
3 The First Variation 

Let X : MY R 3 be a regular surface and (U, (x, y)) be a coordinate neighbourhood. 
Let X 1 = Xx, X 2 = Xy, 9iJ = Xi•Xj, and g = det(%)· Then 

dA := vg dx 1\ dy 

is a well defined two form on M and dA =1- 0 everywhere. 
Let f : M --+ R be a continuous function of compact support, or suppose f does 

not change sign on M, then the integral of f on M is defined by 

( f := ( fdA. 
jM }M 

When M is precom pact and f = 1, J M dA is the area of the surface X : M Y R 3 . 

The adjective "minimal" of minimal surfaces comes from the fact that at any point 
of the surface there exists a neighbourhood such that the surface in that neighbourhood 
has the least area among all surfaces with the same boundary. 

To be precise, let D c M be a precompact domain and X : D --+ R 3 be a surface. 
Let X(t) : D --+ R 3 , -1 < t < 1 and X(O) = X, such that X(t)/ 80 = X/ 80 , and 
X(t,p) = X(t)(p) is C 2 on D x (-1, 1). Such a family of surfaces is called a variation 
of X. 

Consider the area functional 

where dAt is the area form induced by X(t). The definition of minimal surface from 
the point view of the calculus of variations is that for any variation family X(t), 

dA(t) I = 0. 
dt t=O 

(3.2) 

We will prove that this is another equivalent definition of minimal surface. 
Without loss of generality, we may assume that X is conformal. Let p E D and 

p E U c D be an isothermal coordinate neighbourhood of p for X. On U, dAt is 
expressed as 

dAt = jdet[9i)(t)] dx 1\ dy, 

where z = x + iy is the isothermal coordinate and %(t) = Xi(t) oXj(t) (note that z 

may not be an isothermal coordinate for X(t)). Hence 

d, ~ ~ d, r d det[9ij(t)J · -I dAt = -I dAt = I I dx 1\ dy 
dt t=O U U dt t=O }u dt t=O 

= ~ r d det[9i)(t)]l { det[g ·(0)]} -l/2dx 1\ dy. 
2 lu dt t=O ZJ 
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We need the formula 

ddet~ij(t)) = det(%(t))'frace ( (dg~?)) (gii(t))), (3°3) 

where (gi1(t)) = (gi1(t))- 1
0 To see this, let (e1,ooo,en) be the standard orthonormal 

basis of Rno For any n x n matrix A(t), we can write 

A(t) = (A1 (t), 0 0 0
, An(t)) = (A(t)e1 , 0 0 0

, A(t)en), 

where Ai(t) is the i-th column of A(t)o If det A(t) =f 0, then 

ddetA(t) d 
dt = dt det(A(t)e1, o o o, A(t)en) 

= ~ det ( A(t)e1, o o o, d~~t)ei, o o o, A(t)en) 

= detA(t)~detA-1 (t)det (A(t)e1 ,ooo, d~~t)ei,Ooo,A(t)en) 

n [ ( ·dA(t) )] = det A(t) ~ det A-1(t) A(t)e1 , o o o, ~ei, 0 0 o, A(t)en 

det A(t) ~ det ( e1 , o o o, A-1 (t) d~y) ei, o o o, en) 

n ( n ( dA(t)) ) detA(t)I:det e1,ooo,L A-1(t)~ .ej,ooo,en 
•=1 ]=1 J• 

det A(t) ~ det ( e1 , o o o, ( A-1(t) d~~t)) ii ei, o o o, en) 

= det A(t) ~ ( A-1 (t) d~~t)) ii = det A(t) 'frace (A-1(t) d~~t)) 

= detA(t)'frace (d~~t) A-1 (t)) 0 

This establishes (303)0 
Thus we have 

!!_I r dAt = ~ r ddet(%(t)) I [det(gdO))t112dx (\ dy 
dt t=O 1 U 2 1 U dt t=O J 

= ~ fu 'frace [ ( dg~?)) (gi1(t))] lt=O Jdet(%(0))dx 1\ dyo 

Since X is conformal, we have gi1(0) = A-26ijo Thus 
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Define th€ variation field E as 

E( ) := dX(t)(p) I 
p dt t=O' pEn. 

Then 
dgii(t) I - d(Xi•Xi) I - E· X· - -2 •••. 

dt t=O dt t=O . 

Since (X1 , X 2 , N) is a basis of R 3 , where N is the unit normal, we can write E = 
aX1 + f3X2 + '"'(N, where a, {3, and '"'! are C 1 functions defined in n. Using N •Xi = 0, 
'"'! = E•N, and 

2 

'YA-2 LXii•N = (E•N)(6.xX•N) = 2(E•N)(HN•N) = 2H(E•N), 
i=l 

we have 

Trace ( ( dg~?)) (li (t))) Lo = 2A - 2 ~ Ei•Xi 

2 

2( al + !32) + 2A - 2( aAi + {3A~) - 2'"'(A - 2 L xii•N 
i=l 

dd I r dAt = ~ r Trace ((dgdij(t)) (gii)(t)) I A2dx 1\ dy 
t t=o lu 2 lu t t=O 

= f Div(A2(a,f3))dx/\dy-2 f H(E•N)dA0 = f A2(a,f3)•nds-2 f H(E•N)dA0 , lu lu lau lu 
where n and ds are the outward unit normal vector field and the line element of au in 
the Euclidean metric respectively. Dividing n into a finite number of disjoint isothermal 
coordinate neighbourhoods Ui, 

since each arc in auinn appears twice in the summation and with opposite unit normal. 
Moreover, because a= {3 = 0 on an, we have 
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where in the last integral n and ds are the outward unit normal vector field and the 
·· line element of afl in the Euclidean metric. Thus we finally have the first variational 
formula for the surface area functional: 

dA I = -2 r H(EeN)dAo. 
dt t=o ln 

(3.4) 

If X is minimal, then H = 0, so ~~ Lo = 0. On the other hand, if X is a stationary 
point for the area functional A(t) (for example, if X has minimal area among all surfaces 

with the same boundary), then ~~ lt=D = 0 for any variation of X. Since E can be any 

vector field, ~~ lt=D = 0 forces that H = 0, that is, X is a minimal surface. 
Finally we will give an area formula for surfaces in R 3 . Suppose X :flY R 3 is an 

immersion; without loss of generality, we may assume that X is conformal. Let fi be 
the unit conormal on X(afl), i.e., fi is tangent to X(fl) and is perpendicular to X(afl). 
Let ds be the line element of X(afl), (e1 , e2 ) be the standard orthonormal basis on U; 
in the Euclidean metric. Let n; = ae1 + be2 . The integral 

can be rewritten as 

{ A2(ae1 + j3e2)•(ae1 + be2) ds; 
lau;nan 

{ A2 (aa + bj3)ds; = { A - 1[E•dX(n;)]X*(ds) 
lau;nan lau;nan 

{ A - 1[EedX(n;)]ds = f (E•fi)ds, 
j X(8U;n8!!) j X(8U;n8!!) 

since E = aX1 +J3X2 +"(N, dX(n;) = aX1 +bX2 , X*(ds) =Ads;, and n = A- 1dX(n;). 
Thus if we do not assume that a and j3 vanish on afl, we have the first variation formula 

ddA I = -2 J H(E•N)dAo + r (E•fi)ds. 
t t=O j X(ofl.) 

(3.5) 

Now let a E R 3 be any fixed vector; then X(t)(p) = t(X(p)- a) is a variation of X, not 
fixed on boundary. Clearly E(t)(p) = X(p)- a is the variation vector field independent 
oft. An easy calculation shows that 

Hence 
dAt = t2dA1 = t2dA, H(t) = C 1 H, 

where H = H(l), etc. Note that 

A:= Area of X(fl) = Jn dA, 
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and 
A(t) :=Area of X(t)(O) = k dAt = t2 A. 

Since E(t) =X- a, by (3.5) 

2A = -2/H[(X- a)•N]dA+ { [(X- a)•n]ds. 
lx(an) 

(3.6) 

This formula is useful when we derive the isoperimetric inequalities for minimal surfaces. 
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