
Since rs has a 1-1 projection onto a convex plane curve (recall that ac is a graph over 
the xi:rTplane), Theorem 4.1 it is the boundary of a compact minimal surface ,6.s 

that is the graph over a convex set in the xix2-plane. By the convex hull property 
mentioned in the beginning of this section, ,6.8 C B" so ,6.s is a positive distance from 
M. Note that Bs C {xi :2: 0} and ,6. 8 C C n {xi :2: 0}. 

For t E oo) consider the surfaces 

We note: that each At is a nonnegative graph inside of C n {(xi, x2 , x3) I x1 :2: 0}; 
that each At is compact; that as t----+ oo, At converges to {(xi,x2,x3) E Clxi = 0}; 
and that every point in ( C n { , x2 , x3 ) I x 1 > 0}) - Bs lies on some Because 
A = AI is disjoint from it follows from an application of the maximum principle 
that none of the surfaces can meet M (remember that oM is a distance at least 
1 from any At, so any contact must occur at an interior point). However 

(Bs u u~l At)~ c n { 'X2, I Xl > 0}. Hence M c .fh ={(xi, X2, :7:3) I XI :S 0}. 
A similar argument will show that for some large positive integer k, ]1;1 C H4 = 

{(x1 ,x2, lx1 :2: -k}. Repeating the entire procedure with HI and .fh replacing 
H 1 and H 2 will prove that M may also be bounded in the x3-direction and lie in 
some halfspace H 5 = { , x2 , f x:3 :S N} for N sufficiently large. Therefore M C 

H 1 n H2 n H 3 n H 4 n which is a compact, convex set. This contradicts the assumption 
that 5 does not hold. This contradiction completes the of the main part of the 
theorem. 

The fact that EJM intersets each boundary component of H(M) follows from Propo-
sition 15.4. This completes the proof. D 

Exercise : Prove that oM intersets each boundary component of H(M). 

Remark 16.3 All results in this section are true for minimal surfaces with branch 
points. 

Theorem 16.1 is true for minimal submanifolds in Rn, just replace planes by hyper­
planes in the theorem. 

Remark 16.4 If X : i\1! '----+ R 3 is a complete minimal surface of finite total curvature, 
then we know that X is proper. Then by the Halfspace Theorem, Theorern 15.1, X(M) 
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is not contained in any halfspace, and thus H(X(M)) = R 3. This is a case where we 
know that H(X(M)) = R 3 • Here properness is necessary, as Rosenberg and Toubiana 
[73] have constructed complete minimal annuli which are contained in a slab. 

Another example where H(X(M)) = R 3 is a theorem of F. Xavier [85], which says 
that if X : M '--+ R 3 is a complete minimal surface with bounded Gauss curvature (i.e, 
there is an a> 0 such that K(p) > -a for any p EM), then H(X(M)) = R 3 . 
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