
6 The Enneper-Weierstrass Representation 

Suppose that X: M ~ R 3 is minimal. Since X is harmonic, on an isothermal neigh­
bourhood (U, (x, y)), 

(6.15) 

is holomorphic. In fact, 

8¢ = 2 82 X = ~ tc, X = 0. 
oz ozoz 2 

Let V be another isothermal neighborhood with coordinate w = u + iv, and let 

-; ax .ax 
cp=- -1,-. ou av 

On U n V 

¢ = ax - iax = ax au+ ax av - i (ax ou +ax av) 
OX ay ou ox av ax au ay av oy 

= (ax _ iax) (au_ iau) = ¢dw. 
au av ox oy dz (6.16) 

Hence 
¢dw = ¢dz, (6.17) 

which means that¢ dz gives a globally defined vector valued holomorphic 1-form. Write 

(6.18) 

By the definition of¢, X being conformal is equivalent to 

3 3 

2.: w; = 2.: ¢7(dz) 2 = o. (6.19) 
i=l i=l 

The condition that X is an immersion is equivalent to 

(6.20) 

Remark 6.1 When :Ef=1 lwil 2 = 0 at some point p E M, we call p a branch point of 
the surface X : M-+ R 3 . At such a point, X ceases to be an immersion. At times we 
want to study minimal surfaces with branch points, called branched minimal surfaces. 
For branched minimal surface, since our data ¢ is holomorphic, we see that branch 
points are isolated. Thus in any precompact domain there are at most a finite number 
of branch points. 

Our main interest is in minimal surfaces without branch points. All minimal surfaces 
in these notes are branch point free, unless specified otherwise. 
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The immersion X can be expressed as 

X(p) = X(p0 ) + SR [P w, 
}PO 

where p0 is a fixed point of M. For any closed path 1 on M, 

SR j~ w = (0, 0, 0), 

since X is well defined. 

(6.21) 

(6.22) 

On the other hand, if we have three holomorphic 1-forms w; on M satisfying (6.19), 
(6.20), and (6.22) for any closed path 1 in M, then (6.21) gives a minimal surface. This 
is because as the real part of a holomorphic mapping, X is harmonic; (6.19) is equivalent 
to X being conformal; (6.20) says that X is an immersion; and (6.22) guarantees that 
X is well defined. 

So far everything we discussed in these notes is true in case X: M Y Rn, n 2: 3, 
except the minimal surface equation should be a system of equations for n > 3 and the 
theorem about equiangular systems. Here is something special to the case n = 3. Let 
us write (6.19) as 

(6.23) 

We can assume that w3 ::f:- 0, as otherwise the surface lies in a plane parallel to the 
xy-plane, and by rotation we can get an equivalent surface such that w3 ::f:- 0. We define 
a meromorphic function g on l'VI by 

w3 
g=---::f:-0. 

W1-

By (6.23), 
? . 

2 w3 w1 + ~w2 g- -----
- (w1 - iw2) 2 - w1 - iw2 

Writing 77 = w1 - iw2, after a little calculation we have 

(6.24) 

Then (6.21) can be written as 

(6.25) 

The formula (6.25) is called the Enneper- Weierstrass representation of the minimal 
surface X: My R 3 . 
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The meromorphic function g and the holomorphic 1-form 'T/ are called the Enneper­
W eierstrass data of the minimal surface X, or shortly the data of X. 

It is convenient in local coordinates to write 'T/ = f(z)dz, where z = x + iy and f is 
a holomorphic function. Thus (6.24) can be written as 

( 6.26) 

W3 = fgdz. 

Since g is a meromorphic function, if dg #- 0 and g is not a pole at p E M, then g is 
a holomorphic diffeomorphism in a neighbourhood U of p. Suppose U is a coordinate 
neighbourhood, with coordinate z = x + iy. Then w = ?J,(z) + iv(z) = g(z) is a local 
coordinate as well, and dw = g'(z)clz = g'og- 1(w)clz. We define 

F(w) = fog-l(w) F(w)dw = fog- 1(w)dz = f(z_)dz = 'rJ. 
g'og- 1(w)' 

Hence in the w coordinate, (6.26) becomes 

( 6.27) 

w3 = F(w)wdw. 

The function F is called the Weierstrass function of the minimal surface Xog-1 : g(U) '---+ 

R 3 , where g(U) C C is a domain in C. Notice that this is only a local representation 
which holds as long as g is a holomorphic diffeomorphism on U. 

Now let us analyse (6.20). By (6.24), (6.20) is true if and only if whenever g has a 
pole of order m at p E M, then 17 has a zero of order 2m at p E Af. Moreover, this is 
the only case where 'T/ can vanish. 

In summary, if we have a meromorphic function g and a holomorphic 1-form 'T/ 

on M, such that (6.24) defines three holomorphic 1-forms which satisfy (6.20) and 
(6.22), then (6.25) defines a minimal surface. An important fact is that recently many 
interesting minimal surfaces were discovered via the Enneper-Weierstrass representation 
by specifying g and 'T/ on certain Riemann surfaces. See, for example, [31], [39], [41], 
and [80]. 
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