13 Total Curvature of Branched Complete Minimal Surfaces

Let $X: M \hookrightarrow \mathbf{R}^{3}$ be a complete minimal surface with finite total curvature. Osserman's theorem says that conformally $M=S_{k}-\left\{p_{1}, \cdots, p_{n}\right\}, n \geq 1$, where S_{k} is a closed Riemann surface of genus k. Each p_{i} corresponds to an end E_{i} of M. Using Theorem 12.1, we can prove:

Theorem 13.1 The total curvature of X is

$$
\begin{equation*}
K(M)=2 \pi\left(\chi(M)-\sum_{i=1}^{n} I_{i}\right) \tag{13.57}
\end{equation*}
$$

where $\chi(M)=2(1-k)-n$ is the Euler characteristic of M and I_{i} is the multiplicity of E_{i}.

Proof. Let $\Gamma_{i}^{r}=X^{-1}\left(r W_{i}^{r}\right)$ be as in the proof of Theorem 12.1. Let $p_{i} \in D_{i}^{r}$ be the disk in S_{k} such that $\partial D_{i}^{r}=\Gamma_{i}^{r}$. When r is large enough the D_{i}^{r} 's are disjoint from each other. Then $M_{r}:=S_{k}-\bigcup_{i=1}^{n} \partial D_{i}^{r}$ is a Riemann surface with boundary $\bigcup_{i=1}^{n} \partial D_{i}^{r}$ and $\chi\left(M_{r}\right)=\chi(M)$. Now by the Gauss-Bonnet formula we have

$$
\int_{M_{r}} K d A+\sum_{i=1}^{n} \int_{\Gamma_{i}^{r}} \kappa_{g} d s=2 \pi \chi\left(M_{r}\right)=2 \pi \chi(M)
$$

where κ_{g} is the geodesic curvature. Since $W_{i}^{r}=\frac{1}{r} X\left(\Gamma_{i}^{r}\right)$ converges in the C^{∞} sense to a great circle on S^{2} with multiplicity I_{i} and X is an isometric immersion, we have

$$
\lim _{r \rightarrow \infty} \int_{\Gamma_{i}^{r}} \kappa_{g} d s=2 \pi I_{i}
$$

Taking limit we have

$$
\begin{equation*}
K(M)=\int_{M} K d A=2 \pi\left(\chi(M)-\sum_{i=1}^{n} I_{i}\right) \tag{13.58}
\end{equation*}
$$

In the remainder of this section, our surfaces will be branched minimal surfaces. Note that the concepts of completeness, properness, etc., can be easily generalised to branched minimal surfaces.

The Enneper-Weierstrass representation of a branched complete minimal surface of finite total curvature $X: M \rightarrow \mathbf{R}^{3}$ is given by

$$
\begin{equation*}
X(p)=\Re \int_{p_{0}}^{p}\left(\frac{1}{2}\left(1-g^{2}\right), \frac{i}{2}\left(1+g^{2}\right), g\right) \eta+C \tag{13.59}
\end{equation*}
$$

where $g: M=S_{k}-\left\{p_{1}, \cdots, p_{n}\right\} \rightarrow \mathbf{C} \cup\{\infty\}$ is a meromorphic function, η is a holomorphic 1-form on M and C is a constant vector. Both g and η can be extended to S_{k} as a meromorphic function and 1-form respectively. Note that we have proved this for regular minimal surfaces. But since the proof only involves the neighbourhoods of the punctures p_{i}, it works for branched minimal surfaces as well.

Locally, $\eta=f(z) d z$ where $z=x+i y$. The metric induced by X is given by

$$
\begin{equation*}
d s^{2}=\Lambda^{2}\left(d x^{2}+d y^{2}\right) \tag{13.60}
\end{equation*}
$$

where

$$
\begin{equation*}
\Lambda=\frac{1}{2}|f|\left(1+|g|^{2}\right) \tag{13.61}
\end{equation*}
$$

From (13.61) it is clear that $q \in M$ is a branch point only if η vanishes at q. Hence all branch points are isolated and if η is a meromorphic 1 -form on S_{k}, there is only a finite number of branch points.

Therefore, given g and η as above, we can define a metric h with isolated degenerate points on $M=S_{k}-\left\{p_{1}, \cdots, p_{n}\right\}$ by $h_{i j}=\Lambda^{2} \delta_{i j}$, where Λ is defined as in (13.61). We can study the intrinsic geometry of the branched complete Riemannian manifold (M, h) even though the mapping X in (13.59) may not be well defined. When X is well defined, it is a branched complete minimal surface.

Let U_{i} be a disk coordinate neighbourhood of p_{i} such that $z\left(p_{i}\right)=0$. Let J_{i} be the order of Λ at p_{i}, i.e., J_{i} is an integer such that in U_{i},

$$
\lim _{z \rightarrow 0}|z|^{J_{i}} \Lambda(z)=C_{i}>0
$$

for $1 \leq i \leq n$. Since (M, h) is complete, $J_{i} \geq 1$.
Suppose $q_{i}, 1 \leq i \leq m$, are branch points of M. Let V_{i} be a disk coordinate neighbourhood of q_{i} such that $z\left(q_{i}\right)=0$. Let K_{i} be the branch order of Λ, i.e.,

$$
\lim _{z \rightarrow 0}|z|^{-K_{i}} \Lambda(z)=C_{i}>0, \quad \text { in } \quad V_{i}
$$

There is a generalised version of (13.57) in [16] which allows X to have branch points.
Theorem 13.2 The total curvature of (M, h) is given by

$$
\begin{equation*}
\int_{M} K d A=2 \pi\left(\chi(M)-\sum_{i=1}^{n}\left(J_{i}-1\right)+\sum_{i=1}^{m} K_{i}\right) \tag{13.62}
\end{equation*}
$$

Proof. Let $R>0$ be such that $D_{R}^{i}:=\{|z|<R\} \subset U_{i}, 1 \leq i \leq n$ and $D_{R}^{i}:=\{|z|<$ $R\} \subset V_{i-n}, n+1 \leq i \leq n+m$. When R is small enough, $D_{R}^{i} \cap D_{R}^{j}=\emptyset$ for $i \neq j$.

Let $M_{R}=M-\bigcup_{i=1}^{n+m} D_{R}^{i}$. By the Gauss-Bonnet formula, we have

$$
\begin{equation*}
\int_{M_{R}} K d A+\sum_{i=1}^{n+m} \int_{\partial D_{R}^{i}} \kappa_{g} d s=2 \pi \chi\left(M_{R}\right)=2 \pi(\chi(M)-m) \tag{13.63}
\end{equation*}
$$

If $g\left(p_{i}\right) \neq \infty$, then $\eta=z^{-J_{i}} f_{i}(z) d z$ where f_{i} is a holomorphic function in U_{i} and $f_{i}(0) \neq 0$. Write $z=r e^{i t}$. By Minding's formula, see [12], Volume I, pages 33-34, the geodesic curvature on ∂D_{R}^{i} is given by

$$
\kappa_{g} \Lambda=-\frac{1}{R}+\frac{\partial \log \Lambda}{\partial \nu}
$$

where ν is the inward unit normal (in the Euclidean metric on D_{R}^{i}) of ∂D_{R}^{i}. Now $\Lambda=\frac{1}{2}|z|^{-J_{i}}\left|f_{i}\right|\left(1+|g|^{2}\right)$, so

$$
\frac{\partial \log \Lambda}{\partial \nu}=-\frac{\partial \log \Lambda}{\partial r}=\frac{J_{i}}{r}-\frac{\partial \log \left|f_{i}\right|}{\partial r}-\frac{\partial \log \left(1+|g|^{2}\right)}{\partial r}
$$

and

$$
\int_{\partial D_{R}^{i}} \kappa_{g} d s=\int_{0}^{2 \pi} \kappa_{g} \Lambda R d t=\int_{0}^{2 \pi}\left(\frac{J_{i}-1}{R}-\frac{\partial \log \left|f_{i}\right|}{\partial r}-\frac{\partial \log \left(1+|g|^{2}\right)}{\partial r}\right) R d t
$$

Since

$$
\int_{0}^{2 \pi} \frac{\partial \log \left|f_{i}\right|}{\partial r} R d t=\int_{D_{R}^{i}} \triangle\left(\log \left|f_{i}\right|\right) d x d y=0
$$

and $\partial \log \left(1+|g|^{2}\right) / \partial r$ is bounded, we have

$$
\lim _{R \rightarrow 0} \int_{\partial D_{R}^{i}} \kappa_{g} d s=2 \pi\left(J_{i}-1\right)
$$

If $g\left(p_{i}\right)=\infty$ then $g=z^{-m_{i}} g_{i}(z), m_{i}>0$, and $\eta=z^{-J_{i}+2 m_{i}} f_{i}(z) d z$, where f_{i} and g_{i} are holomorphic functions in U_{i} and $f_{i}(0) \neq 0, g_{i}(0) \neq 0$. Then

$$
\frac{\partial \log \Lambda}{\partial \nu}=-\frac{\partial \log \Lambda}{\partial r}=\frac{J_{i}-2 m_{i}}{r}-\frac{\partial \log \left|f_{i}\right|}{\partial r}-\frac{\partial \log \left(1+|g|^{2}\right)}{\partial r}
$$

Since

$$
\frac{\partial \log \left(1+|g|^{2}\right)}{\partial r}=\frac{1}{1+r^{-2 m_{i}}\left|g_{i}\right|^{2}}\left(-2 m_{i} r^{-2 m_{i}-1}\left|g_{i}\right|^{2}+r^{-2 m_{i}} \frac{\partial\left|g_{i}\right|^{2}}{\partial r}\right)
$$

we have

$$
\begin{aligned}
-\int_{0}^{2 \pi} \frac{\partial \log \left(1+|g|^{2}\right)}{\partial r} R d t & =\int_{0}^{2 \pi} \frac{2 m_{i} R^{-2 m_{i}}\left|g_{i}\right|^{2}}{1+R^{-2 m_{i}}\left|g_{i}\right|^{2}} d t-\int_{0}^{2 \pi} \frac{R^{-2 m_{i}} \frac{\partial\left|g_{i}\right|^{2}}{\partial r}}{1+R^{-2 m_{i}}\left|g_{i}\right|^{2}} R d t \\
& \rightarrow 4 m_{i} \pi \text { as } R \rightarrow 0
\end{aligned}
$$

We have the same limit

$$
\lim _{R \rightarrow 0} \int_{\partial D_{R}^{i}} \kappa_{g} d s=2 \pi\left(J_{i}-1\right)
$$

Similarly, for the branch ponts q_{i}, if $g\left(q_{i}\right) \neq \infty$, then $\eta=z^{K_{i}} f_{i}(z) d z$ where f_{i} is a holomorphic function defined in V_{i} and $f_{i}(0) \neq 0$. Similar calculation gives

$$
\int_{\partial D_{R}^{i+n}} \kappa_{g} d s=-\int_{0}^{2 \pi}\left(\frac{K_{i}+1}{R}+\frac{\partial \log \left|f_{i}\right|}{\partial r}+\frac{\partial \log \left(1+|g|^{2}\right)}{\partial r}\right) R d t
$$

Hence

$$
\lim _{R \rightarrow 0} \int_{\partial D_{R}^{i+n}} \kappa_{g} d s=-2 \pi\left(K_{i}+1\right)
$$

If $g\left(q_{i}\right)=\infty$, then $g(z)=z^{-m_{i}} g_{i}(z)$ and $\eta=z^{K_{i}+2 m_{i}} f_{i}(z)$, similar calculation still gives us the same limit.

Note that

$$
\lim _{R \rightarrow 0} \int_{M_{R}} K d A=\int_{M} K d A
$$

Letting $R \rightarrow 0$ in (13.63), we get (13.62). The proof is complete.
Remark 13.3 Suppose $X: S_{k}-\left\{p_{1}, \cdots, p_{n}\right\} \hookrightarrow \mathbb{R}^{3}$ is a regular complete minimal surface, then $h_{i j}=\Lambda^{2} \delta_{i j}$ is the pull back metric of X. Comparing the proofs of Theorem 13.1 and Theorem 13.2, we see that $J_{i}-1=I_{i}$, thus (13.62) is a generalization of (13.57).

The calculation in the proof of Theorem 13.2 also works for boundary branch points. Let M be a compact domain of a Riemann surface with a C^{2} boundary $\Gamma=\partial M$. Suppose that g and η are given meromorphic function and 1 -form respectively, and h is the Riemannian metric with isolated degenerate points defined by (13.60) and (13.61). Let $q_{i} \in M(1 \leq i \leq m)$ be the interior branch points with branch order K_{i} and $s_{i} \in M$ $(1 \leq i \leq n)$ be the boundary branch points with branch order L_{i}. Then:

Theorem 13.4 The total curvature of (M, h) is given by

$$
\begin{equation*}
\int_{M} K d A=2 \pi\left(\chi(M)+\sum_{i=1}^{m} K_{i}\right)+\pi \sum_{i=1}^{n} L_{i}-\int_{\Gamma} \kappa_{g} d s \tag{13.64}
\end{equation*}
$$

A sketch of the proof of (13.64) is as follows:
Define D_{R}^{i} as before and $M_{R}=M-\bigcup_{i=1}^{n+m} D_{R}^{i}$. By the Gauss-Bonnet formula,

$$
\int_{M_{R}} K d A+\int_{\partial M_{R}} \kappa d s+\sum_{i=1}^{n}\left(\alpha_{R}^{i}+\beta_{R}^{i}\right)=2 \pi(\chi(M)-m)
$$

where α_{R}^{i} and β_{R}^{i} are the exterior angles near the boundary branch points and

$$
\lim _{R \rightarrow 0} \alpha_{R}^{i}=\frac{\pi}{2}, \quad \lim _{R \rightarrow 0} \beta_{R}^{i}=\frac{\pi}{2}
$$

Then (13.64) follows by
$\lim _{R \rightarrow 0} \int_{\partial D_{R}^{i} \cap \partial M_{R}} \kappa d s=\lim _{R \rightarrow 0} \int_{\epsilon_{R}^{i}}^{\delta_{R}^{i}}\left(\frac{-1}{R}-\frac{\partial \log \Lambda}{\partial r}\right) R d t=\lim _{R \rightarrow 0}\left(\epsilon_{R}^{i}-\delta_{R}^{i}\right)\left(1+L_{i}\right)=-\pi\left(1+L_{i}\right)$, for the boundary branch points.

Remark 13.5 If X in (13.59) is well defined then X is a minimal surface and h is induced by X. In this case, (13.64) is the same as the formula in [12], Volume II, page 128.

Since if $X: S_{k}-\left\{p_{1}, \cdots, p_{n}\right\} \hookrightarrow \mathbf{R}^{3}$ is a complete minimal immersion, then $J_{i} \geq 2$ and $J_{i}=2$ if and only if the end E_{i} is embedded, we get a corollary.

Corollary 13.6 The total curvature of a regular complete minimal surface of genus k with n ends satisfies

$$
\begin{equation*}
K(M) \leq 4 \pi(1-k-n)=2 \pi(\chi(M)-n) \tag{13.65}
\end{equation*}
$$

Moreover,

$$
K(M)=2 \pi(\chi(M)-n)
$$

if and only if each end of M is embedded.
The inequality (13.65) is a result of Osserman.

