
10 Complete Minimal Surfaces, Osserman's Theo­
rem 

Let X: M '-+ R 3 be a surface, A2 = IX1I 2 = IX2I 2, and 'Y: I~ M be a differentiable 
curve. The arc length of 'Y is r := f1 !(X or)'(t)! dt. A divergent path on M is a piecewise 
differentiable curve 'Y: [0, oo) ~ M such that for every compact set V c M there is a 
T > 0 such that 'Y(t) r¢ V for every t > T. If 'Y is piecewise differentiable, we define its 
arc length as 

r :=loco !(X o r)'(t)i dt =loco A('Y(t)) ir'(t)i dt. 

Note that r could be oo. 

Definition 10.1 We say that X is complete if for any divergent curve "(, r = oo. 

Remark 10.2 The use of a divergent curve instead of boundary to describe complete­
ness is because that if M = D*, {0} is not a boundary point of M, but is the limit 
point of a divergent curve. 

Note that in case that (M, g) is a non-compact Riemannian manifold and 8M = 0, 
according to the Hopf-Reno theorem, this definition of completeness is equivalent to 
each of the following: 

1. Any geodesic 'Y : I c R '-+ M can be extended to a geodesic 'Y : R '-+ M, 

2. ( M, d) is a complete metric space, where d is the induced distance from the Rie­
mannian metric g (roughly speaking, d(p, q) = the arc length of the shortest 
geodesic segment connecting p and q), 

3. in ( M, d), any bounded closed set is compact. 

In general, there are many examples of closed minimal submanifolds M '-+ ( N, g) 
where (N, g) is a Riemannian manifold. For example, S2 c S 3 is minimal. But we have 
seen that there are no closed minimal surfaces in R3 . Hence in some sense a complete 
minimal surface without boundary is the closest analogue to a "closed minimal surface 
in R3". 

Definition 10.3 Let X: M '-+ R 3 be a complete minimal surface. Remember that 
the Gauss curvature K is a non-positive function on M, hence the integral of K has a 
meaning. We define 

K(M) := jMKdA 

to be the total Gauss curvature of M. 

(10.39) 

Let X : M '-+ R3 be a surface and K be the Gauss curvature. Let K- = 
max{-K,O}, K+ = max{K,O}, then K = K+- K-, IKI = K+ + K-. We first 
prove a theorem of A. Huber, the proof shown here belongs to B. White [82]. 
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Theorem 10.4 (Huber [35]) Let X: M '----+ R 3 be a non-compact, complete surface. 
'If JM IK-IdA < oo, then JM IK+IdA < oo, and M is homeomorphic toM -{Pt, · · · ,pk}, 

where M is a compact 2-manifold. 

Proof. Fix x0 E M, and let 

Or= O(r) = {x EM I d(x,xa) < r}, 

where d(x, y) is the geodesic distance from X toy. P. Hartman [23] has shown that aor 
is, for almost all r, a piecewise smooth, embedded closed curve. Let ei, i = 1, · · · , n be 
the exterior angles of 80r. By Gauss-Bonnet theorem, 

r K,g ds +Lei = 21fx(r) - r K dA 
Jan. i Jn" 

= 21r(2- 2h(r)- c(r))- [ K dA, 
ln. (10.40) 

where x(r), h(r), and c(r) are the Euler characteristic, number of handles, and the 
number of boundary components, respectively, of Or. 

Let L(r) denote the length of 80r. P. Hartman [23] has proved that L(r) is absolutely 
continuous. As proved in [83], 

L'(r) = 21f(2- 2h(r)- c(r))- 1 K dA + L (2 tan(Bi/2)- ei), 
nr 11;<0 

when -1r /2 < ei < 0, 2 tan( Bi/2) - ei < 0, so 

L'(r)::::; 21r(2- 2h(r)- c(r))- [ K dA. Jnr 
Since M is complete and noncompact, L(r) > 0 for all r > 0; so 

6 :=::; limsupL'(r) 

:=::; 21r(2- 2liminf h(r) -liminf c(r))- JM IK+I dA + JM IK-1 dA. (10.41) 

Thus the negative quantities on the right-hand side are all finite. Since h(r) is a non­
decreasing, integer valued function of r, 

h(r) =some constant h for r > R. 

Also, c(r) is integer valued, so we can find a sequence ri-+ oo with 

c(ri) = c = liminf c(r) < oo. 

Let A be the union of Or; with those connected components of M - Or, which happen 
to be compact. (There may not be any, in which case A= Or,.) Let h(Ai) and c(Ai) 
denote the number of handles and boundary components, respectively, of A. Then 
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provided j is large enough that A; C Sl,.i+j: so 

h(A;) = h (10.42) 

and clearly c(A;) ~ c(SlrJ· By passing to a subsequence we may assume 

c(Ai) = c' (~c). (10.43) 

By (10.42) and (10.43), the A are homeomorphic, with Ai+l obtained from Ai by 
attaching annuli. The result follows immediately. D 

Since for minimal surfaces}{ ~ 0 on M, we know that a complete minimal surface of 
finite total curvature has finite topology. We are interested in the conformal structure 
of M. Now since M has finite topology, M = S k - ( {p1 , · · · , Pn} U U~=l Ui) as a Riemann 
surface, where c Sk is conformally a closed disk. Furthermore, there are disjoint 
conformal open disks D; c Sk> i = 1, · · ·, n + l, such that Pi E Di, i = 1, · · ·, n, and 
Ui c Di+n, i = 1, · · ·, l, and the boundaries 8Di are mutually disjoint analytic Jordan 
curves. See, for example, [1], I 44D and II 3B. Hence each Di+n- is conformally a 
doubly connected plane domain, which must be conformally equivalent to some 

E C II/ R ~ lzl < R} 

with 1 < R < oo. 
Let ¢: Di+" - -+ AR a conformal diffeomorphism. Since X is complete with 

finite total X o¢-1 is a complete minimal annulus with finite total curvature, 
where completeness of X o¢- 1 means for any curve r : I -+ AR diverging to lzl = R, 
the arc length r of r is infinity. Vve will prove that such a complete minimal annulus 
does not exist and hence lvf = Sk- {Pb · · · ,Pn}· 

we will prove M. = - {p1, · · · , Pn} by showing that for any there 
Riemannian metric which is conformal to the Euclidean metric and has 

non-positive Gauss curvature and finite total curvature. If there vvere a closed disk 
removed , the induced metric on some _)iR by X o¢~ 1 would be a complete 

Riemannian metric which is conformal to the Euclidean metric and has non-positive 
Gauss curvature and finite total curvature. Thus we know that it must be the case that 
M = S k - {Pl, · · · , 

By the way, since there do exist complete minimal annuli Y : D* Y R 3 , we see that 
D* is not confornmlly equivalent ot any AR or AR as mentioned in the last section. 

First we give an easy lemma >Nhich uses the special structure of AR. The proof is 
left as an exercise. 

Lemma. 10.5 If g;y = ,\2 6ij is a complete Riemannian metric on AR, then gij(z) ·­
.\2(z)>..(1/z)6ij is a complete Riemannian metric on AR := {1/R < lzl < R}. 

Next we prove that if A= eh and his harmonic, then >.. 26ij on AR cannot be complete. 
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Proposition 10.6 Suppose D C C and gij = e2hoij is a complete Riemannian metric 
on D. If l::,h = 0, then conformally D is either C- {0} or C. 

Proof. Consider the conformal universal covering n: fJ C C ----7 D. Since n is holomor­
phic, h(z) = h(n(z)) is harmonic. Furthermore, gij = e2hoij is a complete Riemannian 
metric on D. Since fJ is simply connected, there is a harmonic function k conjugate to 
h. Define a holomorphic function w: fJ ---+ C by 

w(z) = foz eh(()+ik(()d(. 

Since fJ is simply connected, w is well defined. 
First we claim that w sends a geodesic into a straight line. In fact, the induced 

metric by w from the Euclidean metric on Cis lw'l 2oij = e2hoij = gij· Hence the metric 
g is the first fundamental form of the surface w : fJ ---+ C C R 3 and w : ( fJ, g) ---+ ( C, 
is an isometry. Let r be a geodesic on fJ, then wor is a plane geodesic of w(D) c C, 
and thus wor must be a straight line segment in C. 

Next we prove that w is one to one and onto. Let r : [0, oo) '----t iJ be a geodesic ray 
of unit speed on D. Then (wor)'(t) = w'(r(t)) r'(t) = p(t)eie(t) i 0, since w' and r' are 
both non-zero. Since r is unit speed, 1 = lr'(t))l 9 = l(wor)'(t)l = p(t). Since wor is a 
straight line segment, B(t) must be a constant, say 80 . Thus we can write 

w( r( t)) = w(r(O)) + teieo. 

This proves that w sends any geodesic ray one to one and onto a ray in C. 
Now by completeness, fJ is the union of all geodesic rays starting from 0. Since w is 

locally a conformal diffeomorphism, different geodesic rays starting from 0 are mapped 
by w one to one and onto different rays starting from w(r(O)) E C, thus w must be one 
to one and onto C. 

Now w : fJ ---+ C is a conformal diffeomorphism, so fJ = C. Since the conformal 
universal covering of D is C, conformally D must be either C or C- {0}. 0 

Now we have to use the facts that X : M '----t R 3 has finite total curvature and AR is 
hyperbolic in order to construct a complete metric e2hoij on AR such that his harmonic. 

Proposition 10.7 Let D c C be a hyperbolic domain and 9iJ = >. 2 o;j a Riemannian 
metric on D, s·uch that D log>. 2: 0 and 

k D log>. dx dy < oo. (10.44) 

Then there is a harmonic function h such that log>. :::; h. 

Proof. Since D is a hyperbolic domain, there is a Green's function G((, z) on D for 
any (ED which is positive except at (and such that G((, z) +log lz- (I is a harmonic 
function on D. Since D log>. E L 1 (D), 

u(() := ~ J G((, z) D log>. dx dy 
2n D 
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solves the Poisson equation D.u = -D. log A. Note that u 2:: 0, h = u +log A 2:: log A is 
the desired harmonic function. D 

Now by Lemma 10.5 the induced metric by X o¢-1 on AR is A2%. Then the Gauss 
curvature is 

K = _ D.logA 
A2 . 

Since K ::::; 0, we know that D. log A 2:: 0 is non-negative. Moreover, since 

condition (10.44) is equivalent to X o¢-1 having finite total curvature. So we have a 
harmonic function h 2:: log A. Thus 

logA(z) + logA(1/z)::::; H(z) := h(z) + h(1/z). 

0 bviously e2H Oij is a complete Riemannian metric on A R. Since H ( z) = h ( z) + h ( 1/ z) 
is harmonic, by Proposition 10.6 we have R = oo, a contradiction. This contradiction 
proves the first part of the following theorem due to Osserman: 

Theorem 10.8 (Osserman, (66]) Let M be a Riemann surface without boundary and 
X: M '----+ R 3 a complete minimal surface such that the total curvature K(M) is finite. 
Then 

1. There exists a closed Riemann surface 5k and a finite number of points p 1, ... , Pr 
on 5k such that M is confonnally 5k- {PI, ... , Pr }; 

2. The Gauss map g: M ----+ :E can be extended to 5k such that the extension g: 5k ----+ :E 
is a holomorphic function. Moreover, 

K(M) = -4Jr deg g. (10.45) 

Recall that if g : 5k ----+ C is a meromorphic function, where 5k is a closed Riemann 
surface, then there is a positive integer n such that for all but finitely many p E C, 
g-1 (p) c Sk consists of n points. We say that g has degree n, and denote this by 
degg = n. 

Proof. Since we have proved the first part, we only need prove the second part. 
Recall that 

r 16lg'l2 2 1 2 2 2 
K = -lfl2(1 + lgl2)4 and A = 41fl (1 + lgl ) . 

Recall that T-1 : C ----+ 5 2 is a complex chart of 5 2 . In this chart the volume form of 5 2 

is 
4 

d5(w) = (l + lwl 2 ) 2 du !\ dv 
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where w = u + iv E C. Obviously 

f dS = f dS(w) = 4n. Js2 Jc 

Let U be a coordinate neighbourhood in M on which g has no pole. Since g is 
holomorphic, Jg'J 2 = det Dg, where we interpret g as g : U-+ R 2 . The induced metric 
by g: U-+ (C, dS) has the volume form 

* 4det Dg 
g (dS) = (1 + Jgj 2 ) 2 dxdy. 

Since g*(dS) is well defined on M- g- 1(oo) (in fact on M), by 

r r 2 1 4Jg'J2 
Ju KdA = Ju KA dx 1\ dy =- u (1 + JgJ2)2 dx 1\ dy 

f 4 det Dg " * 
=- Ju (1 + Jgj2)2dx 1\ dy =-Jug (dS) 

we have 

jMKdA = -JMg*(dS). 

Thus by the area formula we finally get 

where rt{g- 1(w)} is the number of points in g-1 (w). Since g is meromorphic, for almost 
every wE C, rt{g- 1 (w)} = degg. The proof is complete. D 

Corollary 10.9 If X : M '---+ R 3 is a non-planar complete minimal surface of finite 
total curvature, then the Gauss map g : M -+ C can miss at most a finite number of 
points of C. 

Proof. Since g can be extended to a closed Riemann surface Sk and g is not a constant, 
(otherwise X will be contained in a plane) we know that g(Sk) = C U {oo}. Now 
M = Sk - {p11 • · ·, Pr }, so C- g(M) has at most a finite number of points. D 

Corollary 10.10 (Bernstein's Theorem) Let u : R 2 -+ R be a solution to the min­
imal surface equation. Then u is an affine function, i.e., u(x, y) =ax+ by+ c where a, 
b, and c are constants. 
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Proof. If u is not affine, then the graph of u is a non-planar complete minimal surface 
S of conformal type C = S2 - {(0, 0, 1)}. In fact, the special isothermal coordinate in 
Section 5, (~, rJ) :R2 -+ R 2 , is one to one and onto R 2 . If S has infinite total curvature, 
then the Gauss map g of S has an essential singularity at oo, and hence g misses at 
most one point in C. If S has finite total curvature and is non-planar, then Corollary 
10.9 tells us that g misses at most a finite number of points of C. But since S is a 
graph, 

1 
N = (1 + u; + u~)l/2 ( -ux, -uy, 1) 

misses the lower hemisphere of S 2 • This contradiction shows that S must be planar and 
forces g = constant, and hence Ux and Uy must be constant and u must be affine. D 
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