13 Total Curvature of Branched Complete Minimal
Surfaces

Let X : M — R? be a complete minimal surface with finite total curvature. Osserman’s
theorem says that conformally M = Sy — {p1,---,pn}, n > 1, where S is a closed
Riemann surface of genus k. Each p; corresponds to an end F; of M. Using Theorem
12.1, we can prove:

Theorem 13.1 The total curvature of X is
K(M)=2r (X(M) -3 Ii> ) (13.57)
i=1

where x(M) = 2(1 — k) — n is the Euler characteristic of M and I; is the multiplicity
Of Ei.

Proof. Let I = X1 (rW]) be as in the proof of Theorem 12.1. Let p; € D] be the
disk in Sy such that D] =T;. When r is large enough the D]’s are disjoint from each
other. Then M, := S, — U, D] is a Riemann surface with boundary Ui, 0D] and
x(M,) = x(M). Now by the Gauss-Bonnet formula we have

/Mr KdA + ; /1“;: kg ds = 2mx(M,) = 2rx (M),

where k, is the geodesic curvature. Since W] = %X (T'7) converges in the C'*° sense to
a great circle on S? with multiplicity I; and X is an isometric immersion, we have

lim [ Kyds=2ml;.
T—00 JpT
7

Taking limit we have

K(M) = [ KdA =2 (x(M) - ZI) . (13.58)

O

In the remainder of this section, our surfaces will be branched minimal surfaces.
Note that the concepts of completeness, properness, etc., can be easily generalised to
branched minimal surfaces.

The Enneper-Weierstrass representation of a branched complete minimal surface of
finite total curvature X : M — R? is given by

xX@) = [ (0= 30+6% g)n+C, (13.59
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where g: M = S, — {p1, - -,pn} — CU {oo} is a meromorphic function, 7 is a holo-
morphic 1-form on M and C is a constant vector. Both g and n can be extended to Sk
as a meromorphic function and 1-form respectively. Note that we have proved this for
regular minimal surfaces. But since the proof only involves the neighbourhoods of the
punctures p;, it works for branched minimal surfaces as well.

Locally, n = f(z)dz where z = x + iy. The metric induced by X is given by

ds* = A*(dz? + dy?), (13.60)

where .
A= SIfIL+ lg1). (13.61)

From (13.61) it is clear that ¢ € M is a branch point only if n vanishes at g. Hence all
branch points are isolated and if 7 is a meromorphic 1-form on Sy, there is only a finite
number of branch points.

Therefore, given g and 1 as above, we can define a metric h with isolated degenerate
points on M = Sy — {p1,- -, Pn} by hij = A%8;;, where A is defined as in (13.61). We
can study the intrinsic geometry of the branched complete Riemannian manifold (M, h)
even though the mapping X in (13.59) may not be well defined. When X is well defined,
it is a branched complete minimal surface.

Let U; be a disk coordinate neighbourhood of p; such that z(p;) = 0. Let J; be the
order of A at p;, i.e., J; is an integer such that in U,

lim |2 A(2) = C; > 0,
z—0
for 1 <14 < n. Since (M, h) is complete, J; > 1.

Suppose ¢;, 1 < i < m, are branch points of M. Let V; be a disk coordinate
neighbourhood of ¢; such that z(¢g;) = 0. Let K; be the branch order of A, i.e.,

lim |z| %A(z) =C; >0, in V.
z—0
There is a generalised version of (13.57) in [16] which allows X to have branch points.

Theorem 13.2 The total curvature of (M, h) is given by

/M KdA = 2r (X(M) -1+ i K,») : (13.62)

=1

Proof. Let R > 0 be such that D% := {|z| < R} C U;, 1 <i < nand Dy = {|z] <
R} CVip,n+1<i<n+m. When R is small enough, Dy N D% =0 for i # j.
Let Mg = M — U™ D%. By the Gauss-Bonnet formula, we have

n-+m

/ KdA + Z‘ / , s = 2mx(Mr) = 27(x(M) = m). (13.63)
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If g(p;) # oo, then n = 277 f,(2)dz where f; is a holomorphic function in U; and
f:(0) # 0. Write z = re*’. By Minding’s formula, see [12], Volume I, pages 33-34, the
geodesic curvature on dD% is given by
1 JdlogA

KgA:_.ﬁ o’

where v is the inward unit normal (in the Euclidean metric on D%) of dD%. Now
A= g2 75| fil (1 + 1g[*), so

dlogh _ dlogh _ Ji dloglfil dlog(1+|gl?)
ov or r or or 7

and

_ [ _ [ (Ji—1 Olog|fi| dlog(l+]g]*)
/6DiR/€gd8—-/0 fchRdt-/O ( = = - Rdt.

Since

x dloglfil . | B
/0 = Rdt_/DiRA(log|fl|)dxdy—0,

and 0log(1 + |g|*)/0r is bounded, we have

lim | Keds =2n(J; —1).
R—0 6D§2

If g(p;) = oo then g = 27 ™ig;(2), m; > 0, and n = z~/i+2™: f,(2)dz, where f; and g;
are holomorphic functions in U; and f;(0) # 0, ¢;(0) # 0. Then

dlogA _ dlogA _ Ji—2m; dlog|fi| 0log(l+|gl?)

v ar r or ar

Since
dlog(1 + !9|2) 1 —om;—1y, |2 om0 9i|2
= —2m;r~™ T g - well

ar 14 r—2mi|g,|? m.r lgil* +r ar

we have
_ /2” dlog(l+19/) . _ /% 2miR gl /zﬂ i =
0 or o 14+ R-2mi|g;|? o 1+ R~ 2’"1 gi|?

— 4dm;m as R — 0.

We have the same limit

zlalg%) -~ Kgds = 2m(J; — 1).
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Similarly, for the branch ponts g;, if g(g;) # oo, then n = 2%i f;(2)dz where f; is a
holomorphic function defined in V; and f;(0) # 0. Similar calculation gives

_ o (K, +1  Olog|fi|  0dlog(l+]gl?)
| riads == [ ( S i Rdt.
Hence
11211130 i kgds = —2m(K; + 1).

If g(g;) = oo, then g(z) = 27™ig;(z) and n = 2Ki+2™ f,(z), similar calculation still gives
us the same limit.

Note that
lim [ Kaa= [ Kaa.
R—0JMp M
Letting R — 0 in (13.63), we get (13.62). The proof is complete. O

Remark 13.3 Suppose X : Sp — {p1, -+, pn} — R3? is a regular complete minimal
surface, then h;; = A%6;; is the pull back metric of X. Comparing the proofs of Theorem
13.1 and Theorem 13.2, we see that J;—1 = I;, thus (13.62) is a generalization of (13.57).

The calculation in the proof of Theorem 13.2 also works for boundary branch points.
Let M be a compact domain of a Riemann surface with a C? boundary I' = 9M.
Suppose that g and n are given meromorphic function and 1-form respectively, and h is
the Riemannian metric with isolated degenerate points defined by (13.60) and (13.61).
Let ¢; € M (1 <4 < m) be the interior branch points with branch order K; and s; € M
(1 <i < n) be the boundary branch points with branch order L;. Then:

Theorem 13.4 The total curvature of (M, h) is given by

/ KdA =2r <X(M) + ZK}) +my L;— / Kg ds. (13.64)
M i=1 i=1 r

A sketch of the proof of (13.64) is as follows:
Define D%, as before and Mz = M — JX™ D%. By the Gauss-Bonnet formula,

KdA—I—JéM /{ds—}-i(a}z—l—ﬁ}é) = 2r(x(M) —m),

Mg —

where o% and 3% are the exterior angles near the boundary branch points and

S .o
lim o'% = — lim G% = —.
BS0 BT 97 RS0 Br 2

Then (13.64) follows by

R or

lim kds = lim
R—0 aDjinaMR R—0 51}2

&t — . .
R ( 1 B 810gA> Rdt = 11{1_%(6}—52)(1‘*‘@) — —7r(1+Li),

for the boundary branch points.
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Remark 13.5 If X in (13.59) is well defined then X is a minimal surface and h is
induced by X. In this case, (13.64) is the same as the formula in [12], Volume II, page
128.

Since if X : Sy — {p1,-++,pn} < R3? is a complete minimal immersion, then J; > 2
and J; = 2 if and only if the end E; is embedded, we get a corollary.

Corollary 13.6 The total curvature of a regular complete minimal surface of genus k
with n ends satisfies

K(M)<4r(1 —k —n) =2n(x(M) —n). (13.65)

Moreover,
K(M) =2n(x(M) —n)

if and only if each end of M is embedded.

The inequality (13.65) is a result of Osserman.

60



