
A NOTE ON THE ORDINAL ANALYSIS OF KPM

W. BUCHHOLZ l

This note extends our method from (Buchholz [2]) in such a way that it
applies also to the rather strong theory KPM. This theory was introduced and
analyzed proof-theoretically in (Rathjen [6]), where Rathjen establishes an upper
bound for its proof theoretic ordinal |KPM|. The bound was given in terms of
a primitive recursive system T(M) of ordinal notations based on certain ordinal
functions χ , ψκ (ω < K < M, /c regular) 2 that had been introduced and studied
in (Rathjen [5]). 3 In section 1 of this note we define and study a slightly different
system of functions φκ (K < M)—where ψM plays the role of Rathjen's χ—that is
particularly well suited for our purpose of extending [2]. In section 2 we describe
how one obtains, by a suitable modification of [2], an upper bound for |KPM| in
terms of the φ^s from section 1. We conjecture that this bound is best possible
and coincides with the bound given in [6]. In section 3 we prove some additional
properties of the functions φκ which are needed to set up a primitive recursive
ordinal notation system of ordertype > tf*, where ΰ* := Vtoi^M+i *s the upper
bound for |KPM| determined in section 2.

Remark: Another ordinal analysis of KPM has been obtained independently
by T. Arai in Proof theory for reflecting ordinals II: recursively Mahlo ordinals
(handwritten notes, 1989).

§1. Basic properties of the functions ψκ (K < M). Preliminaries. The letters

α, /9,7, ί, μ,σ, £,r/,C always denote ordinals. On denotes the class of all ordinals,
and Lim the class of all limit numbers. Every ordinal a is identified with the set
{£ G On : £ < a} of its predecessors. For a < β we set [α, β[ := {ξ : a < ξ < β}.
By H- we denote ordinary (noncommutative) ordinal addition. An ordinal a > 0
which is closed under + is called an additive principal number. The class of all
additive principal numbers is denoted by AP. The Veblen function φ is defined by
φaβ := φa(β], where φa is the ordering function of the class {β 6 AP : V£ <
a(φ^(β) — β)}. An ordinal 7 > 0 which is closed under φ (and thus also under +)
is said to be strongly critical. The class of all strongly critical ordinals is denoted

by SC.

JThe final version of this paper was written while the author was visiting Carnegie Mellon
University during the academic year 1990/91. I would like to express my sincere thanks to
Wilfried Sieg (who invited me) and all members of the Philosophy Department of CMU for their
generous hospitality.

2M denotes the first weakly Mahlo cardinal.
3The essential new feature of [5] is the function χ, while the ψκ's (K < M) are obtained by a

straightforward generalization of previous constructions in [1], [3], [4].
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Some basic facts:
1. AP = {ω<* : a € On}
2. φOβ = ω? , <^l/3 = εβ

3. For each 7 > 0 there are uniquely determined n € N and additive prin-

cipal numbers 70 > > 7n
 sucn that 7 = 7o H ----- \~ Ίn-

4. For each 7 G AP \ SC there are uniquely determined £, η < 7 such that
7 = </?£τ?.

5. Every uncountable cardinal is strongly critical.

Definition of SC(~f):
1. 5(7(0) := 0
2. S£(7):={7},if7€SC
3. 5C(7o + + 7«) := SC(Ίo) U U SC(Ίn), if n > 1 and 7o > ••• > 7n

are additive principal numbers.

4. SC(φtη) := SCtf) U SCfo), if £,•/ < ^ij.

P7e assume the existence of a weakly Mahlo cardinal M. So every closed
unbounded (club) set X C M contains at least one regular cardinal, and M itself
is a regular cardinal.

DEFINITION 1.1.
R : = { α : u > < α < M fe α regular}
MΓ := min{7 € SC : M < 7} = closure of M U {M} under +, φ
SCu(Ί):=SC(Ί)nU
Ω0 := 0 , Ωσ := Kσ for σ > 0.
Ω := the function σ *-+ ίlσ restricted to σ < M

Remark: VAC € R( AC = ί7κ or AC e {Ωσ+1 : σ < M} )

Convention, /n £Λe following the letters AC, TT, r always denote elements of R.

DEFINITION 1.2 (The collapsing functions ψκ).
By transfinite recursion on a we define ordinals ψκa and sets C(a,β) C On as
follows. Under the induction hypothesis that ψπξ and C(£, η) are already defined
for all ξ < a , TT E R , η 6 On we set
1. C(α, /3) := closure of β U {0, M} under +, φ, Ω, ψ\a,

where ψ\a denotes the binary function given by

:= { ( π , ξ ) :ξ <a b π eR b *,ξ €

2. Vκ<* := min{;3 € Vκ(a) : C(a, β)KKCβ}

with P ί α ) . _ / { 0 6 R : α 6 C 7 ( α , M ) = > α e C ' ( α r , / ϊ ) } if « = M
κl J ~ \ {/? : « e <7(α, K) =»• « € C(α, /?)} if « < M

Abbreviation: Cκ(a) := C(a,ψκa)

The first two lemmata are immediate consequences of Definition 1.2.

LEMMA 1.1.
a) αΰ < α & /?0 < β =* C(α0,βQ) C C7(α,/ϊ)

c) β < K =$. card(C'(α,^)) < K
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LEMMA 1.2.
C(α, β) = \Jn<ω Cn(a, β), where Cn(a, β) is defined by
(i) C°(a,β):=β\J{0,M},
(ii) C^(a,β) := {7 : SC(Ί) C Cn(a,β)} U {Ωσ : σ G O(α,/?)} U

U [ΨΛ : ξ < a & π,ξ G C»(a,/9) Π £„(

LEMMA 1.3.
a) Cκ(α) Π AC = ψκα < AC

b) K < M => τ/>κα £ R

C ; 0 Λ α € S C \ { Ω σ : σ <
d) AC G C(α, /c)

7 € C» => 7 G CM(7) & 5CM(7) = SC(Ί) \ {M}
7 < * & 7 € C(α,β) =

Proof.
a),b) 1. Cκ(α) Π /c = ψκα is a trivial consequence of the definition of ψκα.
2. Let K — M. Obviously there exists a δ < K such that R Π [δ, κ[C T>κ(α). There-
fore in order to get ψκα < /c it suffices to prove that the set
U := {β G /c : C(α, β) Π AC C /?} is closed unbounded (club) in /c.

i) c/oserf: Let 0 ^ X C {/ and β := sup(X) < AC. Then C(α,β) Π /c =

U€^(C'(α, 0 Π /c) C U^x ί = /?, i.e. βeU.
ii) unbounded: Let /?0 < /c. We define /?n+1 := min{τ/ : C(α,βn) Γ\ K C η} and
/? := supn<w/Sn. Using L.l.lc we obtain βn < /?n+1 < AC. Hence β0 < β < K
and C(α,/3) Π AC = Un<ϋ,(C(α,/3n) Π AC) C (Jn<ω βn+l = /3, i.e. βQ < β e U.
3. Let AC < M. Starting with /20 := min(£>κ(α:)) we define the ordinals βn and β
as in 2.(ii). Then we have β G ̂ (α) Π U and therefore ι/>κα < β < AC. — Now
assume that ^>κα G R. We prove βn < ψκα (Vn). By definition of β0 and by
L.I. la we have β0 < ψκα & /?0 ^ Lim. Hence βQ < ψκα. From βn < ψκα G R
it follows that C(α,βn) Π AC C φκα and card((7(α,/?n) Π AC) < ^/>κα, and there-

fore βn^ < ψκα. From Vn(/3n < 0/βα ^ R) we βet /^ < ^κα Contradiction.
c) 1. Obviously Cκ(α) Π AC is closed under φ. Together with a) this implies
ψκa G SC. — 2. We have (ψκa = Ωσ > σ =Φ ^«« € ^(α)) and (by a) )
V>Λα i Cκ(a). Hence ̂ κα ^ {Ωσ : σ < Ωσ}.
d) follows from L.I. la, L.1.3a and the definition of ψκa.

e) By L.1.3a VπGR(^πί < M) and therefore (7(α, M) = MΓ. As in d) one obtains

f) and g) follow from e).

LEMMA 1.4.
a) 7 € C(α,β) <=ϊ SC(Ί) C

c) AC = Ωσ+1 =^ Ωσ < ψκα < Ωσ+1

dj Ωκ = AC =Φ Ω^κα = ψκα
e) Ω^M« = ^M«
/) Ωσ < 7 < Ωσ+1 & 7 ^ C7(α,/9) =» σ G C(α,/J)

Proo/. a) and b) follow from L.I. 2 and L.1.3c. — e) follows from d), since
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M G R and ΩM = M. — f) follows from a),b),c),d) and L.1.2.
c) Let K = Ωσ+1. Then AC 6 C(α,/c) and thus K G Cκ(a). By a) and b) from

* = Ωσ+ι € (7κ(α) we get Ωσ G CΛ(α) Π AC = φκa.
d) Take σ G On such that Ωσ < ι/>κα < Ωσ+1 . Then we have σ + 1 < AC and thus
CΛ(α) Π AC = φκa < Ωσ+1 < Ωκ = /c. This implies Ωσ+α £ CΛ(α) and then (by
a),b) ) σ ^ CΛ(α). Hence ̂ κα < σ < Ωσ < Y>κα.

LEMMA 1.5.
a) αQ < α & α0 G CM(α) =» ι/>Mα0 <

Proof.
a) From the premise we get ^Mαo ^ ^fM(α) Π M = ^Mα ^Y L.1.3a,g.
b) Assume ^Mαo = ^M**! ^ αo < αι < ̂ Γ Then α0 G CM(αQ) C C^α^ and
therefore by a) V>Mαo < ^Mαι Contradiction.

LEMMA 1.6.
For K < M the following holds
a) aQ<a => φκα0 < ψκα

b) α0<α & Ac,α0 G Cκ(α0) =^ V>κα0 < ^κ«

Froo/.
a) From α0 < α it follows that C(α0, V>*α) Π « C ^Ka- By definition of ψκαQ

it therefore suffices to prove ψκα G {/9 : AC G C(o:0, AC) => AC G (^(αo,^)}. So let
AC G C^αg, AC). — We have to prove AC G C(αQ,ψκα).
CASE 1: AC = Ωσ+1. By Lemma 1.4c we have Ωσ < ψκα and therefore σ -f 1 G
(7(0:0, ψκθi) which implies AC G C(αQ,ψκα).

CASE 2: AC = Ωκ. From AC G C(α0,Ac) C (7(α, AC) we obtain AC G ^(^o) Π Cκ(α).
From this by L.1.2, L.1.3b, L.1.5b it follows that AC = φ^ξ with £ < α0 and
ξ G (7Λ(α). Now by L.1.4a, L.1.3a,e we get 5CM(0 C Cκ(α) Π CM(ί) Π M =
Cκ(α) Π AC = 0κα, and then ξ G (7(α0, V^) (by L.1.3f). From this together with
ξ < α0 we obtain AC = V>M£ G C(α0,φκα) (by L.1.3g).
b) The premise together with a) implies α0 < α fc Ac,α0 G Cκ(α) Π Cκ(αQ) which
gives us φκα0 G Cκ(α) Π AC = ̂ α.

DEFINITION 1.3.
For each set X C On we set W7(X) := n{C(a,^) : X C C(α,/?) & 7 < α}.

§2. Ordinal analysis of KPM.

In this section we show how one has to modify (and extend) [2] in order to
establish that the ordinal Vto^M+i ιs an upper bound for |KPM|. Of course we
now assume that the reader is familiar with [2].

The theory KPM is obtained from KPi by adding the following axiom scheme:

(Mahlo) Vx3yφ(x, y, z ) -* 3w(Ad(w] Λ Vx€w3y€wφ(x, y, z)\ (φ G Δ0)

We extend the infinitary system RS°° introduced in Section 3 of [2] by adding
the following inference rule:
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f\κ IΛ > , - _ x(Mah) - — (α0 + M < α)
Γ, 3w€lM(Ad(w) Λ B(w)) : α

where B(w) is of the form Vxew3yewA(x,y) with k(Λ) C M.

We set R := {a : ω < a < M & a regular}.

Then all lemmata and theorems of Section 3 4 are also true for the extended
system RS°°(with almost literally the same proofs)5, and as an easy consequence
from Theorem 3.12 one obtains the

EMBEDDING THEOREM for KPM.
If M G H and if H is closed under ξ *-> £R then for each theorem φ of KPM there

is anneN such that H|$^ φM.

Some more severe modifications have to be carried out on Section 4. The
first part of this section (down to Lemma 4.5) has to be replaced by Section 1
of the present paper. Then the sets C(α,/3) are no longer closed under (ττ,£) i->
V>τr£ (£ < α)> but only under (ψ\α) as defined in Definition 1.2 above. Therefore
we have to add "π,ξ G £*(£)" to the premise of Lemma 4.6c, and accordingly
a minor modification as to be made in the proof of Lemma 4.7(^41). But this
causes no problems. A little bit problematic is the fact that the function ^M is
not weakly increasing. In order to overcome this difficulty we prove the following
lemma.

DEFINITION 2.1.
For 7 = uΛo H ----- h ω7n with 70 > > 7n we set 6(7) :=
Further we set e(0) :̂ = On.

LEMMA 2.1.
For 7 G CM (7 + 1) and 0 < α < 6(7) the following holds

*) ΨM(Ί + 1) < ΨM(Ί + «) & CM(Ί + 1) C CU(Ί + α)
b)0<α0<α & α0 G CM(<y + 1) =» ψM(<y + α0)

Proof:
a) follows from b).

b) We will prove (*) ^M(T + !) ^ ̂ M(7+α) From this we get 7+α0 6 Cf

M(7 + l) C
CM(Ί + α) and then by L.l.δa the assertion.
For 7 = 0 (*) is trivial. If 7 ^ 0 then 7 -f α < MΓ and therefore 7 + α G CM(7 + α)
which (together with α < 6(7)) implies 7 + 1 G CM(j + α). Hence ΨM(Ί + 1) <

^M(T + «) by L.l.δa.

Now we give a complete list of all modifications which have to be carried out
in [2] subsequent to Lemma 4.6 .

4We use boldface numerals to indicate reference to [2]
5In Theorem 3.8 one has to add the clause which corresponds to the new inference rule (Mah).

The last line in the proof of Lemma 3.14 has to be modified to "... cannot be the main part of
a (Ref)- or (Mah)-inference.". At the end of the proof of Lemma 3.17 one may add the remark
"Due to the premise ot < β < K we have a < M, and therefore the given derivation o/Γ,C does
not contain any applications o/(Mah).w.
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(1) Replace I by M in the definition of K.
(2) Add "T? < 7 + 6(7)" to the premise of Lemma 4.7(^42).
(3) Add uωP+a < 6(7)" to the premise of Theorem 4.8.
(4) Add "π < 6(7')" to the premise of (D) in the proof of Theorem 4.8.
(5) Insert the following proof of u^κα* < Φκ&" at the end of the proof of (D):
"From 7',μ',α' G Hy[θ] we get α* G Wy[θ]. From k(θ) C Cκ(7 + 1) C
<7κ(δ) & 7' < 5 it follows that Wy[θ] C CK(S). Hence α* G C7κ(δ) and thus
ψκa* < ψκa, since a* < α."
(6) Extend the proof of Theorem 4.8 by the following treatment of the case where
the last inference in the given derivation of Γ is an application of (Mah):
"5. Suppose that 3welM(Ad(w) Λ B(w)) G Γ and HΊ[Q] |-̂  Γ, J3(LM) with

B(w) = Vxew3y€wA(x,y) fc α0 + M < α fc k(Λ) C M.
Γften /c = M (since Γ C Σ(/c) and /c < M).
For t, e TM we set 7, := 7 + ω^+^+M. Γfcen CM(7 + 1) C CM(7*), and since
SC(\t\) C 5CM(7j £ φMΊί, we have \L\ < φMΊl and thus k(θ, 0 C CM(Ίl).
From 7,/i,α0 G W7[Θ] iwe ^eί 7t G W7[θ,φ Consequently ^4(θ,^;7t,M,/z);

αnc? ί/ie Inversion- Lemma gives us ΉΊ[Q][ι] j-τp Γ,^ ^ L0 — >• 3y G LM^.(^, 2/)

L0 -> 3yGL M A(^,y)
a* := 7, + ω^°^ < 7 + a;/*+ao+M =• a* < a.

Lei 7Γ := ψMa* & ^ := ̂ Ma*. Then by 1.4.7 π G W-[θ] & TT < ^M

δ

ίΓe o/so have WG?;(a* G CM(a*)) and thus ^ι^(βt < π).
The Boundedness- Lemma gives us now

W € T,( WS[θ][t] |f Γ, ii LO -> ByeL^ίί, y) ).

From this by an application of (/\) we obtain H~[Q\ \%- Γ, B(LV).

From L.2.5H and L.3.10 we get W-[θ] || Γ, Ad(L*) with 8 := ω"+5. We also have

WS[Θ] I-? Γ, Lπ i L0. 7/ence H-[θ] ̂  Γ, L, g L0 Λ Λd(Lπ) Λ

app/y (V) arid obtain W- [θ] \^~ Γ ."
(7) Replace I by M in the Corollary to Theorem 4.8 and in Theorem 4.9.

This yields the following Theorem.

THEOREM.
Let ϋ* := ψ^ (εM+l). Then for each Σl -sentence φ of £ we have:
KPM h Mx(Ad(x] -> φ*) => L& \= φ.

COROLLARY. |KPM| < Ψ

§3. Further properties of the functions φκ.

We prove four theorems which together with L.1.3a,b,c and L.1.4a-e provide
a complete basis for the definition of a primitive recursive well-ordering (OT,-<)
which is isomorphic to (C7(MΓ,0), <). (The set OT consists of terms built up
from the constants Q, M by the function symbols i, (£, Ω, j£, such that for each
7 G C7(MΓ, 0) there is a unique term t G OT with \t\ = 7, and for all s, t G OT one
has (s -< t <& \s\ < \t\). Here \t\ denotes the canonical value of t. For details see

[1], W, [5].)
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Now the letters α, /?, 7, ί, μ, σ, £, 77, C always denote ordinals less than MΓ. So,
for all α we have α € C^α) and S<7(α) \ {M} = 5CM(α) C ι/>Mα.

DEFINITION 3.1.
_ ϊ max5CM(α) if AC = M & 5CM(α) ̂  0

scκvα; .- i Q otherwise

LEMMA 3.1.
a) scκ(a) < φκa
b) π = M & scπ(/9) < </>«<* =* /? e C»

Proof. Trivial (cf. L.l.a,e,f and L.1.4a).

LEMMA 3.2.
Let AC € Cκ(a) & π e Cπ(/J). Then

Proo/. By L.1.4c,d it follows that Ωπ = π and Ω^ = ^π/? Therefore if
AC = Ωσ+1 then ^π/3 < Ωσ < ψκa, and we may now assume that Ωκ = AC. Then by
L.1.2 and L.1.3b we obtain AC = τ/>M7 with 7 < a & 7 € <?„(<*) Π CM (7). By L.1.4a
and L1.3a we get SCM(ι) C Cκ(a) Π (7M(τ) Π M = ί7κ(α) Π AC = ̂ α. From ^π^ <
/c = V>M7 < 7Γ it follows that V*M7 ^ C*(β) an(l thus /? < 7 or ^π^ < 50^1(7). — If
^π/? < scM(7) then ψΛ < φκa, since 5CM(7) C Vκα. If scM(7) < φ^β & π = M
then we have β < 7 < a and ^9 € C^α) (since scπ(/?) < 0κα), from which we
get t/V/3 € C'/ςί^) Π AC = V^K^ — For π = M the proof is now finished. — If
SCM(T) < Ψπβ & 7Γ < M then ^M7 < TT < M & SCM(7) "̂  V^π/? which (according
to what we already proved for π = M) implies AC = ψMΊ < Ψκ& Contradiction.

DEFINITION 3.2.
/C(ττ, /?, AC, α) abbreviates the disjunction of (/Cl), . . . , (/C 4) below:

(O) ^<sc»
(/C3) π = A c & ^ < α & scπ(/3)

LEMMA 3.3.
Let AC <Ξ CΛ(α) & π € Cπ(^).
aj -»/C(ττ,/?, Ac,α) & -«/C(AC,α,π,^) =4- AC = π & α =
bJ/C(τr,/ ϊ ,AC,α) => φ,β<φκa

Proof, a) is a logical consequence of the linearity of < . b) and c) follow
immediately from L.1.3a, L.l.δa, L.I. 6, L.3.1, L.3.2.

As an immediate consequence from lemma 3.3 we get

THEOREM 3.1.
AC = π & α = β.

THEOREM 3.2.
Let κeCκ(a) k π,βeC«(β).
a) ψ«β<ψκα <ί=Φ /C(π, β, AC, α)
b) τ/v/3 G Cκ(α) ^=» (ΨΛ < Φκd or [β < α k *,β € CΛ(α)])
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Proof, a) "<=" follows from L.3.3b. "=»" follows from L.3.3a,c.
b) The "<=" part is trivial. So let us assume that ψκa < ψ^β G Cκ(a). By
L.1.2 and L.1.3c this implies the existence of τ,£ G Cκ(a) Π Cr(ζ) with ξ < a
and ψπβ = ψτξ. From this by Theorem 3.1 we obtain π = r G CΛ(α) and
β = ξeCκ(a)na.

THEOREM 3.3.
AC € Cκ(a) Φ=> AC G {Ωσ+1 : σ < M} U {r/>M£ : £ < α} U {M}

Proof. I . α=»" follows from L.1.2 and L.1.3b. — 2. By L.I.3d we have
(K G Cκ(a) Φ> AC G C(α,Ac)). —3. If /c = Ωσ+1 then σ + 1 < AC and thus

AC € <7(α,/c). — 4. If AC = V>M£ ^h £ < <* then ξ G CM(0 = <?(&«) C C(α,/c)
and thus AC G ^(α, AC).

THEOREM 3.4.
κ = Ωσ+1 =^ Cίl(α) = C(α,Ωσ + l)

Proof by induction on a. So let us assume that Cκ(ζ) = C(ί,Ωσ + 1), for all
£ < α. — We have to prove ^α C (7(α, Ωσ + 1). As we will show below the I.H.
implies that β := C(α, Ωσ +1) Π AC is in fact an ordinal. Obviously AC G C(α, β) and
C(a,β) Π AC C C(α,Ωσ + 1) Π AC = β and thus φκa < β, i.e. ψκa C C(α,Ωσ + 1).
—CLAIM: 7 G C(α,Ωσ + 1) Π AC ==> 7 C C(α,.Ωσ + 1).
Proof. 1. Ωσ < 7 G SC. Then 7 = ψ^ with £ < α fc ^ G (7^(0- Since Ωσ < 7 <
K = Ωσ+1, we have π = AC and therefore by the above I.H. Cκ(ζ) = (7(£,Ωσ + 1).
Hence 7 = </>κ£ C C(^, Ωσ + 1) C C(α, Ωσ + 1).
2. Let 7 be arbitrary and 70 := max( [Q}\JSC( i ) ) . Then (by 1. above) 70U{70} C
C(α, Ωσ + 1). From this we get 7 C 7* C C(α, Ωσ + 1), where 7* := min{τ7 G SC :

7o < ^}

COROLLARY. ψQla = C(a,0) Π Ωα

REFERENCES

[1] BUCHHOLZ, W. A new system of proof-theoretic ordinal functions. Annals
of Pure and Applied Logic, vol. 32 (1986), pp. 195-207.

[2] BUCHHOLZ, W. A simplified version of local predicativity. In: P. Aczel, H.
Simmons, S. Wainer (eds.), Proof Theory, Cambridge University Press,
1993.

[3] BUCHHOLZ, W., and SCHUTTE, K. Bin Ordinalzahlsystem fur die beweis-
theoretische Abgrenzung der ^-Separation und BarΊnduktion.
Sitzungsberichte der Bayerischen Akademie der Wissenschaften,
Mathematisch-Naturwissenschaftliche Klasse (1983).

[4] JAGER, G. p-inaccessible ordinals, collapsing functions and a recursive no-
tation system. Archiv fur mathernaiische Logik und Grundlagen-
forschung, vol. 24 (1984), pp. 49-62.



ORDINAL ANALYSIS OF KPM 9

[5] RATH JEN, M. Ordinal notations based on a weakly Mahlo cardinal. Archiv
fur mathematische Logik und Grundlagenforschung, vol. 29 (1990),
pp. 249-263.

[6] RATH JEN, M. Proof-theoretic analysis of KPM. Archiv fur mathemati
sche Logik und Grundlagenforschung, vol. 30 (1991), pp. 377-403.

Mathematisches Institut der Universitat Mύnchen
Theresienstr. 39, D-80333 Mύnchen, Germany




