
12 Complete Minimal Surfaces of Finite Total Cur­
vature 

To have a better understanding of a complete immersed minimal surface of finite total 
curvature, we will prove a theorem due to Jorge and Meeks which says that if one looks 
at the surface from infinity, then the surface looks like a finite number of planes passing 
through the origin. 

Let X: M ~ Sk- {p1 , · · · ,pn} '-+ R 3 be an immersed complete surface. Let S2 (r) 
be the sphere centred at (0, 0, 0) with radius r. Let Y,. = X(M) n S 2 (r) and 

1 2 
Wr = -Y,. C S o 

r 

Theorem 12.1 ([38]) Suppose that the Gauss map on M extends continuously to Sk. 
Then 

1. X: M ~ Sk- {p1, · · · ,Pn} '-+ R 3 is proper. 

2. For large r, Wr = { 'Yr, · · ·, 'Y~} consists of n immersed closed curves on 5 2 
0 

3. 'Y[ converges in the C 1 sense to a geodesic of 5 2 with multiplicity Ii 2: 1 as r goes 
to infinity. 

4. If X is a minimal surface then the convergence in 3 is coo. 
5. X is embedded at an end corresponding to Pi if and only if Ii = 1. 

Proof. We need only consider a neighbourhood of a puncture p. Let D* = D- {p} be 
a punctured disk and aD be compact. Suppose that 

and that 

N = lim N(z), 
lzl-+0 

v'3 7r 
NeN(z) =cos()>- for 0 < () <-- 2 - - 6 (12.52) 

for all z E D*. Let 1r be a plane containing the line generated by N and let r = x-1 ( 1r). 

Since N111N(z) 2: v'3/2, X is transversal to 1r. It follows that r consists of points in aD 
and connected curves (in fact, the interior of x- 1 ( 1r) is a one-dimensional manifold). 
Let 'Y be a connected component of r that is a curve. 

We will consider coordinates ( t, y) in 1r such that the y-axis is the line generated 
by N. It follows from (12.52) that the tangent vector of X('Y) is never collinear with 
No Thus X('Y) is the graph of a function y(t). The angle between the normal vector 
( -y', 1) of X ( 'Y) and N is less than or equal to e. Therefore 

1 
-----;==== 2: cos()' 
j1 + y'(t) 2 
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which implies that 
IY'(t)i :::; tan e, for all t. (12.53) 

If 'Y is compact it follows that the extremal points of X ("f) are contained in X(aD). 
Let x1 = X('Y(t1 )) E X(aD) and x2 = X('Y(t2)) E X(aD), and x = X('Y(t)), t E (t1, t 2 ). 

Then 

Thus 

where 

sup lxl :::; + 2d1 
xEX(r) 

d0 = sup lxi, d1 =diameter of X(aD). 
xEX(8D) 

(12.54) 

If 'Y is non-compact in D*, then it must be a divergent curve; hence X ( 'Y) has infinite 
arc length (X is complete). It follows from (12.53) that y(t) is defined in the interval 
(-oo,a], [a,oo) or (-oo,oo). 

Let Cr be the solid cylinder of radius r whose axis is the line generated by N. Let 
A be the annulus D* with the metric induced by X so that X: A---+ R 3 is an isometric 
immersion. Note that aA =aD. 

Claim: x-1 (Cr) is a compact set of A. In particular, the immersion X: D* Y R 3 

is proper. _ 
Proof of the Claim : We will denote by j5 the distance on A. Choose r > 0 such 

that X(aD) is contanined in Cr. Let x E A be such that X(x) = x. Let 7r1 be the 
plane passing through and the line generated N. a connected curve 'Y in 
x-1 (7r1) containing x. We know that X('Y) is the graph of a function y(t) in with 
x = y(to)). Observe that ito I :::; r. If the domain y(t) is the interval ( -oo, a] or 
[a,oo), then (a,y(a)) E X(aD) and 

f5(x, ali) :::; llo ji+7/(t)2 dtl :::; 2r sec e :::; 4r. (12.55) 

Assume now that t varies from -oo to oo. Let 7rt be the passing through the point 
(t, y(t)) of X ("f), orthogonal to 7r1 and parallel to the line generated by N. Let "ito be the 
connected curve in x-1 (7rt0 ) that contains the point x. If "ito intersects then (12.55) 
holds. We assert that there exists t E ( -r, r) such that x- 1(nt) contains some curve 
"it intersecting both"( and aA. If not, then Xbto) is a graph in 7rt0 over the t-axis of 
7rt0 • As t 0 varies along the t-axis of 7r1 , X bto) describes some surface that is a graph 
over the plane orthogonal to the vector N. Then x-1 (M0 ) contains some connected 
component of A without boundary which contradicts the fact that A is connected and 
has boundary. Thus for some t, "it intersects aA; if iti ~ r then 7rt n X(aA) = 0, hence 
iti < r. This proves the assertion. 
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If 'Yt is given by the assertion above, then in the same way as in (12.55), letting 
x' E 'Yt be such that X(x') = (t, y(t)), we have 

p(x',oA):::; 4r. 

Let t1 be a point on the t-axis of 7r1 such that X bt) n 7r1 = ( t, y( t)). It follows easily 
from the triangle inequality that 

which proves the claim. 
Now let r0 = d0 + 2d1 where d0 and d1 are defined after (12.54). Then X(oA) 

is contained inside the solid cylinder C,.0 • By the above claim, the set x-1(C,.0 ) is 
compact. Set 

and r 2 > max{r0 , rl} such that 

r1 = sup {IX(z)l} 
zEX- 1 (Cr0 ) 

ro + r1 1r J3 
--+tan-<-. 

T2 6 2 

Then X(oD) is contained inside the sphere S2 (r2 ) of radius r2 and centred at the origin. 
By the claim and by the fact that limlzi--+O N(z) = N, there exists a subannulus A' CD* 
such that 

1. (12.52) holds for z E A', 

2. X(z) is outside C,.2 for z E A'. 

Let 1r be the plane containing X(z) and the axis of C,.0 for z E A'. Let 'Y be a connected 
component of x- 1 (1r) containing z. The X('Y) is a graph generated by y(t) in 1r. By 
the transversality of 1r and X(D*) and the fact X(oD) C C,.0 , X ("f) intersets C,.0 • Then 
y is defined at r 0 or -T0 . We may assume that y is defined at r 0 . Then 

ly(ro) I :::; I (ro, y(ro) I :::; r1. 

Let z E A' and X(z) = (r, y(r)), r > r0 . By (12.53) it follows that 

ly(r) I :::; IY(To) I + 11: y' (t)dtl :::; To + rl + r tan e. 

Then, if X(z) = (T,y(r)), we have 

--• = < +tan<-I X(z) Nl ly(r)l ro + r1 () J3 
IX(z)l Jr2 + y2(r) - T 2 ' 

z E A'. (12.56) 
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Set r3 > supzE(D*-A'){IX(z)l}. 
We now prove that X and S2 (r) are transverse for r ~ r 3 . If X and S2 (r) are not 

transverse, then there exists z E x-1 (S2 (r)) such that 

X(z) 
N(z) = IX(z)l. 

Since X(D*- A') lies inside S 2 (r), we have that z E A' and (12.52) and (12.56) give a 
contradiction. Thus X is transverse to S 2 (r) for all r ~ r 3 . We restrict X to A'. 

Then by the claim, the function h : A' --+ R defined by 

h(z) = IX(zW 

is proper. If z E A' is a critical point of h, then Dh(z) = (0, 0), which means that 
Xx(z) and Xy(z) are perpendicular to X(z), and so N(z) = X(z)/IX(z)l, contradicting 
to X and S2(r) are transverse. This contradiction proves that h does not have critical 
points. If r > r 3 , then h-1(r2 ) is a compact curve that does not intersect 8A1 • Hence 
h-1 (r2 ) is a finite collection of Jordan curves. If h-1 has more than one Jordan 
curve, then there is a compact domain r2 C A' such that is the union of Jordan 
curves of h-1 (r2 ). Then h has a maximum or minimum, hence a critical point, in the 
interior of 0, which has already been proved impossible. This shows that h-1(r2 ) is a 
single Jordan curve. Hence 

rr := X(D*) n S2 

is an immersion of S 1 and this proves item 2 in this theorem. 
We observe that (} of (12.56) goes to zero as r goes to In fact e depends on 

r0 , but we can let r0 --+ oo and set r > r6. the curve = 1 j r rr is contained 
in a strip of S 2 that converges to a great circle S as r goes to infinity. by (12.52), 
the angle between the tangent vector of rr and N goes to 1r /2 as r goes to infinity. 
Hence, rr makes at least one loop around the direction N and converges C 0 to S as 
r goes to infinity. 

Let a(¢), ¢ E R, be a parametrisation by arc length of the great circle S. Let f3r 
be a parametrisation of such that f3r ( ¢) lies in the great circle of S 2 that contains N 
and a(¢). We have that 

( /3' ) 2 ( /3' 
I /3: I • a' = 1 - I j]~ I 

2 

As j]~ is orthogonal to N(j]r), we have that j]~/IP:I@N goes to zero as r goes to infinity. 
Since ryr converges in the C 0 sense to a, it follows that 

Therefore ~yr converges in the C 1 sense to the great circleS, with multiplicity, and item 
3 is proved. 
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We now prove that if X is minimal, then '/r converges in the coo sense to 5. Let 
1r be the plane orthogonal to N and containing the origin. Let D be the annulus 
{p E 1r 11/2::::; IPI ::::; 2}. Set . 

Mr := (1/rX(D*)) n (D x R). 

The orthogonal projection of M,. onto D is a covering of D and locally we may write 
l'vfr as a graph of a function fr defined over an angular sector of D. It follows from 
the C 0 convergence of Mr and convergence properties for minimal surfaces (see, e.g. 
Corollary (16.7) in [21]) that all derivatives of fr of order less then j + 1, j an integer, 
are uniformly bounded by a constant Kj+l· Since fr converges in the C 0 sense to f = 0 
and the inclusion map of the space of C)+l functions into the space of CJ functions is 
absolutely continuous, it follows that fr converges in the CJ sense to f = 0. In particular, 
the intersection of Mr with 5 2 converges in the C) sense to 5 with multiplicity for all 
j. This completes the proof of the theorem. D 

Now let X: M = 5k - {p1 , · · · ,Pn} '---+ R 3 be a complete minimal surface of finite 
total curvature. Let E; = X : D; - {p;} be the end corresponding to p;. Let W[ = 
ljrX(D;- {p;}) n 5 2 (r) and fi = x-1(rW[). Jorge and Meeks' theorem says that fi 
is a Jordan curve in - {pi} for T large enough and W[ converges to a great circle of 
5 2 with multiplicity h We will define the multiplicity of E; to be I;. Clearly I; = 1 
if and only if E; is embedded. An application of Jorge-Meeks' theorem is that we can 
get a total curvature formula via the genus k, the number of punctures n, and the 
multiplicities I;. 
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