12 Complete Minimal Surfaces of Finite Total Cur-
vature

To have a better understanding of a complete immersed minimal surface of finite total
curvature, we will prove a theorem due to Jorge and Meeks which says that if one looks
at the surface from infinity, then the surface looks like a finite number of planes passing
through the origin.

Let X : M = Sy — {p1,-+-,pn} = R? be an immersed complete surface. Let S?(r)
be the sphere centred at (0,0,0) with radius r. Let ¥, = X (M) N S?(r) and

1
W, =Y, C 5%
7
Theorem 12.1 ([38]) Suppose that the Gauss map on M extends continuously to S.
Then :
1. X : M =Sy —{p1, - ,pn} — R3 is proper.
2. For larger, W, = {~], -+, } consists of n immersed closed curves on S2.

3. I converges in the C* sense to a geodesic of S* with multiplicity I; > 1 as r goes
to infinity.

4. If X is a minimal surface then the convergence in 8 is C™.

5. X s embedded at an end corresponding to p; if and only if I, = 1.

Proof. We need only consider a neighbourhood of a puncture p. Let D* = D — {p} be
a punctured disk and D be compact. Suppose that

N = lim N(2),
|z]—0

and that
NeN(z) = cosf > ? for 0< 6 < g— (12.52)

for all z € D*. Let 7 be a plane containing the line generated by N and let I' = X (7).
Since NeN(z) > +/3/2, X is transversal to 7. It follows that I' consists of points in 0D
and connected curves (in fact, the interior of X ~1(r) is a one-dimensional manifold).
Let v be a connected component of I' that is a curve.

We will consider coordinates (t,y) in 7 such that the y-axis is the line generated
by N. It follows from (12.52) that the tangent vector of X () is never collinear with
N. Thus X(7) is the graph of a function y(t). The angle between the normal vector
(—y',1) of X(v) and N is less than or equal to 8. Therefore

1
> cosé,
1+y/(8)?
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which implies that
' |y (t)] < tan@, for all t. (12.53)

If v is compact it follows that the extremal points of X (vy) are contained in X (8D).
Let Iy = X(’}’(tl)) c X(E)D) and To = X(’}/(tg)) € X(aD), and z = X(’Y(t)), te (tl,tz).
Then

t2
ol < ol o — w1l < Joal+ [Ty ds < o + %lta — 1] < |2a] + 2l — 7).
1
Thus
sup |z| < do + 2d; (12.54)
z€X(7)
where
do= sup |z|, d; =diameter of X(9D).
z€X (D)

If 7 is non-compact in D*, then it must be a divergent curve; hence X () has infinite
arc length (X is complete). It follows from (12.53) that y(t) is defined in the interval
(=00, al, [a,00) or (—o0, o).

Let C, be the solid cylinder of radius r whose axis is the line generated by N. Let
A be the annulus D* with the metric induced by X so that X: A — R3 is an isometric
immersion. Note that A = dD.

Claim : X~'(C,) is a compact set of A. In particular, the immersion X : D* < R3
is proper. 3

Proof of the Claim : We will denote by p the distance on A. Choose r > 0 such
that X (8D) is contanined in C,. Let # € A be such that X (%) = z. Let =’ be the
plane passing through « and the line generated by N. Consider a connected curve <y in
X~Y(n") containing Z. We know that X(v) is the graph of a function y(¢) in 7' with
z = (to,y(to)). Observe that |tg] < 7. If the domain of y(t) is the interval (—oo,a] or
[a,00), then (a,y(a)) € X(8D) and

t
/° 1y (1) dtl < 2rsecd < 4r. (12.55)

Assume now that ¢ varies from —oo to co. Let m; be the plane passing through the point
(t,y(t)) of X(7), orthogonal to 7’ and parallel to the line generated by N. Let vy, be the
connected curve in X ~!(m,, ) that contains the point &. If ,, intersects A, then (12.55)
holds. We assert that there exists ¢ € (—r,7) such that X ~!(m;) contains some curve
v, intersecting both v and dA. If not, then X (v,) is a graph in 7, over the t-axis of
T, As to varies along the t-axis of 7/, X (74,) describes some surface M that is a graph
over the plane orthogonal to the vector N. Then X ~'(M;) contains some connected
component of A without boundary which contradicts the fact that A is connected and
has boundary. Thus for some ¢, 7, intersects A; if |t| > r then m, N X (BA) = (), hence
|t| < r. This proves the assertion.

p(&,04) <
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If v, is given by the assertion above, then in the same way as in (12.55), letting
z' € 7 be such that X (z') = (¢,y(t)), we have

p(z',0A) < 4r.

Let ¢; be a point on the t-axis of 7' such that X () N7’ = (¢,y(t)). It follows easily
from the triangle inequality that

p(%,0A) < 4r +

t
/ Ly (t)? dt, < 8r,
to

which proves the claim.

Now let 7o = do + 2d; where dy and d; are defined after (12.54). Then X (9A)
is contained inside the solid cylinder C,,. By the above claim, the set X~}(C,,) is
compact. Set

r= sup {|X(z)|}
2€X=1(Cry)

and 7o > max{ro, r1} such that

To + 71
T2

T V3
tan — < —.
+an6 5

Then X (8D) is contained inside the sphere S?(rs) of radius r, and centred at the origin.
By the claim and by the fact that lim,|,o N(2) = N, there exists a subannulus A" C D*
such that

1. (12.52) holds for z € A,
2. X(z) is outside C,, for z € A'".

Let 7 be the plane containing X (z) and the axis of C,, for z € A’. Let « be a connected
component of X ~!(r) containing z. The X (v) is a graph generated by y(t) in 7. By
the transversality of 7 and X (D*) and the fact X (D) C C,,, X (v) intersets C,,. Then
vy is defined at 7y or —ry. We may assume that y is defined at 9. Then

ly(ro)| < |(ro,y(ro)| < 71

Let z € A" and X (2) = (r,y(r)), r > ro. By (12.53) it follows that

ly(r)| < ly(ro)| + / y/(t)dtl <ro+71 +rtand.
o

Then, if X(z) = (r,y(r)), we have

IN

_‘X_(Z_)-. — Iy(r)[ To+ 71 0 @ z ,
IIX(Z)[ N' B \/7»2 +12(r) r +tand < 5 €A (12.56)
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Set 73 > sup,¢(ps—an{| X (2)]}. .
We now prove that X and S%(r) are transverse for r > r3. If X and S?(r) are not
transverse, then there exists z € X~1(S?(r)) such that
X(z)
N(z) = —=.
“ = )
Since X (D* — A’) lies inside S?(r), we have that z € A’ and (12.52) and (12.56) give a
contradiction. Thus X is transverse to S?(r) for all 7 > r3. We restrict X to A'.
Then by the claim, the function h: A — R defined by

h(z) = 1X ()

is proper. If z € A’ is a critical point of h, then Dh(z) = (0,0), which means that
X.(z) and X, (z) are perpendicular to X (z), and so N(z) = X (z2)/| X (z)|, contradicting
to X and S?(r) are transverse. This contradiction proves that h does not have critical
points. If r > r3, then A7*(r?) is a compact curve that does not intersect 9A’. Hence
h=1(r?) is a finite collection of Jordan curves. If h~!(r?) has more than one Jordan
curve, then there is a compact domain € C A’ such that 9 is the union of Jordan
curves of A7*(r2). Then h has a maximum or minimum, hence a critical point, in the
interior of €2, which has already been proved impossible. This shows that h=!(r?) is a

single Jordan curve. Hence
I := X(D*)nS*r)

is an immersion of S* and this proves item 2 in this theorem.

We observe that 6 of (12.56) goes to zero as r goes to infinity. In fact § depends on
7o, but we can let 7o — co and set r > rZ. By (12.56) the curve 4" = 1/rI is contained
in a strip of S? that converges to a great circle S as r goes to infinity. Also, by (12.52),
the angle between the tangent vector of I'" and N goes to 7/2 as r goes to infinity.
Hence, I'" makes at least one loop around the direction N and 4" converges C° to S as
r goes to infinity.

Let a(¢), ¢ € R, be a parametrisation by arc length of the great circle S. Let 3,
be a parametrisation of 7" such that (3,(¢) lies in the great circle of S? that contains N
and a(¢). We have that

() == (i) = (o)

As ] is orthogonal to N(f,), we have that (./|5.|eN goes to zero as r goes to infinity.
Since 4" converges in the CY sense to «, it follows that

lim 4,/|8ea = lim B./|8/|s lim 8,/15,| = 0.

r—>00

Therefore 4" converges in the C! sense to the great circle S, with multiplicity, and item
3 is proved.
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We now prove that if X is minimal, then 4" converges in the C* sense to S. Let
7 be the plane orthogonal to N and containing the origin. Let Q2 be the annulus
{pem|1/2 <|p| < 2}. Set

M, == (1/rX(D*)) N (Q x R).

The orthogonal projection of M, onto 2 is a covering of £ and locally we may write
M, as a graph of a function f,. defined over an angular sector of Q. It follows from
the C° convergence of M, and convergence properties for minimal surfaces (see, e.g.
Corollary (16.7) in [21]) that all derivatives of f, of order less then j + 1, j an integer,
are uniformly bounded by a constant K. Since f, converges in the C° sense to f =0
and the inclusion map of the space of C7*! functions into the space of C7 functions is
absolutely continuous, it follows that f,. converges in the C7 sense to f = 0. In particular,
the intersection of M, with S? converges in the C7 sense to S with multiplicity for all
7. This completes the proof of the theorem. a

Now let X : M = S, — {p1,---,pn} = R? be a complete minimal surface of finite
total curvature. Let E; = X : D; — {p;} be the end corresponding to p;. Let W =
1/rX(D; — {p;}) N S*(r) and T7 = X~ (rW/). Jorge and Meeks’ theorem says that I'}
is a Jordan curve in D; — {p;} for r large enough and W converges to a great circle of
S? with multiplicity I;. We will define the multiplicity of E; to be I;. Clearly I; = 1
if and only if E; is embedded. An application of Jorge-Meeks’ theorem is that we can
get a total curvature formula via the genus k, the number of punctures n, and the
multiplicities I;.
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