2 Definition of Minimal Surfaces

Definition 2.1 A minimal surface in R is a conformal harmonic immersion X : M «—
R?, where M is a 2-dimensional smooth manifold, with or without boundary. Here
conformal means that for any point p € M there is a local coordinate neighbourhood
(U, (u,v)) on M, such that in U the vectors
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are perpendicular to each other and have the same length. Thus
A= X, = |X,?>0, X,0X,=0.

Here e is the Euclidean inner product. Such a coordinate neighbourhood (U, (u,v)) is
called an isothermal neighbourhood, its coordinates (u,v) are called isothermal coordi-
nates.

The word immersion means that for any p € M, X, :=dX : T,M — Tx»R? is a
linear embedding. In the case X is conformal, it means simply that A > 0 on M.

The word harmonic means that
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If M is connected, then we say that the surface X is connected. We will only consider
connected surfaces. Furthermore, since any non-orientable surface has an orientable
double covering, we will only consider oriented minimal surfaces.

AX =

A homothety of R? is the composition of a rigid motion and a dilation or a shrinking.
Let T be a homothety of R3, X : M — R3 be a surface. It is easy to see that X is
a conformal harmonic immersion if and only To X is. Thus we consider all surfaces in
R3 up to a homothety. That is, we do not distinguish the surfaces X : M — R?® and
ToX : M — R3.

A classical theorem says that any C* immersion, 2 < k < oo, can have an atlas
of isothermal coordinate charts, so that X being conformal is not a special property
of minimal surfaces. The important fact which distinguishes minimal surfaces is that
under these isothermal charts, X is harmonic.

For an orientable surface X : M < R3, let {(U,, 2o = Uq + 10a) faca be an atlas
of isothermal coordinates of the same orientation, then {(Uy, 24) }aca defines a complex
(conformal) structure on M.



Precisely, we will prove that if V is any isothermal coordinate neighborhood, with
the coordinates w = x + 1y having the same orientation as z = u + w on U NV, then
zow™ : w(UNV) — 2(UNV) is a holomorphic function. Which is equivalent to saying
that the functions u(z,y) and v(z,y) satisfy the Cauchy-Riemann equations
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To see this, compute
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Since both coordinates are conformal, we get that
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contradicting the fact that U and V have the same orientation. So

ou o) _ (00 oo
or  dy) \oy oz’
which is the complex form of the Cauchy-Riemann equations.
Since M is orientable, we get a complex analytic atlas {(Ua, 24) }aca on M, and M

is diffeomorphic to a one-dimensional complex manifold. A one-dimensional complex
manifold is usually called a Riemann surface.
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Since any smooth orientable 2-dimensional manifold can be conformly embedded in
R3, we see that any 2-dimensional smooth orientable surface M is diffeomorphic to a
Riemann surface.

Moreover, if X is minimal, under this complex structure on M, X is harmonic, hence
locally is the real part of a holomorphic mapping. It is here that complex function theory
enters and plays an important role in the study of minimal surfaces.

Thus when we consider a minimal surface X : M — R3, we can always assume that
M is a Riemann surface with a conformal structure given as above.

The easiest global property of minimal surfaces is that if M is a closed Riemann
surface (compact manifold without boundary), then there is no minimal immersion
X : M — R?. In fact, since M is compact, each component of X is a bounded harmonic
function, and hence must have a maximum value on M. Thus X is a constant by the
maximum principle, since M has no boundary. But then X is not an immersion.

Another definition of minimal surfaces is that the mean curvature of X : M — R?
vanishes. '

Remember that the mean curvature H of X is defined by

2H = guhll + 2912h12 + 922h221

where g;; = X;0X;, hj; = X;;0 N (N is the Gauss map, i.e., the unit normal vector
X; A X3/| X1 A X, where A is the cross product in R®), (¢9) = (gi;)7!, see any
differential geometry textbook.

In case X is conformal, g;; = goo = A%, ¢!t = ¢?2 = A2, g1 = ¢*> = 0. Thus
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where A is the Laplace-Beltrami operator under the metric (g;;). Remember that Ax
is given by
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where g = det(g;;), (z*,2?) = (z,y), z = z + iy, and
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Thus in our case (conformal immersion), X is minimal (hence harmonic) implies that
H = 0, which is essentially an equivalent definition of minimal surface. In fact, this
definition is easier to generalise to define minimal submanifolds in arbitrary Riemannian
manifolds.

More precisely, H = 0 implies that X is conformal harmonic under a certain complex
structure. To see this, let us recall that for any immersion X : M < R3,

AxX =2HN. (2.1)
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Since we can always make X conformal, (2.1) shows that X is a minimal surface if and
only if the mean curvature is zero.

Let us give the proof of (2.1) as a short review of differential geometry. Let us first
recall that from the Gauss equation we have
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where
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We calculate
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see the proof in the next section. Thus we have
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We claim that AxX is perpendicular to the tagent planes, i.e, planes generated by
(X1, X3). In fact, since 3, 95,97 = 64, we have
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Thus AxX is in the direction of NV, and

AxX = (AxXON)N = (Zginij.N> N = (Zg”h”) N =2HN.
ivj ,”’J
Equation (2.1) also tells us that if X is conformal, then AX is always perpendicular
to the corresponding tangent plane of X.
Note that equation (2.1) holds for hypersurfaces in R"”, n > 3, our proof is valid in

the general case.





