7 The Geometry of the Enneper-Weierstrass Rep-
resentation

Let X : M — R? be a minimal surface. We will give the geometric data, such as the
Gauss map, the first and second fundamental forms, the principal and Gauss curvatures,
etc., of a minimal surface via its Enneper-Weierstrass representation.

One important fact is that the meromorphic function ¢ in the Enneper-Weierstrass
representation corresponds to the Gauss map N. For this we first recall that the Gauss
map N:M — ¥ = S? of an immersion X : M — R3 is defined as

N=|X,AX,|THXuAX,): M = 3.
Let 7: S2—{N} — C be stereographic projection, where A/ is the north pole. Then
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where R and & arebthe real and imaginary parts. We claim that
g=T17oN: M — C.
In fact,
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7 log= ———(2Rg, 29y, —1).

By (6.15), (6.18), and (6.26)
Xu = ?R(%f(l—gz), %f(1+92), fg),
X, = =3(3/0-g) $/0+d), f9),
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Since 77tog € S?, |[t7tog| = 1. Since X is conformal, the first fundamental form is
given by g1 = 0 and

1
g1 = gar = A% = [ X, || X, = [ Xu A X, | = ZIJ‘IQ(1 +1g1%)%. (7.28)
Thus

N = Xy A X[ L (K A Xy) = —o (2,28, |g|* — 1) = 77" oy, (7.29)
1+ g
as;we claimed.

Later we will also call the function ¢ = 70N the Gauss map of the immersion
X : M < R3. We have seen that if X is a minimal surface then g is a meromorphic
function. The converse is also true, i.e., X is minimal if and only if ¢ = 7o N is
meromorphic. We give a sketch of the proof of the converse direction; the reader can
fill in the details or see [34], pages 7 to 14.

Let TxM C R? be the tangent space at X(p), p € M. Tx)M is oriented by
the basis (X3, X3). The orientation determined by (X, X,) will be called the positive
orientation. Thus we can regard T'x(,) as a point in G;Q, the Grasmann manifold of
oriented two dimensional subspaces in R?. We want to embed G3, in CP?, the two
(complex) dimensional complex projective space.

One way to express P € G, is to select a positive orthogonal basis (eq, e). But if
(e1,e2) is a positive orthogonal basis of P and A is a rotation in P, then A(ey,es) is
also a positive orthogonal basis of P. If we consider e; + ie; as a vector in C3, then A
corresponds to a unit complex number e, and (e, e3) A corresponds to e (e; + iey) €
C3. Moreover, ¢ (e; +ies)/|ey + iez| corresponds to a positive orthonormal basis of P.
Thus we find that given a positive orthogonal basis (ej, es), all positive orthonormal
bases can be written as ©(e; + iey) € C3, where © is an nonzero complex number.
Fixing a positive orthogonal basis (e, e;) of P and identifying ©(e; + iey) € C? for all
© € C — {0} gives us a point [e; + ies] € CP2. Thus P corresponds to a unique point
in CP?. This is our embedding F : GE{Q — CP?. By local coordinates it is easy to
verify that E is C*°.

Now remember that for any conformal immersion X : M < R2, the 1-forms ¢ =
X1 41X, are well defined in a coordinate neighbourhood U. Since (X7, X5) is a positive
orthogonal basis of TxyM C R?, we can define ¢ : U — CP? by ¢(p) = E(Tx()) =
(X1 +4X5)(p)]. X is conformal implies that (6.19) is true, thus the image of ¢ is
contained in the submanifold Q, := {[z1, 22, 23] € CP? \zf + 22 + 22 = 0}. We claim
that Q; is conformally homeomorphic to S2. In fact, let (21, 2, 23) be a representative
of [z1,22,23] € Q1 and write (21, 29,23) = e; + tez, where the e;’s are real vectors.
Then [21, 29, 23] € Q1 implies that (e;,ey) is orthogonal, therefore there is a unique
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ez € S? such that (ey, 2, e3) is a orthogonal basis of R? with positive orientation. Define
o([z1, 22, 23]) = e3; clearly o is a homeomorphism from @; to S?. A little calculation
shows that o is conformal. Clearly, oco¢(p) = N(p), where N is the Gauss map. Now
g(p) = Tooog(p), or ¢ = o~ lorog. Since T reverses orientation, it is anti-conformal. If
g is holomorphic, then g is conformal and thus ¢ is anti-conformal or anti-holomorphic.
This implies that ¢ = ¢ is holomorphic. Thus

1/0°X 9*°X 12X 9*°X  [9*X  9°X 110
== ) == +1 -1 +1 ==
ox? oy? ox? 0xdy Ox 0y oy? 0z

= 0.

Hence X is harmonic and therefore minimal. This ends the sketch of the proof.

Remark 7.1 Note that if p € M is a branch point of a branched minimal surface
and (U, z) is an isothermal neighbourhood of p such that z(p) = 0, then we can write
¢ = 2™, where 9 is a holomorphic vector function and (0) # 0. Since ¢ satisfies
(6.19), v also satisfies (6.19). We can use [¢)] € CP? to define the tangent space T'x ) M.
Thus for a branched minimal surface, the tangent space is well defined even at branch
points.

We next give a Gauss curvature formula of the minimal surface X : M — R3 via the
Enneper-Weierstrass representation, namely

K=— 4lg' } . (7.30)

[lfl(l +lgl?)?

To prove this, remember that for a surface with conformal metric ds? = A?|dz|?, where
dz = dz +idy and |dz|* = (dz)? + (dy)?, the Gauss curvature is given by

1 2 0 0
= ——— AlogA? = ——=—=—logA%.
K=—gx Ol A20z02 °
By (7.28), since log|f| is harmonic, we have
2 0 9 5 4 9 8 9 9
Kg&glog/\ = Aga_—“ ]f|+A28_a log(1 + |g]?)
_ 490 47 _ 4490+ - 9799
A20zZ1+|g]2  A? (1+1g]?)?
4 gP  _  16lg'P?

A (T+1g22 ~ [fPA+ g

We can also calculate the second fundamental form of X via the Enneper-Weierstrass
representation. Recall that

— ZXQ = X:c — ZXy - (¢)1’a ¢23 ¢3)
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are holomorphic functions of z = = + iy. Hence
X — iKX= Xop — Xy = (81, ¢, 65).
Because X is harmonic, the data of the second fundamental form then must be
hiy = X118 N = R(¢), ¢, #3)eN,  hyy = —huy,

hia = X8 N = _g((p'l, <75'2, ¢§)'N‘
By (6.15), (6.18), and (6.26),

Xll.N = §R(¢/17 ¢/27 qsé).N

= R [(lf’(l — ).

5 2f’(l +92),f'g> + (=199, ifgq fg’)]°N
1

= Top (B - 9% =371+ 430 + R 0(lal* - 1)

—2Rfgg'Rg — 23f99'Sg + Rfg'(lg” — 1))
_ 1 i 1.2 ! 1.2
= 1777 (A Re — RI9Rg - f'S9 - 3f'9"S

+Rf'g(|lg* — 1) — 2Rfgg'T + Rfg (g - 1))

! +1|gl2 (Rf'g - Rf'g'T+ Rf'g(1gl — 1) — 2gl’Rfg +Rg (I ~ 1))
- ﬁﬁ (—®fg(l9P +1)) = —Rfg'

Similarly, we have hyy = Sfg’. From these we see that for a minimal surface,
hi — thiy = — f¢’ (7.31)

is a holomorphic function.
Again let dz = dz+i dy and (dz)? = (dz)?—(dy)*+2i dz dy. The second fundamental
form of X can be written as

Ry (dz)? + 2hya do dy + hoo(dy)* = —R(f¢)((dz)? — (dy)?) + 23(fg’) dz dy
= —R(fg)R(d2)* + (£¢)S(d2)” = —R(fg'(d2)*) = —R(f dg dz).
Let V € T, M be a unit tangent vector and write

ieﬂ — A—leieiA—le—iei

d d
V=A"! — 4sinf— | = 2RA"!
(Cosga Smea ) RATe 9z 9z o0z

x T

in complex form; then '
II(V,V) = —~A"*R(fg'e*)
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by the previous formulae. Thus the two principal curvatures are

— max —A~2 1,2i0 -2 Al
K1 = 050%2,” §R(fg ) |fg l 1f|(1 + Ig|2)2> (732)
Fa = min —ATR(fg'e™’) = —A7*|fg'| = ~W14+fl‘l—gw- (7.33)
Then from K = k1ky we recover formula (7.30).
Now let r(t) = ri(t) + ira(t) be a curve on M and r/(t) = 7| (t) + ir5(t); then
(' (1), r' () = —R{FrO1 O] @)} (dt)?
—R{dlg(r(@O1f[r(®)ldr(t)} (7.34)
—R{d[g(r(®)]nlr(®)]},

since 7 = fdz. Remember that a regular curve r is an asymptotic line on a surface M
if I1(r'(t),r'(t)) = 0; a curve r is a curvature line if and only if 7/(¢) is in a principal
direction, if and only if |7/(t)|"211(r'(t),r'(t)) takes either maximum or minimum value
of II(v,v) for all unit tangent vectors in T, M. We have the following criteria:

1. A regular curve 7 is an asymptotic line if and only if f[r(¢)] ¢'[r(¢)] [r'(¥)]? € iR.
2. A regular curve 7 is a curvature line if and only if f[r(¢)] ¢'[r(¢)] [7'(¥)]? € R.

The last assertion comes from the fact that —R{f[r(¢)]¢'([(t)][r'(¢)]*} achieves its max-
imum or minimum for all unit vectors 7/(t) at r(¢) only if f[r(¢)]g'[r(¢)][r'(¢)]? is real.
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