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Among the hopes Godel’s famous Incompleteness Theorem is said to dash,
one frequently encounters the Theory of Everything (T.0.E), an ideal quite
popular among particle physicists. Indeed, Weinberg’s Dreams of a Final The-
ory appear quite close to a complete formal system containing all physical
laws: “the final theory [is] one that is so rigid that it cannot be warped into
some slightly different theory without introducing logical absurdities like in-
finite energies.” ([17], p. 12) According to him, the fact to be logically isolated
provides an internal check for a theory to be final. “In a logically isolated
theory every constant of nature could be calculated from first principles; a
small change in the value of any constant would destroy the consistency of
the theory.” ([17], p. 189). Weinberg is convinced that “string theory has pro-
vided our first plausible candidate for a final theory.”([17], p.169.) But his
general claims are essentially cosmological ones that are embedded into a
big bang type framework. Only one fundamental arbitrariness might remain
unexplained by the T.O.E.: the actual value of the cosmological constant A.
Its existence is consistent with the general symmetry principles of Einstein’s
equations:
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Does this single undeterminable parameter already constitute a safe haven
for Weinberg against Godel’s theorem? A appears to be the parameter dis-
tinguishing between several consistent T.O.E.’s. How is its measurement rep-
resented within the complete final theory? If it is not, there remains much
more outside the system than just the numerical value of A.

At this point a mathematician or logician perhaps feels rather uneasy be-
ing faced with such a specific question without knowing whether the language
Weinberg talks about can be gddelized at all. As Weinberg admits: “it is fool-
hardy to assume that one knows even the terms in which a future final theory
will be formulated.” ([17], p.137) But then why should there be a T.O.E. at
all? As a matter of fact, Weinberg’s justification consists in his philosophical
convictions of an objective reductionism that “is simply true” ([17], p.42) be-
cause we can see by subdividing a piece of chalk (and have been taught by
the history of physics) that the tinier parts contain the more fundamental
physics. Moreover, Weinberg appears as a Platonist believing “in the reality
of abstract ideas”, in “the reality of the laws of nature.” ([17], p.35)

Opponents to the idea of a T.O.E. argue by means of Godel’s theorem
also on this general level of beliefs:
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No matter how far mathematics progresses and no matter how
many problems are solved, there will always be, thanks to Gddel,
fresh questions to ask and fresh ideas to discover. It is my hope that
we may be able to prove the world of physics as inexhaustible as
the world of mathematics. . .If it should turn out that the whole of
physical reality can be described by a finite set of equations, I would
feel disappointed.([5], p.53)

Quite similar to Freeman Dyson, Tullio Regge concludes:“The universe is
infinite not only in duration and extension, but also in its logical structure.
Our existence itself and our reason are made possible by the infinity present
in reality and from there disconnected fragments are mirrored back.” ([12], p.
296)

Certainly this never was Godel’s conclusion. Unlike those making use of
his theorem, he believed in a capacity of human mind transcending the lim-
its of finite machines and even in the possibility of an absolute mind. Thus,
Godel appears on the optimistic side about achieving objective knowledge,
probably even believing in a T.O.E. But his views how such a theory looks
like are quite different from those shared by physicists like Weinberg or Hawk-
ing. After sketching an ‘intermediary’ approach towards the T.O.E. question
which attributes to the different levels we encounter in present physics more
right of their own, I will discuss related thoughts of Gédel, both in the con-
text of logic and cosmology, that support the quest for a more differentiated
picture of present physics. I have chosen this order of presentation because it
emphasizes how promising Goédel’s ideas appear even today. They were writ-
ten down at a time before high energy physics uncovered deeper and deeper
levels of symmetry and successfully predicted particles of higher energies.

1. The T.O.E. and the Levels of Physical Theories

Advocates of a T.O.E. usually parallel the energy or length scale of ‘local
physics’ tested by earthbound accelerators with the stage of evolution in the
early universe. Thus, their approach presupposes big bang cosmology, which
is, however, constantly questioned by various ‘heretic’ minority views (See [6]
for an overview.). Furthermore, the more foundational theories are also more
general in a mathematical sense, e.g. the symmetry groups of ‘unified theo-
ries’ of particle physics contain the standard model as a subgroup. Although
T.O.E. proponents admit that the deduction of some particular phenomena
from the T.O.E. might fail in practice, they leave no doubt what they con-
sider as the primary duty. Mirroring this value-judgement, I have reserved
for the more foundational levels, the ‘higher’ floors in a pyramid.

Studying concrete examples from physics [1] [14] [15] tells that in most
cases ‘reductionism’ does not grant a pure deduction of the physics of a
particular level from ‘higher’ levels exclusively. Instead one finds multifarious
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Fig. 1.1. The pyramid of physical laws implicit in T.O.E.

interrelations between the levels that can be summarized in the following
theses initially proposed by Walter Thirring [14] [15]:

(i) The phenomena of a lower level are not completely determined by the
laws of the higher level, even though they do not contradict the latter.
What seems to be a fundamental fact on one level may seem entirely
accidental if seen from a higher level.

(ii) The laws of lower levels depend more on the particular circumstances
they refer to than on the laws of higher levels. Laws of the higher level,
however, may be necessary to resolve internal ambiguities on a lower
level.

(iii) The hierarchy of laws has evolved in the course of the evolution of the
universe. Newly created laws initially did not exist as laws, but merely
as possibilities.

George Ellis [6] distinguishes three types of relations between ‘local
physics’ and cosmology: a) given the particular boundary or initial conditions
the usual laws of physics are applicable to cosmology and yield properties in-
dependent the former, e.g. equilibrium distributions (physics approach); b)
the Cosmos is very special and has properties, such as the cosmological con-
stant, that cannot be verified ‘locally’ (Cosmos approach); c) the universe
alters the laws of physics itself (interaction approach). Thesis (iii) belong
to the class c), but it is not intended to block further questions, saying:
‘well it is so because it just happened in this way’. Some (not all) procla-
mations of the Anthropic Principle are in theis style: On the contrary, thesis
(iii) should stimulate research in the physics of large systems, where unpre-
dictable phase transitions entailing ‘new laws’ can be reasonably approached.
Moreover, theses (i)—(iii) emphasize the particular role of undeducible fun-
damental constants that characterize a particular level. Similarly, the ‘initial
conditions’ of a cosmological epoch might be tuned by symmetry-breaking.
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Relating different levels is inhibited even more seriously if the concepts of one
level neither can be reduced, nor translated into concepts of the other one.

Connecting different levels invokes a metalanguage. Of course, the T.O.E.
would be a metatheory to all levels of physics because it defines all their con-
cepts, tunes the fundamental constants, and describes all possible cosmologi-
cal scenarios. But thesis (i)—(iii) imply that between two levels metalanguage
relations exist in both directions. If a problem undecidable on the ‘lower’
level is represented and solved on the ‘higher’ level, the latter selects the
actual out of the possible scenarios. On the other hand, if an unpredictable
phase transition, or an undeducible fundamental constant, chiefly contribute
to the explanation of a particular phenomenon, the ‘lower’ level represents
the metatheory telling us that we have to choose a particular representation
of the ‘higher’ level structure or disregard some solutions of its equations
as empirically inadequate. This rather multifarious metalanguage problems
already suggest that the pyramid is very far from being naively godelized.

In view of the difficulties of deduction, physicists who are mainly inter-
ested in the solution of a problem resort to effective theories or coarse grain-
ing. In the latter case, a tinier level is represented by its mean value over a
certain scale; in the former there are free parameters, apart from fundamental
constants, that can be fitted to experimental data. Explicitly decoupling the
levels in this way, the physics community is then kept together by common
experimental and mathematical tools, only [13].

Although I concede that physics always sets out to explain particular phe-
nomena, such a strategy, in effect, sacrifices possible deductions and does not
exploit the unifying force of mathematics. In my view, mathematics provides
the only separation between levels that is suffiently precise. Under certain con-
ditions, quantum mechanical systems can be of macroscopic size. Theories of
different levels coexist in one and the same cosmological epoch. On the con-
trary, the relation between the Lie groups SU(10) and SU(3) x SU(2) x U(1),
or the relation between a non-commutative C*-algebra describing quantum
mechanics and the commutative one of classical mechanics are sharply de-
fined. But, what pyramid order can mathematics bring about for physics?
Certainly we cannot substitute a mathematical T.O.E. for the physical one
because this definitely contradicts Godel’s theorems. But, mathematics may
well provide a ‘local’ order that comprises some levels and allows us to derive
naturally (i.e. without further restrictive assumptions) their physical coun-
terparts from simple first principles and ‘simple’ fundamental constants. The
second type of simplicity holds, if we can relate one level of the mathematical
formulation of the theory to a physical one by specifying just one typical pa-
rameter, for instance k. Of course, the mathematical levels do not consist of
entire mathematical disciplines, but of selected objects, concepts, and rules
that are chosen to represent physical theory.

Having proposed this modest understanding of the level structure of pre-
sent physics, I will move on to Godel’s ideas on the subject matter. Apart
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from the two papers on rotating universes, Gédel’s published on matters of
physics only a contribution to Einstein’s Schilpp volume entitled “A remark
about the relationship between relativity theory and idealistic philosophy”.
It was mainly devoted to the problem of defining cosmological time which
turned out to be impossible for his solution of Einstein’s equations. After
other solutions allowing closed timelike curves even for A = 0 had been
found, time became indeed a major problem of cosmology [6]. Recently also
the T.O.E. candidate string theory contributed an (unrealizable) proposal
for a time machine, apart from the popular (classically relativistic) worm-
holes. The problem how to protect grandfathers from being killed by their
grandsons is quite popular, but unsolved at present.

If one reads through the unpublished papers and lectures of Godel [8] from
1946 on, one is very surprised by the omnipresence of physics right within the
central discussions on Platonism in mathematics. In effect, Godel develops un
understanding of physics that is quite close to that of modern mathematical
physics that emerged in those days, not least at Princeton.

2. Objectivity in Physics and Mathematics

Arguments from physics appear quite often in Gddel’s attempts to disprove
the conventionalist thesis that mathematical concepts and rules are purely
syntactical and void of content. Godel’s own incompleteness theorems had
rendered untenable Hilbert’s program to remain formalist, but simultaneously
be convinced that every well-formulated mathematical yes-no alternative is
in principle decidable. In the Gibbs lecture Godel applies the undecidabil-
ity argument to a finite Turing machine and poses the alternative: “Either
mathematics is incomplete in this sense, that its evident axioms can never be
comprised in a finite rule, that is to say, the human mind (even within the
realm of mathematics) infinitely surpasses the powers of any finite [Turing]
machine, or else there exist absolutely unsolvable diophantine problems.” ([8],
p-310) Godel definitely objected to the second alternative, whereas his atti-
tude towards the first is less clear (See the introduction of Boolos in [8]).
Both imply Platonism, but in different aspects [10]. But Gddel continues
that Platonism holds irrespective of the alternative because

if mathematics were our free creation, ignorance as to the objects
we created, it is true, might still occur, but only through lack of
a clear realization as to what we have created (or, perhaps, due to
the practical difficulty of too complicated computations). Therefore it
would have to disappear. . . as soon as we attain perfect clearness,([8],
p.314)

which, empirically, seems to be a daring hypothesis in mathematics. In
physics, this argument has far-reaching consequences for non-Platonistic
T.O.E. proponents: They have to accept strong reductionism, and everyone
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becomes a Laplacian demon (at least in principle). In this respect Weinberg’s
‘objective reductionism’ is on the safe Platonistic side.

But can Godel’s logical considerations actually be applied to physics? At
first Godel credits Carnap’s syntactical approach for “having pointed out the
fundamental difference between mathematical and empirical truth”([8], p.
356f.) He even strengthens the distinction to ontological difference: Mathe-
matical propositions “are true in virtue of the concepts occuring in them” ([8],
p- 356), while “space-time reality. . .is completely determined by the totality
of particularities without any reference to the formal concepts” ([8], p. 354).
But Godel makes a surprising second move. Carnap’s syntax program added
purely linguistic mathematics to empirical science, to ‘factual’ sentences al-
ready present. By the principle ez falso quodlibet any inconsistency, implies
the truth also of all possible empirical sentences, even those contradicting
observation. As of course, no empiricist can consider laws of nature as merely
conventional, only those sentences are ‘admissible’ which do not imply un-
wanted empirical consequences. Goldfarb ([8], p. 328) reasonably (at least
for a verificationist) detects a petitio in Gddel’s argument. In order to know
that the addition of mathematics does not change the empirical sentences,
we need even stronger mathematics. Be that as it may, for G6del, trusting in
the consistency of mathematics has empirical consequences because we need
mathematical concepts for expressing and structuring the laws of nature in
the first place.

If it is argued that mathematical propositions have no content
because, by themselves they imply nothing about experiences, the
answer is that the same is true of laws of nature. For laws of nature
without mathematics or logic imply as little about experiences as
mathematics without laws of nature. That mathematics, at least in
most applications, does add something to the content of the laws of
nature is at best seen from examples where one has very simple laws
about certain elements, e.g., those.about the the reactions of elec-
tronic tubes. Here mathematics clearly adds the general laws as to
how systems of tubes connected in a certain manner will react. That
the latter laws are not contained in the former is seen from the fol-
lowing facts: (a) The latter laws may contain concepts not definable
in terms of those occuring in the former (e.g., the concept of a combi-
nation of any finite number of elements). (b) In order to understand
the laws of nature it is sufficient, as far as the mathematical concepts
occuring are concerned, to know rules which decide on their applying
or not applying in each particular case. But such rules by no means
imply the general laws governing them. (c) These general laws may
even require new empirical inductions, namely, in case the math-
ematical problem in question should be unsolvable. E.g., this may
occur in a case like Goldbach’s Conjecture, which evidently implies
a certain law about the reactions of a computing machine. Note that
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the general mathematical laws may even be required for predicting
the result of a single observation, e.g., in case the latter depends on
an infinity (e.g., a continuum) of physical elements. . . Mathematical
propositions, it is true, do not express physical properties of the struc-
tures concerned, but rather properties of the concepts in which we
describe those structures. But this only shows that the properties
of those concepts are something quite as objective and independent
of our choice as physical properties of matter. This is not surpris-
ing, since concepts are composed of primitive ones, which, as well as
their properties, we can create as little as the primitive constituents
of matter and their properties. ([8], p. 360)

Today one could cite the KAM-theorem as an example for the far-reaching
consequences of ‘mathematics proper’ in physics. For analytically unsolvable
many-body problems one can show that resonance properties depend more
on number theory than on the particular form of the law of force [14] [15].
If the revolution period of an asteroid around the sun is in a ‘small ratio’
(r = p/q # 1, where p and ¢ are small numbers) to that of Jupiter, its orbit
is rather unstable. The most irrational number, the golden ratio, provides
instead maximal stability.

What Go6del mentions under (a) has nowadays become well-known as
‘emergence of new concepts by complexity’. For instance, a single atom is
invariant under rotations. But being part of a crystal or a molecule, this
symmetry is broken and the concept of an electric dipole moment becomes
meaningful [1]. Godel’s example shows that ‘lower’ levels (on a larger length
scale) can require new and very general mathematics. Case (b) occurs if one
selects out of many possibilities a certain representation or a value of a fun-
damental constant without having a ‘higher’ level law fixing them necessarily.
(c) is affirmed by the use of non-standard analysis in solving equations of sta-
tistical physics. As a matter of fact, Godel highly appreciated non-standard
analysis as it substantially simplified proofs of deep results and thus facili-
tated further discoveries. Its long-lasting omission “is largely responsible for
the fact that, compared to the enormous development of abstract mathemat-
ics, the solution of concrete numerical problems was left far behind. ([7], p.
311)

‘Mathematics proper’ has proven more fruitful for T.O.E. candidates like
string theory than in any other branch. Gddel requires an absolute concept of
truth for this core of mathematics. For hypothetico-deductive systems, such
as geometry, however, by a proof of undecidability the issue of Euclid’s fifth
postulate only remains meaningful because “the primitive terms are taken in
a definite sense, i.e., as referring to the behavior of rigid bodies, rays of light,
etc.”([7], p- 267) As the meaning of a mathematical axiom may depend on
physics, it may also “be disproved by wrong empirical consequences derived
from it in conjunction with well-defined laws of nature.” ([8], p. 361) At this
point the connection between mathematics and physics is already quite tight
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because falsification concerns a single observable fact which does not run into
trouble within the syntax program ([8], p. 339, fn. 16); neither does a finite
iteration. Nevertheless, without a notion of truth in ‘mathematics proper’
there would be no axiomatization of geometry ([8], p. 306).

Godel draws parallels even further: “If mathematics describes an objective
world just like physics, there is no reason why inductive methods should not
be applied in mathematics just the same as in physics.” ([8], p. 313) Thus, by
rejecting the logical empiricist’s syntax program mathematics “favor[s] the
empiricist viewpoint” (ibid.) Moreover, if the attitude “to derive everything
by cogent proofs from the definitions (that is, in ontological terminology, from
the essences of things). . ., if it claims monopoly, is as wrong in mathematics
as it was in physics.” (ibid.)

Even if we concede to Goédel that “if the objectivity of mathematics is
assumed, it follows at once that its objects must be totally different from
sensual objects” ([8], p. 312) because they are known precisely without invok-
ing our five senses and say nothing about the space-time world, it remains
to determine what objects space-time is about. Here Gédel follows Kant and
states that we do not “imagine things to have these properties and rela-
tions [in space and time], but on the contrary to each of them there must
correspond some objective relation of the things to us which subsists (indepen-
dently of our representaions)” ([8], p. 232; my emphasis). On the other hand,
he proposes a modification of Kant, “if one wants to establish agreement be-
tween his doctrines and modern physics; i.e., it should be assumed that it
is possible for scientific knowledge, at least partially and step by step, to go
beyond the appearances and approach the things in themselves” ([8], p. 257).
In effect, Godel lifts the strict border line that Kant’s critical philosophy has
drawn. “How can this point be deemed ‘minor’?” (Howard Stein, [8], p. 224)
Furthermore, does the argument really allow Godel to maintain the strict
distinction between mathematical and physical objects in themselves and to
claim simultaneously that our perceptions and intuitions of those objects are
quite similar in every step of objectification ? In particular, Godel stresses
that Kant’s rejection of knowledge of things in themselves restricted natural
science to “the forms of our sense perception.”([8], p. 244) Kohler [10] here
rightly points out that the proper distinction of perceptions and senses is a
source of trouble for Godel’s Platonism.

But why did Godel attempt to give Kant this idealistic ‘twist’? In effect,
Godel wanted to maintain the possibility of an ‘absolute’ cosmology in spite
of his own discovery verifying the critical Kant by the relativity of time.

3. Time: How Godel’s Universe Reveals an Inadequacy
of Hilbert’s Program in Physics

Special relativity (and some vacuum solutions of Einstein’s equations, too)
treats all uniformly moving observers as equivalent and implies complete
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relativity of time. “The existence of matter, however,. . .largely distinguishes
some of them conspiciously from the rest, namely, those which follow in their
motion the mean motion of matter.” ([7], p. 203f.) In the solutions known at
Godel’s time, the local times of these observers could be fit together into a
global cosmological time. Godel’s rotating universe, however, does not admit
such an absolute definition of time. Moreover, it contains closed time-like
curves that allow for, at least in principle, a travel far out to the horizon and
back into one’s own past. But, as Godel emphasized ([8], p. 285), it retains
a unique direction of time for any observer — a property not shared by all
cosmological scenarios known today [6].

Godel’s solution thus extends the Kantian doctrine of time’s being a sub-
jective concept to general relativity. There cannot be any temporal order
relation situated in the things in themselves that corresponds to our intuitive
concept of time. As time does not ‘lapse’ or ‘pass by’ globally, there cannot
be objective change either. For change presupposes existence; “The concept
of existence, however, cannot be relativized [to observers] without destroying
its meaning completely.” ([7], p. 203, fn.5) As Godel’s solution is stationary,
spatial order relations remain absolute, although one cannot separate out a
a three-dimensional spacelike hypersurface. This conformity with our a pri-
ori concept of space is, however, is not given for other rotating solutions
discovered after Godel.

Godel’s incompleteness theorem rendered Hilbert’s program for the ax-
iomatic foundation of mathematics impossible. Gédel’s rotating universe tells
that also Hilbert’s program for the axiomatization of physics failed. After
Einstein had specified the symmetry properties of general relativity, Hilbert
independently obtained Einstein’s equations by way a variational principle
(‘Hilbert’s action’) for the special case of matter’s being that of Mie’s elec-
trodynamics. It is therefore not surprising that Hilbert also proposed an ax-
iomatization of all of field physics (Feldphysik) which he published urder the
exalted title “The Foundations of Physics” [9]. In order to fulfil the “newly
emerged ‘ideal of unity of field theory’ ([9], p. 47), Hilbert proposed four
axioms: a unified action, general covariance, additivity of gravity and elec-
tromagnetism, and a metric axiom. Hilbert, erroneously, was convinced that
space and time can be separated globally; thus he claimed that no contradic-
tions arise if causality is defined by means of light cones. “From knowing the
state variables at present, all future statements about them follow necessarily
and uniquely, provided they are physically meaningful’ ([9], p. 64), which re-
quired that every statement is essentially covariant. Hilbert furthermore held
that “only regular solutions of the basic equations of physics represent reality
directly” ([9], p. 73). Irregular solutions containing singularities were deemed
as of mathematical interest, only. Restricting all matter to Mie’s rather pe-
culiar model, Hilbert’s axiomatization appears even more narrow-minded.
Thus, Einstein found it “too great an audacity to draw already now a picture
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of the world, since there are still so many things which we cannot remotely
anticipate” (from [11], p. 261).

Hilbert’s T.O.E. demonstrates an attitude toward the relation between
basic axioms or equations and their solutions that is very different from Ein-
stein’s and Godel’s. The rotating universe teaches that particular solutions
may exhibit drastically diverging properties that can also affect the physical
meaning of the axioms. Of course, not in the sense as the incompleteness
theorem affected truth, but by limiting the applicability of a physical con-
cept used in the axioms to particular cases. The intuitive concept of time
that appears in all dynamical considerations thus cannot be realized within
the axiom system due to the existence of certain solutions, such as Gddel’s.
Should we a priori exclude them? Recent debates in relativity about naked
singularities (microscopic black holes) also put the problem of regularity again
on the agenda. Should we reject such solutions? Godel rightly argues against
such an apriorism. Basing the impossibility that we actually live in a Godel
universe on the closed time-like curves “presuppose[s] the actual feasibility
of the journey into one’s own past” ([7], p. 203). As the required loop is very
very long, assuming at least its practical impossibility seems to be reasonable.
Moreover, as Godel explicitly acknowledges, his universe contradicts red-shift
observations from distant objects. But the problem is a general one:

The mere compatibility with the laws of nature of worlds in
which there is no distinguished absolute time...throws some light
on the meaning of time also in those worlds in which an absolute
time can be defined. For. .. whether or not an objective lapse of time
exists. . . depends on the particular way in which matter and its mo-
tion are arranged in the world. ([7], p. 206)

Godel considers this situation philosophically unsatisfactory because “a lapse
of time...would have to be founded, one should think, in the laws of
nature” ([8], p. 238). “If, however, such a world time were to be introduced in
these [rotating] worlds as a new entity, independent of all observable magni-
tudes, it would violate the principle of sufficient reason” ([8], p. 327).

Godel seems to take an intermediate position. He simultaneously rejects
an a priori selection of solutions and does not content himself merely in having
a solution that agrees with observations. The reason for this lies, to my mind,
in his joint effort to combine subjectivity (he even describes the neighborhood
of a world line of matter as the region of sensorial contact) and objectivity
in the strong sense, i.e. that we can get to the things in themselves. Gédel
seems to believe that human beings can surmount the Kantian a priori forms
of intuition: “Kant says that for beings with other forms of cognition ‘those
modifications which we represent to ourselves as changes would give rise to
a perception in which the idea of time, and therefore also of change, would
not occur at all””([8], p. 235). Kant, in fact, had often mentioned that there
could be a ‘discursive understanding’ (though not ours) that perceives ideas.
As Godel held the human mind to be stronger than any computing machine,
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it is reasonable to conjecture a parallel approach to things in themselves also
by a hierarchy of minds that are capable of intuting (mathematically as well
as physically) stronger theories.

Hence one can imagine a companion of Laplace’s demon for Gédel’s con-
cept of cosmology. Laplace’s argument tacitly assumed that the motions of
the particles of the world were governed by second order differential equa-
tions and that the law of gravitational attraction was of finite complexity.
Otherwise the hypothesis of the demon only states that there is just one
function describing all successive states of the one world. This form of overall
determinism is, however, rather close to tautology. For this reason, I do not
consider Howard Stein’s argument (that is endorsed by Wang [16]) conclusive
that auto-infanticide can never occur in a Godel universe because “that act
would simply not be possible. .. [because] such a cosmos would have to be re-
garded as fully deterministic” ([7], p. 199). Neither, perhaps, did Godel, for he
remarked: “A lapse of time, however, which is not a lapse in some definite way
seems to me as absurd as a colored object which has no definite colors” ([7],
p- 203). Since one cannot impose time from outside, the demon’s companion
does not calculate a cosmological time-evolution, but he has to determine
the universe in a rather different manner. This has consequences for the rela-
tion between causality and determinism. In his discussions with Wang, Godel
considered the causal succession as more basic than temporal order (change):
“The real idea behind time is causation: the time structure of the world is
just its causal structure. Causation in mathematics, in the sense of, say, a
fundamental theorem causing its consequences, is not in time, but we take it
as a scheme in time. .. Causation is unchanging in time and does not imply
change. It is an empirical— but not a priori—fact that causation is always
accompanied by change.” ([16], p. 229) As a matter of fact [6], the question
about causality and time arises if one considers a primordial quantum state as
the beginning of the universe. Accordingly, a universal theory for the demon’s
companion is neither the axiomatic T.O.E. of Weinberg or Hilbert, nor is it
the the classically deterministic world of Stein that a priori prohibits causal
loops. As Goéedel remarks: “Quantum physics in particular seems to indicate
that physical reality is something still more different from the appearances
than even the four-dimensional Einstein-Minkowski world. T. Kaluza’s fifth
dimension points in the same direction” ([8], p. 240). The latter has become
the origin of higher-dimensional cosmologies which, as ‘higher’ level theories,
have to explain why our present space-time has been singled out, while the
others collapsed to internal degrees of freedom [14].

4. Levels of Objectivation

The quote immediately above is preceded by the sentence: “Perhaps it [the
space-time scheme of relativity] is to be considered as only one step beyond
the appearances and towards the things (i.e. as one ‘level of objectivation’, to
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be followed by others?4). [Footnote 24 starts:] Cf. in this connection Bollert
1921, where one may find a description in more detail of these steps or ‘levels
of objectivation’, each of which is obtained from the preceding one by elim-
ination of certain subjective elements. ..Kant’s world of appearances itself,
also must of course be considered as one such level, in which a great many
subjective elements of the ‘world of sensations’ are already eliminated.” ([8],
p- 240) Karl Bollert subdivides

the whole of our experiences into a succession of well-defined levels
of objectivation. The endeavor to combine a constantly wider range
of experiences, and finally all accessible ones, into a unity, forces us
into more and more abstract systems of order, for the unity lost in
widening the range of experiences can only be regained by abstracting
from a part of the content of experience and restricting oneself to this
which now still is at the basis of all single experiences in the same
manner. What does not comply with this condition, remains situated
on the lower level of objectivation. Thus, this extension of range is
compensated for by an impoverishment of content...Every level of
objectivation corresponds to a subject concept (Subjektsbegriff) as its
complement, which becomes more and more concrete as we descend
down the sequence of objectivations.([3], p. 49f.)

Thus, the whole of experience appears as a system of connections
conceptually nested into each other, as a sequence of levels of ob-
jectivation, among which there remains merely a relation of logical
superordination and subordination.([3], p. 55)

According to Bollert, the hierarchy, however, is not a ‘causal’ one because
not all concrete information is inherited upward. The lower levels cannot be
deduced from the higher ones. Instead, there are two methods for obtaining
knowledge. The differential method moves upward by abstraction until it ob-
tains the differential equations as the sentences of the “book of nature”([3],
p. 60). But “the last level of objectivation [does not mark] the origin of all
being [Urquell alles Seins], from which the all of reality could be deduced,
but merely a complete calculatory connection.”([3], p. 65) While Bollert,
strangely, considers this direction ‘necessary and unique’, as “the law of con-
struction is taken from the richer content of the lower level itself”, the integral
method, “the inverse problem of reintegration [of the concrete] process is am-
biguous” (both [3], p. 66). For instance, the fact that a metrically covariant
four-dimensional manifold splits into space and time is accidental and due to
the circumstance that the metric components can be regarded as constant
in weak gravitational fields prevailing in most places. Thus, Bollert puts his
finger on the above-mentioned problem of higher-dimensional cosmologies.

In his argument against conventionalism Go6del applies the subjective-
objective distinction to mathematics. Mathematics in the subjective sense is
“the system of all demonstrable propositions”, mathematics in the objective
sense is “the system of all true mathematical propositions” (both (8], p. 309).
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While a well-defined system of mathematical axioms can contain the former,
Godel’s theorems prove that this is false for the latter. And they also show
that no analogue of Bollert’s allegedly unique ‘differential’ method can exist
in mathematics (neither is this the case in physics). In a conversation with
Hao Wang on 9 December, 1975, G6del talks about the formation of concepts
and sets: “In some sense the subjective view leads to the objective view.
Subjectively [a set is] something you can overview in one thought. If we
overview a multitude of objects in one thought in our mind, then this whole
contains also as a part the objective unity of the multitude of objects , as well
as its relation to our thought. Hence it is natural to assume a common nucleus
which is the objective unity. . . From the idealized subjective view, we can get
the power set [i.e., overview the power set of any set which we can overview].
But the definability of V [the set of all sets] can’t be got by the subjective
view at all. The difference in strength [is exemplified] only when you introduce
new principles which make no sense at all in the subjective view.” (from [10],
p. 18; [| are Wang’s) An analogous difference in strength separates levels
in physics. ‘Higher’ levels require stronger mathematics, but thereby reduce
the complexity of ‘lower’ ones. Fundamental constants cannot be generalized
without loss of information, i.e. their particular value, for concepts pertaining
to them, e.g. an atom for the finestructure constant, lose their meaning on
the subatomic level. Thus only part of a ‘lower’ level can be deduced with
mathematical rigor. This difficulty adds to the purely mathematical one of
consistency being provable only at the ‘higher’ level.

This restriction is even in some sense wanted because, in fact, mathematics
has to be able to express situations not actualized. “For the main function
of mathematics. . .is exactly to bring the vast manifold of possible situations
and particularities of the existent under control.”([8], p. 352). The objective
level is thus the common core of the subjective lower levels, the possible
worlds. They are not of entirely different nature, since in Goedel’s ontology
“Possibility is a weakened form of being.”([16], p. 229) By godelization a
subset of the true sentences of the higher level can already be represented on
the lower one. Thus, “subjective intellectual things (intentions, e.g. concepts
and proofs) represented on a lower level may appear as objective natural
things (bodies or processes) represented on a higher level.” ([10], p. 20f.) This
shows that mathematical levels never can be separated ‘hermetically’; there
is always a possibility to reflect parts of every meta-theoretical level on a
‘lower’ level.

5. Intuition and Induction

That mathematics does have a content. ..appears from the fact
that, in whatever way it, or any part of it, is built up, one always
needs certain undefined terms and certain axioms (i.e., deductively
unprovable assertions) about them. For these azioms there ezists no
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other rational (and not merely practical) foundation ezcept either
that they (or propositions implying them) can directly be perceived
to be true (owing to the meaning of the terms or by an intuition of
the objects falling under them), or that they are assumed (like phys-
ical hypotheses) on the grounds of inductive arguments, e.g., their
success in the applications. .. To eliminate mathematical intuition or
empirical induction by positing the mathematical azioms to be true
by convention is not possible([8], p. 346f.),

in virtue of the incompleteness theorem. For Godel, intuition is not some aes-
thetic epiphenomenon that could easily be disregarded. Instead it shares the
level structure of mathematics because for the consistency assumption for any
axiom system one needs an intuition of appropriate strength. In a talk never
held before the American Philosophical Society, Gédel credits Husserl for hav-
ing formulated more precisely Kant’s idea that, for the derivation of math-
ematical theorems, we always need new mathematical intuitions. Husserl’s
phenomenology represents, for Godel, a promising “systematic method [a
technique, not a science proper] for a such a clarification of meaning. . . [that]
consists in...directing our attention...[toward] our own acts in the use of
these concepts” ([8], p. 383). In analogy to a child that “passes through states
of consciousness of various heights. . .it seems quite possible that a system-
atic and conscious advance. .. will also far exceed the expectations one may
have a priori.” ([8], p. 385) Intuition is not directed to ‘things’ (perhaps, in
themselves) but to relations, both in physics and mathematics. Godel em-
phasizes this already in a quote from Kant: “the mode of intuition of the
subject in the relation of the given object to it” ([8], p. 231). To stress both
that intuition is relational and able to surmount our a priori ‘lifeworld’ is
quite important, for in present foundational debates about quantum theory
a different ‘intuition’ has become popular [2] that has, to my mind, great
disadvantages. Godel’s Platonism justifies the objectivity of intuition as a
“special kind of experience” ([8], p. 351) by admitting fallibilism, which turns
out to be a ‘surprisingly strong principle’ [10].

“However, mathematical intuition in addition produces the conviction
that, if these sentences express observable facts and were obtained by apply-
ing mathematics to verified physical laws (or if they express ascertainable
mathematical facts), then these facts will be brought out by observation (or
computation).” ([8], p. 340) In this way the certainty guaranteed by math-
ematical intuition is the basis for the reliability of all physical predictions.
But the relation can be inverted: Empirical evidence also justifies our belief
in the truth of mathematical axioms.

Already in mathematics inductive methods are used, for instance, when
an equality F(n) = G(n) is verified up to very large n. But induction plays
a much more general role. It may well be that properties of concepts of
mathematical physics “referring to combinations of things. .. may not follow
from the definitions or the meanings of the terms (as far as we are able to
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understand them) but still may be knowable in the same sense as laws of
nature”. Accordingly, mathematical properties are “even verifiable by sense
experience under the hypothesis that certain laws of nature which can be
confirmed independently of mathematics hold good” (both [8], p. 349).

Induction as a truth criterion rests not only upon probability estimates
(as in Carnap’s case), but also invokes the classical principles of theory
choice: “fruitfulness in mathematics and...in physics”([7], p. 269): a fruit-
ful new axiom allows one to make proofs “considerably simpler and easier
to discover” ([7], p. 261), and to contract into one many proofs of such con-
sequences that were already demonstrable without the new axiom—others
cannot be compared. In a parenthesis stricken out in the Gibbs lecture (which
belongs to [8], p. 313) Gidel mentions other conceivable inductive criteria:
“[Others might be based on the (requirement of simplicity, aesthetic value
combined with symmetry, plausibility, fruitfulness of a general prop[erty]) of
the fundamental law of i.e. the axioms]” (from [10], p. 29). These are exactly
those criteria of which physicists claim to have an intuitive understanding.

It is a common demand that the T.O.E. should be expressed in a few
simple principles, as it is the case in relativity theory or in C*-algebraic
quantum theory. But not all physics can rest upon them. Gédel’s basing the
belief in mathematical axioms on their empirical implications teaches that
one should, perhaps, even be glad that in order to make the principles opera-
tive in explaining physical phenomena, one has to supply further information.
Insisting on the fallibilism of intuition and induction allows Gddel, however,
to maintain a T.O.E. program in the weak (objective) sense. As all precisely
formulated questions should ultimately be decidable (though, perhaps, not
provable) his concept appears similar to Duhem’s ‘natural order’ [4]. Godel’s
‘natural order’ comprises many levels of objectivation that are found by in-
duction, simple principles as well as particular solutions. Thus, in contrast
to Hilbert, Godel does not appear as a proponent of a world formula or of a
‘world action principle’.

Acknowledgement. A substantial part of the ideas presented here was motivated by
discussions with Walter Thirring and Eckehart Kéhler.
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