10 Complete Minimal Surfaces, Osserman’s Theo-
rem

Let X : M — R? be a surface, A?> = |X;|?> = |X,|?, and v:I — M be a differentiable
curve. The arc length of visI' := [, [(X or)'(¢)| dt. A divergent path on M is a piecewise
differentiable curve 7:[0,00) — M such that for every compact set V' C M there is a
T > 0 such that y(t) € V for every t > T'. If +y is piecewise differentiable, we define its
arc length as

Di= [TI(Xor)@ldt = [~ AG) IF )t

Note that I' could be co.
Definition 10.1 We say that X is complete if for any divergent curve v, I' = co.

Remark 10.2 The use of a divergent curve instead of boundary to describe complete-
ness is because that if M = D*, {0} is not a boundary point of M, but is the limit
point of a divergent curve.

Note that in case that (M, g) is a non-compact Riemannian manifold and OM = @,
according to the Hopf-Reno theorem, this definition of completeness is equivalent to
each of the following:

1. Any geodesic v:I C R < M can be extended to a geodesic y:R — M,

2. (M,d) is a complete metric space, where d is the induced distance from the Rie-
mannian metric g (roughly speaking, d(p,q) = the arc length of the shortest
geodesic segment connecting p and q),

3. in (M,d), any bounded closed set is compact.

In general, there are many examples of closed minimal submanifolds M — (N, g)
where (IV, g) is a Riemannian manifold. For example, S? C S% is minimal. But we have
seen that there are no closed minimal surfaces in R3. Hence in some sense a complete
minimal surface without boundary is the closest analogue to a “closed minimal surface
in R3”.

Definition 10.3 Let X : M — R? be a complete minimal surface. Remember that
the Gauss curvature K is a non-positive function on M, hence the integral of K has a
meaning. We define

K(M) = / KdA (10.39)
M
to be the total Gauss curvature of M.

Let X : M < R? be a surface and K be the Gauss curvature. Let K~ =
max{—K,0}, KT = max{K,0}, then K = KT — K7, |K| = Kt + K~. We first
prove a theorem of A. Huber, the proof shown here belongs to B. White [82].
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Theorem 10.4 (Huber [35]) Let X : M — R® be a non-compact, complete surface.
“If [y |K71dA < o0, then [y, |KT|dA < oo, and M is homeomorphic to M —{p1,-- -, px},
where M is a compact 2-manifold.

Proof. Fix 2y € M, and let
Q. =Q(r)={z € M|d(z,z0) <1},

where d(z,y) is the geodesic distance from z to y. P. Hartman [23] has shown that 092,
is, for almost all r, a piecewise smooth, embedded closed curve. Let 6;, i =1, ---,n be
the exterior angles of 9€2,. By Gauss-Bonnet theorem,

d 6; =2 K dA
/an Kg as + Z 7TX /
— 27(2 — 2h(r) — ¢(r)) — /Q K dA, (10.40)

where x(r), h(r), and c(r) are the Euler characteristic, number of handles, and the
number of boundary components, respectively, of ..

Let L(r) denote the length of 9Q,. P. Hartman [23] has proved that L(r) is absolutely
continuous. As proved in [83],

L'(r) = 2n(2 — 2h(r / KdA+ Y (2tan(0:/2) — 6:),

;<0

when —7/2 < 6; < 0, 2tan(6;/2) — 6; <0, so
L(r) < 2n(2 — 2h(r) — ¢(r)) — /Q K dA.

Since M is complete and noncompact, L(r) > 0 for all 7 > 0; so
0 < limsupL'(r)
< 27(2 — 2liminf A(r) — liminf ¢(r) / |K+\dA+/ |K~|dA. (10.41)

Thus the negative quantities on the right-hand side are all finite. Since h(r) is a non-
decreasing, integer valued function of r,

h(r) = some constant h for r > R.
Also, ¢(r) is integer valued, so we can find a sequence r; — oo with
c(r;) = ¢ =liminf ¢(r) < co.

Let A; be the union of §2,, with those connected components of M — €,, which happen

to be compact. (There may not be any, in which case 4; = Q,,.) Let h(A;) and c(4;)

denote the number of handles and boundary components, respectively, of A;. Then
h=h(,) <h(4) <h(Qy,.)=nh

Tit
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provided j is large enough that A; C Q,,.: so
h(A;) = h (10.42)
and clearly c(A;) < ¢(Q,,). By passing to a subsequence we may assume
c(4;) =d (Lo). (10.43)

By (10.42) and (10.43), the A; are homeomorphic, with A4;;; obtained from A; by
attaching annuli. The result follows immediately. a

Since for minimal surfaces K < 0 on M, we know that a complete minimal surface of
finite total curvature has finite topology. We are interested in the conformal structure
of M. Now since M has finite topology, M = S — ({p1, -+, pn }UUL_; U;) as a Riemann
surface, where U; C S is conformally a closed disk. Furthermore, there are disjoint
conformal open disks D; C Sg, i =1, -+, n+ [, such that p; € D;, i =1, -+, n, and
U; C Diyn,i=1, ---, [, and the boundaries 9D; are mutually disjoint analytic Jordan
curves. See, for example, [1], I 44D and II 3B. Hence each D,, — U; is conformally a
doubly connected plane domain, which must be conformally equivalent to some

Ap:=1{2€C|1/R< |2| < R}

with 1 < R < oo. .

Let ¢:D;, — U; — Ag be a conformal diffeomorphism. Since X is complete with
finite total curvature, Xo¢™! is a complete minimal annulus with finite total curvature,
where completeness of X o¢~! means for any curve v : I — Ap diverging to |z| = R,
the arc length I' of « is infinity. We will prove that such a complete minimal annulus
does not exist and hence M = S, — {p1, -+, Dn}- )

Actually, we will prove M = S, — {p1,-+,pn} by showing that for any Ag there
is no complete Riemannian metric which is conformal to the Euclidean metric and has
non-positive Gauss curvature and finite total curvature. If there were a closed disk
U; removed from Sy, the induced metric on some AR by X o¢~! would be a complete
Riemannian metric which is conformal to the Euclidean metric and has non-positive
Gauss curvature and finite total curvature. Thus we know that it must be the case that
M =5, — {pla" 7pn}

By the way, since there do exist complete minimal annuli Y : D* — R?, we see that
D* is not conformally equivalent ot any Ag or A as mentioned in the last section.

First we give an easy lemma which uses the special structure of Ag. The proof is
left as an exercise.

Lemma 10.5 If g;; = A\?;; 1s a complete Riemannian metric on Ag, then Gij(2) =
N (2)A(1/2)6;; is a complete Riemannian metric on Ag = {1/R < |z| < R}.

Next we prove that if A = e" and h is harmonic, then A\?§;; on Ap cannot be complete.
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Proposition 10.6 Suppose D C C and g;j = €*'é;; is a complete Riemannian metric
on D. If Ah =0, then conformally D is either C — {0} or C.

Proof. Consider the conformal universal covering 7: D C C — D. Since 7 is holomor-
phic, h(z) = h(n(z )) is harmonic. Furthermore, ;; = e*§; is a complete Riemannian
metric on D. Since D is simply connected, there is a harmonic function k conjugate to
h. Define a holomorphic function w:D — C by

w(z):/ HOTFO) g
0

Since D is simply connected, w is well defined.

First we claim that w sends a geodesic into a straight line. In fact, the induced
metric by w from the Euclidean metric on C is [w'|26;; = e**8;; = §;;. Hence the metric
g is the first fundamental form of the surface w: D — C C R?® and w: (D, j) — (C,e)
is an isometry. Let v be a geodesic on D, then wo~y is a plane geodesic of w(D) C C,
and thus wo~y must be a straight line segment in C.

Next we prove that w is one to one and onto. Let « : [0, 00) — D be a geodesic ray
of unit speed on D. Then (woy)'(t) = w'(y(t)) ¥ (t) = p(t)e®® £ 0, since w' and +' are
both non-zero. Since v is unit speed, 1 = |7/(¢))|; = |[(wov)'(t)| = p(t). Since woy is a
straight line segment, 0(¢) must be a constant, say 6. Thus we can write

w(y(t)) = w(v(0)) + te.

This proves that w sends any geodesic ray one to one and onto a ray in C.

Now by completeness, D is the union of all geodesic rays starting from 0. Since w is
locally a conformal diffeomorphism, different geodesic rays starting from 0 are mapped
by w one to one and onto different rays starting from w(y(0)) € C, thus w must be one
to one and onto C.

Now w : D — C is a conformal diffeomorphism, so D = C. Since the conformal
universal covering of D is C, conformally D must be either C or C — {0}. O

Now we have to use the facts that X : M < R3 has finite total curvature and A R 1S

hyperbolic in order to construct a complete metric €2"§;; on Ag such that h is harmonic.

Proposition 10.7 Let D C C be a hyperbolic domain and g;; = A\*6;; a Riemannian
metric on D, such that AlogA > 0 and

/ Alog \da dy < . (10.44)
D
Then there is a harmonic function h such that log A < h.

Proof. Since D is a hyperbolic domain, there is a Green’s function G({,z) on D for
any ¢ € D which is positive except at ¢ and such that G((, z) +log |z — (] is a harmonic
function on D. Since Alog A € L*(D),

w(Q) = o= [ G(¢,2) D log Adudy
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solves the Poisson equation Au = — AlogA. Note that u > 0, h =u+logA > log )\ is
the desired harmonic function. O

Now by Lemma 10.5 the induced metric by Xo¢~! on Ag is A%g;;. Then the Gauss
curvature is

Alog A
Since K < 0, we know that AlogA > 0 is non-negative. Moreover, since
- Alog A
K(Ag) = / KdA = —/~ 28RN Gy dy = —/~ Alog A dz dy,
Ap AR A2 AR

condition (10.44) is equivalent to X o¢~! having finite total curvature. So we have a
harmonic function h > log A. Thus

log A(z) +log A(1/2) < H(z) := h(z) + h(1/2).

Obviously €2#4;; is a complete Riemannian metric on Ag. Since H(z) = h(z) + h(1/z)
is harmonic, by Proposition 10.6 we have R = 0o, a contradiction. This contradiction
proves the first part of the following theorem due to Osserman:

Theorem 10.8 (Osserman, [66]) Let M be a Riemann surface without boundary and
X :M — R? a complete minimal surface such that the total curvature K (M) is finite.
Then

1. There exists a closed Riemann surface Sy and a finite number of points py,...,p.
on Sy such that M is conformally Sy — {p1,...,pr};

2. The Gauss map g: M — X can be extended to Sy such that the extension §: S — X
18 a holomorphic function. Moreover,

K(M) = —4rdegg. (10.45)

Recall that if g : Sy — C is a meromorphic function, where Sy is a closed Riemann
surface, then there is a positive integer n such that for all but finitely many p € C,
g Y(p) C Sk consists of n points. We say that g has degree n, and denote this by
degg =n.

Proof. Since we have proved the first part, we only need prove the second part.

Recall that

16]g'?
|21+ [g[?)*

Recall that 77! : C — S? is a complex chart of S2. In this chart the volume form of 52
is

1
K= - and A2 = Z|f12(1 + g2

4 2du/\alv

5 = T Twp)
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where w = u + iv € C. Obviously

_ /SzdS:/CdS(w)=47r.

Let U be a coordinate neighbourhood in M on which g has no pole. Since g is
holomorphic, |¢'|?> = det Dg, where we interpret g as g : U — R?. The induced metric
by g : U — (C,dS) has the volume form

4det Dg

945 = Ty gpye

dz dy.

Since g*(dS) is well defined on M — g~(oc0) (in fact on M), by

dlg']?
KdA= | KNdeANdy=— | —=21 —dz Ad
/U /U eha /U(1+|g|2)2x Y
4det Dg
=— | ——————dz Nd :—/ *(dS
J gty =— [0

we have /M e /M S (aS).

Thus by the area formula we finally get

/Mg*(dS) = /C #{g™ ! (w)}dS(w) = 4m deg g,

where ${g~*(w)} is the number of points in g~*(w). Since g is meromorphic, for almost
every w € C, #{g~!(w)} = degg. The proof is complete. o

Corollary 10.9 If X : M — R3 is a non-planar complete minimal surface of finite
total curvature, then the Gauss map g : M — C can miss at most a finite number of
points of C.

Proof. Since g can be extended to a closed Riemann surface S; and g is not a constant,
(otherwise X will be contained in a plane) we know that g(Sx) = C U {co}. Now
M =S —{p1,---,p+}, s0o C — g(M) has at most a finite number of points. O

Corollary 10.10 (Bernstein’s Theorem) Let u: R*> — R be a solution to the min-
imal surface equation. Then u is an affine function, i.e., u(z,y) = ax + by + ¢ where a,
b, and c are constants.
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Proof. If u is not affine, then the graph of u is a non-planar complete minimal surface
S of conformal type C = S% — {(0,0,1)}. In fact, the special isothermal coordinate in
Section 5, (¢,71):R? — R2, is one to one and onto R2. If S has infinite total curvature,
then the Gauss map ¢ of S has an essential singularity at co, and hence g misses at
most one point in C. If S has finite total curvature and is non-planar, then Corollary
10.9 tells us that g misses at most a finite number of points of C. But since S is a
graph, )

N = (1 T 2 n u2)1/2 (—Uw, Uy, 1)
z y

misses the lower hemisphere of S?. This contradiction shows that S must be planar and
forces g = constant, and hence u, and u, must be constant and u must be affine. O
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