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Abstract. An introduction is provided to some current research trends
in stability in geometric invariant theory and the problem of Kähler
metrics of constant scalar curvature. Besides classical notions such as
Chow-Mumford stability, the emphasis is on several new stability con-
ditions, such as K-stability, Donaldson’s infinite-dimensional GIT, and
conditions on the closure of orbits of almost-complex structures under
the diffeomorphism group. Related analytic methods are also discussed,
including estimates for energy functionals, Tian-Yau-Zelditch approxi-
mations, estimates for moment maps, complex Monge-Ampère equations
and pluripotential theory, and the Kähler-Ricci flow.
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1. Introduction

A central theme in geometry is to try and characterize a given geometric
structure by a metric with “best” curvature properties. A classic example
is the uniformization theorem, which says that a complex structure on a
compact surface can be characterized by a metric of constant curvature.
More recently, in the case of holomorphic vector bundles over a compact
Kähler manifold, the algebraic-geometric notion of stability in the sense of
Mumford-Takemoto has been shown by Donaldson [43] and Uhlenbeck-Yau
[152] to be equivalent to the existence of a Hermitian-Einstein metric.

In general, a metric may not be characterized by curvature properties,
since the number of degrees of freedom may not even match. But in Kähler
geometry, there is a natural such question: Given a positive line bundle
L → X over a compact complex manifold X, determine when there exists a
Kähler form ω ∈ c1(L) with constant scalar curvature

(1.1) R = μn.

Here we have denoted the dimension of X by n and μ is a constant. When
L = K−μ

X , it is easy to see that the condition that R = μn is equivalent to
the Kähler-Einstein condition,

(1.2) Rk̄j = μgk̄j

so that the search for metrics of constant scalar curvature also encompasses
the famous problem of finding Kähler-Einstein metrics. This problem was
solved by Yau [157] and Aubin [5] when c1(X) < 0. It was solved by Yau
[157] when c1(X) = 0, as part of his solution of the Calabi conjecture. When
c1(X) > 0, the surface case was treated in [146, 141], but the general case of
higher dimensions is still open. More generally, the main question in the field
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is the conjecture of Yau [159], still open at this time, which says that the
existence of a Kähler form ω ∈ c1(L) with constant scalar curvature should
be equivalent to the stability of c1(L) in the sense of geometric invariant
theory.

The conjecture of Yau can be viewed as a version of the Donaldson-
Uhlenbeck-Yau theorem for manifolds instead of vector bundles. As such,
the corresponding partial differential equations are more non-linear than
the equations for Hermitian-Einstein metrics. But there is a significant
additional difficulty: it is that, unlike the notion of Mumford-Takemoto
stability in the case of vector bundles, it is not yet clear what is the correct
notion of stability, and in fact, finding this correct notion has to be viewed
as a major component of the problem.

The present lecture notes are based on introductory talks on the subject
given at the George Kempf Memorial Lectures at Johns Hopkins University
in October 2007, and at the Current Developments in Mathematics con-
ference at Harvard University in November 2007. An earlier and shorter
version of the lecture notes had been circulated informally at Harvard at
the time of the conference. Their goal is to provide an accessible introduc-
tion to the various notions of stability which have been introduced in the
context of constant scalar curvature metrics, as well as to some correspond-
ing analytic results. Besides the classical notions of Chow-Mumford and
Hilbert-Mumford stability, we discuss the notions of analytic and algebraic
K-stability due respectively to Tian [143] and Donaldson [47], Donaldson’s
infinite-dimensional GIT [44], and stability conditions such as (B) and (S)
which arise naturally in the context of the Kähler-Ricci flow [112, 105].
We also discuss several analytic methods, including inequalities for energy
functionals, Tian-Yau-Zelditch approximations, estimates for moment maps,
degenerate complex Monge-Ampère equations, and the Kähler-Ricci flow.

Certain aspects of our presentation may be worth mentioning:

(a) It is well-known that the Mabuchi K-energy functional plays a cen-
tral role in the theory, first in the variational formulation of the analytic
problem, and second as an important link to the notion of K-stability. It
does not appear to be as widely appreciated that the Aubin-Yau functional
F 0

ω0
functional plays a similar role, partly because the Euler-Lagrange equa-

tion for F 0
ω0

seems unrelated to the constant scalar curvature equation, and
the relevance of F 0

ω0
can only be seen upon restriction to the spaces Kk of

Bergman metrics. We have thus tried to stress these points, by grouping in
a single chapter §5 its key properties: the classic result of Zhang [166] iden-
tifying the critical points of F 0

ω0
on Kk with balanced imbeddings, and thus

establishing a bridge to Chow-Mumford stability; the observation due to
Donaldson [50] that R−μn can indeed be interpreted as the Euler-Lagrange
equation for F 0

ω0
restricted to Kk; and the basic relation between F 0

ω0
and

Monge-Ampère masses for a path in the space K of Kähler potentials [112].
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(b) In §7.2, we have simplified to some extent some technical aspects of
Donaldson’s original proof [45] of the necessity of Chow-Mumford stability.
Of course, the underlying motivation from symplectic geometry remains, in
particular the key insight of Donaldson, based on Lu’s formula [85], that the
constancy of the scalar curvature should be closely related to the constancy
of the density of states. But the simplification of some important estimates
which no longer requires the formalism of infinite-dimensional moment maps
may make the proof more accessible.

(c) In §8.3.1–8.3.3, we have taken the opportunity to discuss certain as-
pects of the Kähler-Ricci flow which seem not to have been covered fully
in the literature. In particular, we describe inequalities between energy
functionals along the Kähler-Ricci flow. Combined with Perelman’s recent
results [101] and subsequent uniform Sobolev estimates [161, 165], they
readily imply a version of Perelman’s unpublished result, namely, that when
Aut0(X) = 0, the existence of a Kähler-Einstein metric implies the conver-
gence in C∞ of the Kähler-Ricci flow.

(d) In §12.3.1, we have extracted from [112, 113] a more general version
of the Ansatz producing generalized solutions of the degenerate complex
Monge-Ampère equation than was originally stated in these papers. We
would like to thank S. Zelditch for stressing to us that such a version may
be of interest.

The field is vast and developing very rapidly, and our list of topics is
necessarily very incomplete. For example, there is a very rich literature on
geometric constructions of metrics of constant scalar curvature, which we
did not discuss, see e.g. [2, 3, 76, 83, 117, 122]. There is also a related
exposition of O. Biquard in the séminaire N. Bourbaki 2004-2005 [13]. Nev-
ertheless, we hope that these notes can be useful to students interested in
getting a quick sense for certain trends in the subject.

2. The conjecture of Yau

We begin with some background and notation. Let X be a compact
complex manifold of dimension n. A Kähler form is a (1, 1) form ω =
i
2gk̄j dzj∧dz̄k on X which is closed and strictly positive. The Ricci curvature
tensor Rk̄j and the scalar curvature R of the corresponding metric gk̄j are
given by

(2.1) Rk̄j = −∂j∂k̄ log ωn, R = gjk̄Rk̄j .

The Ricci curvature form Ric(ω) is the (1, 1) form defined by

(2.2) Ric(ω) =
i

2
Rk̄jdzj ∧ dz̄k.

Since ωn is a metric on the anti-canonical bundle K−1
X , Ric(ω) = − i

2∂∂̄ log ωn

can be viewed as the curvature form of K−1
X with respect to the metric ωn,
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and, as such, must be in the cohomology class1 c1(K−1
X ) ≡ c1(X). Some-

times, we also denote the scalar curvature R by R = R(ω), to emphasize its
dependence on the Kähler form ω.

2.1. Constant scalar curvature metrics in a given Kähler class.
Let now L → X be a positive line bundle, that is, a holomorphic line
bundle admitting a metric h0 whose curvature ω0 ≡ − i

2∂∂̄ log h0 ∈ c1(L)
is a positive (1, 1)-form. Then ω0 equips X with a Kähler structure. The
main question addressed in the present lecture series is whether there exists
a Kähler form ω ∈ c1(L) whose corresponding scalar curvature R(ω) is
constant.

The condition of constant scalar curvature is not particularly rigid for a
general Riemannian metric, since it is a single scalar condition on an object
with a much higher number of degrees of freedom. However, the situation
changes drastically with the above additional constraint that the metric be
a Kähler metric in a given Kähler class. For example, if L = K−1

X , then we
have the equivalence

(2.3) R(ω) = n ⇐⇒ Ric(ω) = ω,

for ω ∈ c1(L). Indeed, as we noted above, for any Kähler form ω, we have
Ric(ω) ∈ c1(K−1

X ). If we require that ω ∈ c1(K−1
X ), then Ric(ω) and ω are

cohomologous, and by the ∂∂̄ lemma, we have

(2.4) Ric(ω) − ω =
i

2
∂∂̄f,

for some f ∈ C∞(X) defined uniquely up to an additive constant. The
function f is called the Ricci potential, and will play an important role in
the sequel. Contracting both sides with gjk̄, we obtain R(ω) − n = Δf . If
R(ω) is constant, the left hand side of this identity is constant. But the
range of Δ is orthogonal to constants, and thus this constant must be 0.
The function f is then constant, and hence Ric(ω)−ω = 0. This establishes
the claim.

2.2. The special case of Kähler-Einstein metrics. The problem
of finding Kähler-Einstein metrics, that is, metrics satisfying

(2.5) Ric(ω) = μ ω,

is one of the most celebrated problems in complex geometry. Here μ is a
constant that can be normalized to be −1, 0, or 1. When μ 	= 0, the Kähler-
Einstein problem is the special case of the constant scalar curvature problem
for metrics in the Kähler class c1(L), with L = K−μ

X . The case μ = 0 is
a special case of the Calabi conjecture, which asserts that for any compact
Kähler manifold (X, ω), and any given (1, 1)-form T ∈ c1(X), there exists
within the Kähler class of ω a metric with Ricci curvature equal to T .

1Strictly speaking, Ric(ω) ∈ π c1(X). We omit such factors of π for notational
simplicity.
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The Kähler-Einstein problem when μ = −1 was solved independently by
Yau [157] and Aubin [5]. The Calabi conjecture was solved by Yau [157].
However, the case μ = 1 is still open, and henceforth we refer only to this
case when we speak of the Kähler-Einstein problem.

In general, there are obstructions to the existence of Kähler-Einstein
metrics of positive scalar curvature. A classic obstruction is the theorem
of Matsushima [94], which says that if there exists a constant scalar curva-
ture metric, then the automorphism group of X would have to be reductive.
Another obstruction, due to Futaki [57] and also related to the automor-
phisms of X, is the vanishing of the Futaki invariant defined as follows.
Given any Kähler metric ω ∈ c1(X), let f be its Ricci potential, as de-
fined earlier by (2.4). Then the Futaki invariant Fut is the character on
H0(X, T 1,0) defined by

(2.6) Fut(V ) =
∫

X
(V f) ωn, V ∈ H0(X, T 1,0).

The key propery of Fut(V ) is that it is actually independent of the choice of
ω within c1(X). Thus, if c1(X) admits a Kähler-Einstein metric, then Fut
must vanish identically.

The vanishing of the Futaki invariant was shown to imply the existence
of a Kähler-Einstein metric when dim X = 2 [141] and when X is a toric
variety [154]. However, a counterexample was provided by Tian in 1997
[143] of a compact complex manifold X with c1(X) > 0, no holomorphic
vector fields, and yet no Kähler-Einstein metrics (see §7.1 for a description
of this and some other results in [143]).

2.3. The conjecture of Yau. The existence of Kähler-Einstein met-
rics, and more generally, of constant scalar curvature metrics in a given
Kähler class c1(L), is expected to be related to deeper properties of the
bundle L → X. In fact, the guiding light of much of the current research in
the area has been the conjecture of Yau [159], which says that the existence
of ω ∈ c1(L) with R(ω) constant should be equivalent to the stability of
L → X in the sense of geometric invariant theory.

This conjecture has clearly a strong analogy with the case of holomor-
phic vector bundles. Let E → X be a holomorphic vector bundle over
a compact Kähler manifold (X, ω). Given a Hermitian metric Hᾱβ on E,
let Fk̄j

α
β = −∂k̄(H

αγ̄∂jHγ̄β) be its curvature. A metric Hᾱβ is said to
be Hermitian-Einstein if gjk̄Fk̄j

α
β = μδα

β for some constant μ. The theo-
rem of Donaldson-Uhlenbeck-Yau [43, 152] asserts that E → X admits a
Hermitian-Einstein metric if and only if E → X is stable in the sense of
Mumford-Takemoto.

As in the case of Hermitian-Einstein metrics and Mumford-Takemoto
stability, a particularly striking aspect of the conjecture of Yau is that it
asserts the equivalence between the existence of a solution to a non-linear
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partial differential equation and a global, algebraic-geometric property of
the underlying space.

3. The analytic problem

In this section, we begin by setting up the problem from the analytic
point of view. Analytically, there are several possible formulations and
approaches.

3.1. Fourth order non-linear PDE and Monge-Ampère equa-
tions. The most direct formulation of the problem is as a non-linear PDE
in the potential φ. More precisely, fixing a metric h0 on L with curvature
ω0 = − i

2∂∂̄ log h0 > 0, we seek another metric h = h0e
−φ with curvature

ω = − i
2∂∂̄ log h > 0 so that R(ω) is constant. This means that φ must

satisfy the “ω0-plurisubharmonicity” constraint

(3.1) ω0 +
i

2
∂∂̄φ > 0

and the partial differential equation

(3.2) −gjk̄∂j∂k̄ log (ω0 +
i

2
∂∂̄φ)n = R̄

where gk̄j is the metric corresponding to the Kähler form ω. The value of
the constant R̄ is cohomological: clearly, R̄ must be given by the average of
the scalar curvature, and thus

(3.3) R̄ =
1
V

∫
X

R ωn =
n

V

∫
X

Ric(ω) ∧ ωn−1 = n
[c1(X)][c1(L)]n−1

[c1(L)]n
≡ n μ.

Here V is the volume of X and μ is the cohomological constant defined by

(3.4) V =
∫

X
ωn = [π c1(L)]n, μ =

[c1(X)][c1(L)]n−1

[c1(L)]n
.

Thus the problem can be viewed as a 4th-order non-linear elliptic PDE in φ.
In the special case L = K−1

X , we have seen that the constant scalar cur-
vature condition is equivalent to the constant Ricci curvature condition.
This last condition is well-known to be equivalent to a complex elliptic
Monge-Ampère equation. Indeed, we always have Ric(ω0) ∈ c1(K−1

X ), and
if ω0 ∈ c1(L) = c1(K−1

X ) also, then we can write Ric(ω0) − ω0 = i
2∂∂̄f0,

where f0 is the Ricci potential of ω0. It is now easily seen, simply by taking
−∂∂̄ log of both sides, that the following complex Monge-Ampère equation

(3.5) (ω0 +
i

2
∂∂̄φ)n = ef0−φωn

0

for φ still satisfying the ω0-plurisubharmonicity constraint ω0 + i
2∂∂̄φ > 0,

is equivalent to the constant Ricci curvature equation. Geometrically, this
means that, when L = K−1

X , the 4th order constant scalar curvature equation
on the potential can been reduced to a 2nd order equation in φ, involving
the volume of the Kähler metric ω = ω0 + i

2∂∂̄φ.



LECTURES ON STABILITY AND CONSTANT SCALAR CURVATURE 109

3.2. Geometric heat flows. One approach to finding a solution to a
given equation is to interpret it as the fixed point of a dynamical system. In
the present case, this amounts to replacing the elliptic non-linear PDE by a
non-linear parabolic flow. The problem becomes then that of the long-time
existence and convergence of the flow.

For general L, a parabolic version of the equation (3.2) is the following
4th order parabolic flow,

(3.6) φ̇ = R − R̄, φ(0) = c0,

for φ satisfying the ω0-plurisubharmonicity constraint (3.1). This is equiva-
lent to the Calabi flow [20], which is the following flow for metrics gk̄j ,

(3.7) ġk̄j = ∂j∂k̄R, gk̄j(0) = g0
k̄j .

Just as in the elliptic case, when L = K−1
X , we need only consider

a second-order parabolic flow, namely the Kähler-Ricci flow. This is the
Kähler version of the Ricci flow introduced by Hamilton [68] (see also
[36, 37] for a detailed treatment, with an extensive list of references). It
can be written either as a flow of metrics,

(3.8) ġk̄j = −(Rk̄j − μgk̄j), gk̄j(0) = g0
k̄j

(with μ the cohomological value defined by (7.36)), or as a parabolic Monge-
Ampère equation for the potential φ,

(3.9) φ̇ = log
(ω0 + i

2∂∂̄φ)n

ωn
0

+ μφ − f0, φ(0) = c0,

with f0 the Ricci potential (c.f. (2.4)) for the original Kähler form ω0.

3.3. Variational formulation and energy functionals. Another
approach which plays an important role in the sequel is the variational
approach. Thus we seek a functional whose Euler-Lagrange equation is
precisely the given equation, so that the problem reduces to determining
whether the functional admits a critical point.

3.3.1. The Mabuchi K-energy Kω0(φ). A first important fact in the the-
ory, established by Mabuchi [90], is that the equation R(ω)− R̄ = 0 for ω in
a given Kähler class c1(L), L → X positive, is indeed realizable as an Euler-
Lagrange equation. More precisely, there is a functional Kω0(φ), now called
the Mabuchi K-energy and defined on the space K of Kähler potentials,

(3.10) K ≡ {φ ∈ C∞(X) ; ωφ ≡ ω0 +
i

2
∂∂̄φ > 0 }

satisfying

(3.11) δKω0(φ) = − 1
V

∫
X

δφ (R − R̄)ωn
φ .

Since the K-energy is characterized by its variation, its exact definition
depends on the choice of a reference metric, which we have taken to be ω0.
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An explicit expression for Kω0(φ) is (see e.g. the derivation in Theorem 5
below)
(3.12)

Kω0(φ) =
1
V

[ ∫
X

( log
ωn

φ

ωn
0
)ωn

φ − φ

n−1∑
j=0

Ric(ω0)ω
j
φωn−1−j

0 + μ

n∑
j=0

φωj
φωn−j

0

]
,

although we shall mostly use only its characterizing variational property
(3.11). We note that Kω0(φ + c) = Kω0(φ) for constant c, so that Kω0(φ)
descends to a functional on the space of Kähler metrics in c1(L). Also,
the variational formula for Kω0(φ) implies the following important cocycle
property for φ, φ + ψ ∈ K,

(3.13) Kω0(φ + ψ) = Kω0(φ) + Kωφ
(ψ).

3.3.2. The Aubin-Yau functional F 0
ω0

(φ). There is another functional in
the theory, the Aubin-Yau functional F 0

ω0
(φ), whose role is as important as

that of the Mabuchi K-energy, but which is more subtle. First, let Jω0(φ)
be the functional on K given by

(3.14) Jω0(φ) =
i

2V

n−1∑
j=0

n − j

n + 1

∫
X

∂φ ∧ ∂̄φ ∧ ωn−1−j
φ ∧ ωj

0.

Then the functional F 0
ω0

(φ) is defined by

(3.15) F 0
ω0

(φ) = Jω0(φ) − 1
V

∫
X

φ ωn
0 .

Its variation can be readily verified to be

(3.16) δF 0
ω0

(φ) = − 1
V

∫
X

δφ ωn
φ ,

and it also satisfies the cocycle condition

(3.17) F 0
ω0

(φ + ψ) = F 0
ω0

(φ) + F 0
ωφ

(ψ), φ, φ + ψ ∈ K.

In the case of L = K−1
X , the Monge-Ampère equation (3.5) for Kähler-

Einstein metrics can be viewed as an Euler-Lagrange equation for F 0
ω0

(φ)
with constraints. More precisely, let

(3.18) Fω0(φ) = F 0
ω0

(φ) − log
(

1
V

∫
X

ef0−φωn
0

)
.

Then we have

(3.19)
δFω0

δφ
= 0 ⇐⇒ (ω0 +

i

2
∂∂̄φ)n = ef0−φωn

0 .

For general L, there does not appear to be any evident relation between
F 0

ω0
(φ) and the constant scalar curvature equation R(ω) − R̄ = 0. It comes

therefore as a surprise that F 0
ω0

(φ) is actually intimately related to this
equation. However, to see this relation, we have to restrict F 0

ω0
(φ) to certain
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finite-dimensional subspaces of K, namely the subspaces Kk of Bergman
metrics. We turn next to a description of these spaces.

4. The spaces Kk of Bergman metrics

The conjecture of Yau links the existence of a transcendental object,
namely a Kähler metric with constant scalar curvature, to an algebraic-
geometric condition, namely stability in GIT. This last concept depends
fundamentally on the realization of X as a projective variety by Kodaira
imbeddings. Associated to each such imbedding is an “algebraic” metric
on L, namely the induced Fubini-Study metric from O(1). The Tian-Yau-
Zelditch theorem (TYZ) asserts that any metric on L with positive curva-
ture can be approximated by such “algebraic” metrics. Thus the induced
Fubini-Study metrics – or “Bergman metrics” – provide a bridge between
the original analytic problem and the underlying algebraic-geometric struc-
ture. The strategy of approximating transcendental objects by algebraic-
geometric ones has been advocated by Yau [159] over the years. It plays an
essential role in many developments described in this paper, in particular
Donaldson’s theorem on the necessity of Chow-Mumford stability in §7.2,
the construction of geodesics in section §12.3, and Donaldson’s lower bound
for the Calabi functional in §7.3. In this section, we describe the spaces of
Bergman metrics and the TYZ theorem. In the next, we return to the func-
tional F 0

ω0
(φ) and show how its significance in connection with the equation

R − R̄ = 0 emerges upon restricting it to the spaces of Bergman metrics.

4.1. Kodaira imbeddings. Let L → X be a positive line bundle over
a compact complex manifold X. Then for each basis s = {sα(z)}Nk

α=0 of
H0(X, Lk), Nk + 1 = dimH0(X, Lk), and k large enough, the Kodaira
imbedding theorem asserts that the map

(4.1) ιs : X ∈ z −→ [s0(z), . . . , sNk
(z)] ∈ CPNk

is an imbedding. Under this imbedding, the bundle O(1) over CPNk pulls-
back to Lk. Let hFS be the Fubini-Study metric on O(1), and ωFS =
− i

2∂∂̄ log hFS the Fubini-Study metric on CPNk . Then ι∗s(hFS)1/k is a
metric of L with positive curvature, and the space Kk of Bergman metrics
is by definition the space of all metrics of the form ι∗s(hFS)1/k as the basis s
varies,

(4.2) Kk = {ι∗s(hFS)1/k ; s basis of H0(X, Lk)}

If we fix a reference basis ŝ, then any other basis can be obtained from ŝ by
an element of GL(Nk + 1), and, since hFS is invariant under SU(Nk + 1),
we obtain

(4.3) Kk = SL(Nk + 1)/SU(Nk + 1).

Thus Kk can be viewed as a symmetric space with negative curvature.
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4.2. The Tian-Yau-Zelditch theorem. Explicitly, we can view CPN

as CPN = {CN+1 \ 0}/ ∼ with x, y ∈ CN+1 \ 0 equivalent if x = λy. As
such, CPN carries a natural line bundle, namely the universal bundle con-
sisting of the line �[y] = {x = λy} over the point [y] ∈ CPN . The O(1)
bundle over CPN is the dual of the universal bundle. Thus its fiber at each
[y] is the space of linear functionals �[y] → C. A basis of H0(CPN , O(1))
is provided by the linear functionals x → xα, for 0 ≤ α ≤ N . We can then
define the Fubini-Study metrics on O(1) by

(4.4) hFS =
1∑N

α=0 |xα|2
≡ 1

|x|2 .

Its curvature ωFS = i
2 ∂∂̄ log |x|2 is then the Fubini-Study metric on CPN .

In the setting L → X positive, imbedded into O(1) → CPNk by a basis
s of H0(X, Lk), it follows that the induced metrics on L and on X are given
explicitly by

(4.5)

ι∗s(hFS)1/k =
1

(
∑Nk

α=0 |sα(z)|2)1/k
,

1
k
ι∗s(ωFS) =

i

2k
∂∂̄ log

Nk∑
α=0

|sα(z)|2.

Fix now a metric h on L with positive curvature ω = − i
2∂∂̄ log h. Let s be

an orthonormal basis for H0(X, Lk), with respect to the L2 metric defined
on the sections of Lk by the metric h and the volume form ω. Define the
density of states ρk(z) by

(4.6) ρk(z) =
Nk∑
α=0

|sα(z)|2hk(z)

Clearly, ρk(z) is independent of the choice of s among the orthonormal bases
of H0(X, Lk). Its integral gives Nk + 1 = dimH0(X, Lk), whence its name.
Introducing ρk(z) converts the expression (4.5) for the induced metrics

(4.7) h(k) ≡ ι∗s(hFS)1/k, ω(k) ≡ 1
k
ι∗s(ωFS)

into the following simple relation with the original metric h and its curva-
ture ω,

log
h(k)
h

= −1
k

log ρk(z), ω − ω(k) = − i

2k
∂∂̄ log ρk(z).(4.8)

The Tian-Yau-Zelditch theorem can be stated as follows:

Theorem 1. [158, 140, 163] The density of states ρk(z) admits an
asymptotic expansion

∑∞
p=0 Ap(z)kn−p with A0(z) = 1, Ap(z) smooth func-

tions, in the sense that

(4.9) ‖ρk(z) −
M∑

p=0

Ap(z)kn−p‖CL ≤ CL,M kn−M−1.
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In particular, we have the following approximations, for any CL norm ‖ · ‖,

(4.10) ‖ log
h(k)
h

+ n
log k

k
‖ = O(

1
k2 ), ‖ω(k) − ω‖ = O(

1
k2 ).

The proof of (4.9) is built on the expansion of Boutet de Monvel-
Sjöstrand [17] for the Szegö kernel on strongly pseudoconvex domains,
extending an earlier expansion along the diagonal due to Fefferman [55].
Another independent proof, also built on the result of Boutet de Monvel-
Sjöstrand, is due to Catlin [25]. The approach in [140] is based on
Hörmander’s L2 estimates, and a generalization to open manifolds with
bounds on the Ricci curvature is also given there. The TYZ theorem
implies that an arbitrary metric h in the space K of Kähler potentials can
be approximated in C∞ by metrics h(k) in Kk. In this sense, we have

(4.11) K = limk→∞Kk.

The second leading coefficient A1(z) plays a key role in subsequent
developments (c.f. §5.2, §7.2 and §7.3) and has been determined by Lu
[86]:

Theorem 2. Let the set up be the same as in the previous theorem.
Then

(4.12) A1(z) =
1
2π

R(z)

where R(z) is the scalar curvature of the Kähler metric ω on X.

5. The functional F 0
ω0

(φ) on Kk

We return now to the discussion of the functional F 0
ω0

(φ). Unlike the
K-energy Kω0(φ), for general positive line bundles L → X, there is no
obvious relation between F 0

ω0
(φ) and the constant scalar curvature equation

R − R̄ = 0. However, remarkably, upon restriction to the spaces Kk of
Bergman metrics, F 0

ω0
(φ) turns out to be closely related both to the constant

scalar curvature equation and to stability conditions. In fact, it is related
to all forms of GIT stability conditions, whether it be Chow-Mumford, K-
stability, or Donaldson’s infinite-dimensional GIT. We explain this now in
some detail.

It is convenient to think of the restriction of F 0
ω0

(φ) to Kk as a functional
on SL(Nk + 1)/U(Nk + 1). To this end, we fix a basis ŝ of H0(X, Lk), and
identify X with the projective variety ιŝ(X),

(5.1) X ←→ X̂ ≡ ιŝ(X) ⊂ CPNk .

Now for any basis s = σ · ŝ of H0(X, Lk) with σ ∈ SL(Nk + 1), we have

(5.2) ισ·ŝ(X) = σ · ιŝ(X)

and the pull-back metrics ι∗σ·ŝ(ωFS) and ι∗ŝ(ωFS) are related by

(5.3) ι∗σ·ŝ(ωFS) =
i

2
∂∂̄ log |σx|2 = ι∗ŝ(ωFS) +

i

2
∂∂̄φσ
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where [x] ∈ X̂, and φσ(x) is the following potential

(5.4) φσ(x) = log
|σx|2
|x|2 , x ∈ CNk+1.

Now ι∗s(ωFS) ∈ k c1(L), and it is natural to introduce the functional F 0
ι∗ŝ(ωFS)

(φ), which is a functional on the space of Kähler potentials in k c1(L) rather
than in c1(L). The use of Fι∗ŝ(ωFS)(φ) is particularly convenient when X is

identified with X̂ and the extrinsic geometry of X̂ as a projective variety
play an important role. Clearly, we have in general

(5.5) F 0
kω0

(kφ) = k F 0
ω0

(φ), φ ∈ K,

so that this scaling from c1(L) to k c1(L) is a question of emphasis rather
than one really of substance. Furthermore, in view of the cocycle property
(3.17), any other choice of reference Kähler form ω0 in Fkω0(kφ) can be
brought back to ι∗ŝ(ωFS) when considering the derivatives of F 0

kω0
(kφ). Thus

we have the following function of σ,

(5.6) SL(Nk + 1) � σ −→ F 0
ι∗ŝ(ωFS)(φσ)

which can be viewed as a rescaling of the functional F 0
ω0

(φ) restricted to Kk.

5.1. F 0
ω0

and balanced imbeddings. A key feature of Kk = SL(Nk+
1)/SU(Nk + 1) is that any two potentials there can be connected by a
one-parameter subgroup σ(t) = e(δσ)t in SL(Nk + 1), δσ ∈ sl(Nk + 1).
The derivatives of F 0

ι∗ŝ(ωFS)(φσ) along such one-parameter subgroups can be

evaluated explicitly:

− d

dt

∣∣∣∣
t=0

F 0
ι∗ŝ(ωFS)(φσ(t)) = Tr((δσ + δσ∗) · M),

− d2

dt2

∣∣∣∣
t=0

F 0
ι∗ŝ(ωFS)(φσ(t)) = ‖πN V ‖2(5.7)

where M = Mᾱβ is the following matrix

(5.8) Mᾱβ =
1

VFS

∫
X̂

x̄αxβ

|x|2 ωn
FS

VFS is the volume of X̂ with respect to the Fubini-Study metric, and πN V is
the projection on the normal bundle to X̂ of the vector field corresponding
to the action of δσ on CPNk . In fact, the variation of φσ with respect to σ
is given by

(5.9) δφσ =
x∗σ∗(δσ + δσ∗)σx

x∗σ∗σx
.
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and thus, in view of the defining equation (3.16) for δF 0
ω(φ), we obtain

d

dt

∣∣∣∣
t=0

F 0
ι∗ŝ(ωFS)(φσ) = − 1

VFS

∫
X

φ̇σ(t)ι
∗
σ(t)·s(ωFS)n

∣∣∣∣
t=0

= − 1
VFS

∫
X̂

x∗(δσ + δσ∗)x
x∗x

ωn
FS(5.10)

and the desired formula. The proof of the formula for the second deriv-
ative is slightly longer, and can be found in [107]. Note that it implies
that F 0

ι∗ŝ(ωFS)(φσ) is convex along one-parameter subgroups of SL(Nk + 1).

Replacing X̂ by σ · X̂, we obtain the following immediate consequence of
the formula for the first derivative:

Theorem 3. A point σ ∈ SL(Nk +1) is a critical point of the functional
F 0

ω0
restricted to Kk if and only if the image σ · X̂ of X by the Kodaira

imbedding defined by the basis σ · ŝ of H0(X, Lk) is a balanced submanifold
of CPNk , in the sense that

(5.11)
1

VFS

∫
σ·X̂

x̄αxβ

|x|2 ωn
FS = λ δᾱβ

for some scalar λ.

The notion of a balanced submanifold was introduced by Bourguignon,
Li, and Yau [16]. As we shall see later, by a theorem of Zhang [166] (see
also Luo [89] and [107]), the existence of a unique balanced imbedding is
equivalent to Chow-Mumford stability, so that the above theorem actually
provides a first link between the functional F 0

ω(φ) and stability in GIT. A
similar version of balanced imbeddings for vector bundles and its equivalence
with Gieseker stability has been proved by X. Wang [153].

The convexity of F 0
ι∗ŝ(ωFS)(φσ) along one-parameter subgroups provides

yet another link to stability, this time to the notion of K-stability to be
described in greater detail in section §6.1. Indeed, it implies that for any
δσk ∈ sl(Nk + 1), the limit

(5.12) μk ≡ −limt→−∞ VFS Ḟ 0
ι∗ŝ(ωFS)(φσk(t))

exists. For the natural family of δσk associated to a test configuration, this
limit is in fact the Mumford numerical invariant, and we shall see subse-
quently that

(5.13) F = limk→∞
μk

kn

is the Donaldson-Futaki invariant, whose sign defines the notion of K-
stability (see Lemma 6 below).
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5.2. F 0
ω0

and the Euler-Lagrange equation R − R̄ = 0. We show
next that the equation R−R̄ = 0 is, in a sense, the Euler-Lagrange equation
for F 0

ω when restricted to Kk. For this, fix a metric h on L with positive
curvature ω, and let ŝ be an orthonormal basis for H0(X, Lk) with respect
to the L2 metric defined by h and the volume form ωn. By definition of the
Kodaira imbedding, xα = sα(z), VFS = knV , and the matrix Mᾱβ of (5.8)
can be expressed as

(5.14)

Mᾱβ =
1

VFS

∫
X

s̄αsβ∑Nk
γ=0 |sγ |2

(ι∗ŝ(ωFS))n =
1
V

∫
X

〈sβ, sα〉
ρk(z)

ωn
( 1

k ι∗ŝ(ωFS))n

ωn

where ρk(z) is the density of states defined in (4.6). In view of the Tian-Yau-
Zelditch theorem and Lu’s formula described in section §4, we can expand
the right hand side in powers of k and obtain

(5.15) Mᾱβ = κ δᾱβ − 1
V kn+1

∫
X

〈sβ, sα〉(R − R̄)ωn + O(
1

kn+2 ).

for some constant κ whose exact value is immaterial. Thus we have, under
a variation δσ ∈ sl(Nk + 1),

δF 0
ι∗ŝ(ωFS)(φσ) =

1
V kn+1

∫
X

δΦ (R − R̄)ωn + O(
1

kn+2 ),

δΦ ≡ Tr((δσ + δσ∗) · 〈sβ, sα〉)(5.16)

This observation is due to Donaldson [50]. It is in this sense that R− R̄ = 0
can also be viewed as the Euler-Lagrange equation for F 0

ω0
.

5.3. F 0
ω0

and Monge-Ampère masses. Another key property of F 0
ω0

is its relation to Monge-Ampère masses, and hence to infinite-dimensional
GIT (see §12 below). Strictly speaking, this is a property of F 0

ω0
itself, not

necessarily restricted to Kk, but we include it in this section, because the
main application of this relation does involve restrictions to Kk, and also
because it fits in the theme of relations to stability which are not apparent
from the initial definition of F 0

ω0
.

Let (−T, 0] � t → φ(z, t) be a smooth path in the space K of Kähler
potentials. To such a path, we associate the following potential Φ(z, w)
defined on X × A, with A = {w ∈ C; e−T < |w| ≤ 1},

(5.17) Φ(z, w) = φ(z, log |w|)

Let Ω0 be the curvature ω0 of h0, viewed as a (1, 1)-form on X × A. Then
we have the following basic identity [113]

(5.18)
1

(n + 1)V

∫ ∫
X×A

(Ω0 +
i

2
∂∂̄Φ)n+1 = −Ḟ 0

ω0
(φ(·, 0)) + Ḟ 0

ω0
(φ(·, T )).
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In particular, for infinitely extended paths, we may take T → ∞ and obtain,
with D× = {w ∈ C; 0 < |w| ≤ 1},

(5.19)
1

(n + 1)V

∫ ∫
X×D×

(Ω0 +
i

2
∂∂̄Φ)n+1 = −Ḟ 0

ω(φ(·, 0)) + limT→∞Ḟ 0
ω(φ(·, T )).

The identity (5.18) can be established as follows. A first important obser-
vation due to Semmes [120] and Donaldson [44] is that

(5.20)
1

n + 1
(Ω0 +

i

2
∂∂̄Φ)n+1 = (φ̈ − gjk̄

φ ∂jφ̇∂k̄φ̇)ωn
φ dt dθ

where (et, θ) are polar coordinates for w. On the other hand,

−∂tF
0
ω(φ(·, t)) = ∂t

(
1
V

∫
X

φ̇ ωn
φ

)

=
1
V

∫
X

(φ̈ + φ̇Δφ̇)ωn
φ

=
1
V

∫
X

(φ̈ − gjk̄
φ ∂jφ̇∂k̄φ̇)ωn

φ .(5.21)

Comparing the two identities and integrating in t gives the desired formula.
The significance of the identity (5.18) is as follows. We shall see later

that the space K of Kähler potentials carries a natural metric, with respect
to which the geodesic equation for paths t → φ(z, t) is precisely the vanishing
of the expression φ̈−gjk̄

φ ∂jφ̇∂k̄φ̇, and hence of (Ω0 + i
2∂∂̄Φ)n+1 in view of the

equation (5.20). Just as K is the limit of the finite-dimensional symmetric
spaces Kk, the geodesic rays in K are the analogues in infinite-dimensional
GIT of the one-parameter subgroups in Kk, and thus the identity (5.18)
links this key concept for stability once again with the F 0

ω0
functional.

6. Notions of Stability

Stability is a condition on a geometric object that should ensure that
the moduli space of stable objects be a well-behaved space, and in particular
Hausdorff. As stressed earlier, it is still unclear what is the correct notion
of stability for a positive line bundle L → X that should apply in Yau’s
conjecture, and be equivalent to the existence of constant scalar curvature
metric in the Kähler class c1(L). A prime candidate is K-stability (or its
variants), but other seemingly natural notions of stability also arise, as sug-
gested by infinite-dimensional GIT and the Kähler-Ricci flow. We present
here a brief overview of all these notions.

6.1. Stability in GIT. In GIT, one typically associates to the geo-
metric object a non-zero “defining vector” V in a vector space H carrying
an action of SL(N + 1,C). The vector V is not intrinsically defined, as
it depends on various choices, but if [V ] ∈ PH denotes the image of V
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in PH = (H\{0})/C×, then the orbit SL(N + 1) · [V ] ⊆ PH is indepen-
dent of all choices and it characterizes the object. We say that the orbit
SL(N + 1) · [V ] ⊆ PH is GIT stable if SL(N + 1) · V ⊆ H is closed and
the stabilizer of V is finite. Thus the orbit of [V ] characterizes the object in
question while the orbit of V is the one which is relevant in the definition
of GIT stability. It follows then that the moduli space of stable orbits is
Hausdorff and, in fact, an algebraic variety [97]. For an extensive discussion,
see [149].

6.1.1. Closedness of orbits. In our specific context, the geometric object
is a positive line bundle L → X over a compact complex manifold. The GIT
procedure outlined above can be implemented as follows:

As before, for k sufficiently large, to each basis s = {sα(z)}Nk
α=0 of

H0(X, Lk) we can associate the image of X by the corresponding Kodaira
imbedding ιs(X), which is a subvariety of CPNk . Clearly, the subvariety
ιs(X) is not intrinsic, since it depends on the choice of the basis s. If s̃ is
another basis, then s̃ = σ ·s and ιs̃(X) = σ · ιs(X) for some σ ∈ GL(Nk +1).
As discussed above, in order to define an intrinsic object in GIT we associate
to X the whole orbit

(6.1) X ←→ {σ · ιs(X) | σ ∈ SL(Nk + 1)}.

As described above, we would like rather an orbit of vectors V rather
than an orbit of projective varieties. In Chow-Mumford stability, this is
achieved by associating a Chow point Chow(X̂) to each n-dimensional sub-
variety X̂ ⊂ CPN of degree d as follows: let the Chow variety Z of X̂ be
the hypersurface in the Grassmannian Gr(N − n − 1,CPN ) defined by

(6.2) Z = {w ∈ Gr(N − n − 1,CPN ); w ∩ X̂ 	= 0}
Let H be the vector space H = H0(Gr(N −n−1), O(d)) and let [VX̂ ] be the
set of elements of H which vanish on Z. Then [VX̂ ] is a line in H (known
as the “Chow line”) that is, [VX̂ ] ∈ PH. We say that X̂ is Chow-Mumford
stable if the orbit SL(N + 1) · [VX̂ ] ⊆ PH is GIT stable. We say that a
polarized variety (X, L) is Chow-Mumford r-stable if Lr is very ample and if,
for some (and hence every) basis s of H0(X, Lr), the subvariety ιs(X) ⊆ PNr

is Chow-Mumford stable in the sense defined above.
To define Hilbert-Mumford stability, one associates a different line to

each subvariety X̂ of CPN as follows. For k >> 0, the inclusion

(6.3) {s ∈ H0(CPN , O(k)) : s
∣∣
X̂

= 0} ⊂ H0(CPN , O(k))

defines an element of the Grassmannian of codimension p(k) planes in
H0(CPN , O(k)), where

(6.4) p(k) ≡ dim H0(X̂, O(k)|X̂)

is the Hilbert polynomial. The maximum wedge product of this subspace
is by definition the Hilbert-Mumford k-line. We say X̂ is Hilbert-Mumford
k-stable if the orbit of this line is GIT stable. We say X̂ is Hilbert-Mumford
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stable if it is k-stable for k sufficiently large. We say that (L, X) is asymp-
totically Hilbert-Mumford stable if for every r >> 0, there is a basis s of
H0(X, Lr) such that ιs(X) ⊆ CPNr is Hilbert-Mumford stable.

More generally, let the Hilbert scheme H = H(N, p) be the parameter
space of subschemes of CPN with the same Hilbert polynomial p(k). The
preceding procedure for associating an orbit of vectors VX̂ corresponds to
a choice of an ample line bundle η → H, carrying a lift of the action of
SL(N + 1). The orbit of vectors is then obtained by selecting a vector VX̂

in the fiber of η over X̂, and applying the SL(N + 1) action.

Definition 1. (a) Let η → H be an ample line bundle over the Hilbert
scheme equipped with a lifting of the SL(N+1) action to η. Then a projective
variety X̂ is said to be η-stable if the orbit {σ·VX̂} is closed, and the stabilizer
of VX̂ is finite.

(b) In the context of positive line bundles: Let L → X be an ample
line bundle with Hilbert polynomial p. For r >> 1, let Hr be the Hilbert
scheme of subchemes of CPNr with Hilbert polynomial pr(k) = p(rk) and
let ηr → Hr be a family of ample line bundles with SL(Nr + 1) action. We
say (X, L) is ηr-stable if the image X̂ = ιŝ(X) ⊂ CPNr of X by the Kodaira
imbedding is ηr stable. We say (X, L) is asymptotically η stable if it is ηr

stable for all sufficiently large r.

In general, the notion of stability in GIT depends on the choice of ample
line bundle η → H. However, for Chow-Mumford and Hilbert-Mumford
stability, we have the following recent theorem due to Mabuchi [93],

Theorem 4. Let L → X be a positive line bundle over a compact com-
plex manifold X. Then L → X is asymptotically Hilbert-Mumford stable if
and only if L → X is asymptotically Chow-Mumford stable.

6.1.2. The Hilbert-Mumford criterion. There is a remarkable condition
which is equivalent to stability in the sense of GIT, but which can be for-
mulated without reference to the closures of orbits of vectors in CM and is
thus susceptible to generalization. This is the Hilbert-Mumford numerical
criterion, which can be stated as follows.

Let X̂ ∈ H, and let λ : C× → SL(N + 1) be a homomorphism. Set

(6.5) X̂0 = limτ→0 λ(τ) · X̂.

Then X̂0 is fixed by λ, and, denoting λ(τ) as the lift of λ to η, we define the
numerical invariant F by

(6.6) λ(τ)ξ = τ−F ξ

where ξ is any non-zero vector in the fiber of η above X̂0 ∈ H. Then the
Hilbert-Mumford numerical criterion says that X̂ is η-stable if and only if
F > 0 for all homomorphisms λ : C× → SL(N + 1).
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6.1.3. Chow-Mumford and K-stability. The Hilbert-Mumford criterion
is a powerful tool, since it reduces matters to one-dimensional complex sub-
groups of SL(N + 1), and to the study of the sign of a single numerical
invariant rather than the property of closure of orbits. Even more impor-
tant for the problem of constant scalar curvature metrics, it can be used to
define a notion of η-stability even when η → H is a line bundle over the
Hilbert scheme which is not necessarily ample.

Thus given a line bundle η → H, not necessarily ample, we define L → X
to be η-stable if the corresponding numerical invariant F defined by (6.6) is
strictly positive for all homomorphisms λ : C× → SL(N + 1).

We can now describe the notions of stability which arise in the context
of metrics of constant scalar curvature. Each corresponds to a choice of
line bundle η → H. They can be defined in several ways, but we shall
give for each a formulation in terms of Deligne intersection pairings (a brief
summary of basic facts about Deligne intersection pairings can be found in
section §6.1.4). The advantage of the Deligne pairing formulation is that it
provides a unified approach, and also ties in naturally with the K-energy
and the functional F 0

ω0
which are central to the analytic formulation of the

problem:

• Chow-Mumford stability: We have given earlier a geometric construc-
tion of the Chow-Mumford bundle. In view of a theorem of S. Zhang [166]
(see also section §9.1), it can also be defined as the following Deligne inter-
section pairing,

(6.7) ηChow = 〈O(1), . . . , O(1)〉

• K-stability: The line bundle ηK defining the notion of K-stability
can be defined in two equivalent ways, either in terms of the line bundles
λj = λj(L, X,H) of the Knudsen-Mumford expansion (see section §6.1.5
below), or in terms of Deligne intersection pairings:

(6.8)

ηK =

⎧⎨
⎩λμ

n+1 ⊗
(

λ2
n+1
λ2

n

)n+1

〈KX , O(1), . . . , O(1)〉n+1〈O(1), . . . , O(1)〉nc1(X)c1(L)n−1/c1(L)n

This algebraic notion of K-stability is due to Donaldson [47], and is very
similar to an earlier analytic notion of K-stability due to Tian [143, 145],
who defined it in terms of a Futaki invariant for special degenerations with
Q-Fano (and in particular, normal) central fibers (see §7.1). Both notions
of K-stability have been conjectured to be equivalent to the existence of
a constant scalar curvature Kähler metric in c1(L), the analytic version in
[143], and the algebraic version in [47].

The equivalence between Donaldson’s original formulation and the for-
mulation in terms of Knudsen-Mumford expansions is in [100]. The equiv-
alence with the above Deligne intersection pairing formulation is in [102].
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A slightly stronger version of K-stability has been proposed by Szeke-
lyhidi [136]. Another version in terms of slopes, and hence more similar
to the notion of Mumford-Takemoto stability for vector bundles, has been
introduced by Ross and Thomas [118].

6.1.4. Deligne pairings and energy functionals. We provide here a sum-
mary of Deligne pairings and explain how they are related to energy func-
tionals [166, 107, 130].

Let L0, . . . , Ln be holomorphic line bundles over a complex manifold X
of dimension dimX = n. Then the Deligne pairing 〈L0, L1, . . . , Ln〉 is a
one-dimensional space, generated by the symbol 〈l0, l1, . . . , ln〉, where li are
generic meromorphic sections of Li in general position, transforming in the
following way under changes of sections li → l′i,

(6.9) 〈l′0, l1, . . . , ln〉 =
( ∏

z∈∩i�=0div li

l′0(z)
l0(z)

)
〈l0, l1, . . . , ln〉.

More generally, if π : X → B is a flat projective morphism of integral
schemes of pure relative dimension n, and L0, L1, . . . , Ln are line bundles
over X, then we can define the Deligne pairing

(6.10) 〈L0, L1, . . . , Ln〉(X/B)

which is a line bundle on B, locally generated by symbols 〈l0, l1, . . . , ln〉 with
lj rational sections of Lj in general position and transforming as above under
changes of sections lj . A useful property is the induction formula

(6.11) 〈L0, . . . , Ln−1, Ln〉(X/B) = 〈L0, . . . , Ln−1〉(div ln/B),

if all components of div ln are flat over B.
A key feature of Deligne pairings is that they are equipped with a natural

metric 〈h0, . . . , hn〉, if each line bundle Lj comes equipped with a metric hj .
This metric satisfies the following property

(6.12) 〈h0e
−φ, h1, . . . , hn〉 = e−ψ 〈h0, h1, . . . , hn〉

where ψ : B → C is the function

(6.13) ψ =
∫

X/B
φ ·

n∏
j=1

ωj(Lj)

and ωj(Lj) ≡ − i
2∂∂̄ log hj is the curvature of hi. Denoting by O(f) the

trivial bundle with metric ‖1‖ = e−f , we obtain the following induction
formula with metrics

〈L0, . . . , Ln−1, Ln〉(X/B)

= 〈L0, . . . , Ln−1〉(div ln/B) ⊗ O

(
−

∫
X/B

log ‖ln‖ ∧n−1
j=0 ωj(Lj)

)
(6.14)

The lines bundles ηChow and ηK defining Chow-Mumford and K-stability
can now be related to the functionals F 0

ω0
and Kω0 by [107, 110].
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Theorem 5. Let L → X be a positive holomorphic line bundle, and let
ηChow and ηK be given by the Deligne pairings (6.7) and (6.8). For each
metric h0 on L, let ω0 = − i

2∂∂̄ log h0 be the corresponding metric on X,
and equip ηChow and ηK with the corresponding metrics as Deligne pairings.
Then under a change of metric h → he−φ, we have

ηChow(h0e
−φ) = ηChow(h0) ⊗ O

(
(n + 1)c1(L)nF 0

ω0
(φ)

)

ηK(h0e
−φ) = ηK(h0) ⊗ O

(
− (n + 1)c1(L)n K0

ω0
(φ)

)
(6.15)

These basic relations provide yet additional evidence that the func-
tionals F 0

ω0
(φ) and Kω0(φ) are closely related to the algebraic-geometric

notion of stability. Similarly, the Futaki functional defined by Futaki in
[58] can also be realized in terms of Deligne pairings, more specifically
〈K−1

X , K−1
X , . . . , K−1

X 〉. For the relation of Deligne pairings to other func-
tionals in Kähler geometry, see [130]. At the 2002 Complex Geometry
conference in Tokyo, Professors T. Mabuchi and L. Weng have informed us
that they have also been aware of potential applications of Deligne pairings
to Kähler geometry for some time.

6.1.5. Deligne pairings and Knudsen-Mumford expansions. We discuss
now the two formulations of ηK given in (6.8) and their equivalence.

Let π : X → B be again a morphism of flat integral schemes with con-
stant relative dimension, and let L → X be a relatively ample line bundle.
The theorem of Knudsen-Mumford [77] says that there exist functorially
defined line bundles λj = λj(X, L, B) → B such that the following isomor-
phism holds for all k >> 1

(6.16) detπ∗(Lk) ∼ λ
( k

n+1)
n+1 ⊗ λ

(k
n)

n ⊗ · · · ⊗ λ0.

Deligne [39] showed that, in dimension n = 1, we have λ2 = 〈L, L〉X/B

and λ2
1 = 〈LK−1

X , L〉X/B. More generally, for general n, Knudsen-Mumford
showed that λn+1 is equal to the Chow bundle. Combined with the theo-
rem of Zhang [166], which says that the Chow bundle is in turn equal to
〈L, . . . , L〉X/B (see Theorem 19 below), we have then

(6.17) λn+1(L, X, B) = 〈L, . . . , L〉X/B.

The bundle ηK in terms of the Knudsen-Mumford line bundles λj in the
first line of the definition (6.8) was given by Paul-Tian [100], who pointed
out that its numerical invariants coincided with the Donaldson-Futaki invari-
ants defined by Donaldson [47] in his definition of K-stability. The bundle
ηK in terms of Deligne pairings in the second line of the definition (6.8) was
first introduced in [107, 110]. The following theorem due to [102] identifies
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the second leading term λn in the Knudsen-Mumford expansion, and shows
that the two bundles in the definition of ηK in (6.8) are equivalent:

Theorem 6. Let π : X → B be a proper flat morphism of integral
schemes of relative dimension n ≥ 0, and let L → X which is very ample on
the fibers. Assume that X and B are smooth. Let K be the relative canonical
line bundle of X → B. Then
(i) There is a canonical functorial isomorphism

(6.18) λ2
n(L, X, B) = 〈LnK−1, . . . , L〉X/B.

(ii) In particular,

(6.19)

λμ
n+1 ⊗ (

λ2
n+1

λ2
n

)n+1 = 〈KX , O(1), . . . , O(1)〉n+1〈O(1), . . . , O(1)〉
n c1(X) c1(L)n−1

c1(L)n

6.1.6. Test configurations and Donaldson-Futaki invariants. As we have
seen in §6.1.3, the definition of η-stability, when η is not ample, consists
solely in the requirement that the corresponding numerical invariant F be
strictly positive. Thus it is useful to exhibit this numerical invariant more
concretely in the case of K-stability. For this as well as for other subsequent
uses, it is preferable to use the formalism of “test configurations” introduced
by Donaldson [47] rather than of one-parameter subgroups. In view of its
importance, we describe this formalism in some detail in this section.

Definition 2. Let L → X be a positive line bundle over a compact
complex manifold X. A test configuration T consists of

(1) a scheme X with a C× action ρ,
(2) an C× equivariant line bundle L → X , ample on all fibers,
(3) and a flat C× equivariant map π : X → C where C× acts on C by

multiplication, with the following properties: the pair (X1, L1) is isomorphic
to (X, Lr) for some r > 0 and Lr is very ample. Here Xw = π−1(w) and
Lw = L|Xw

.

It is convenient to denote the test configuration T by

(6.20) T =
(

ρ : C× → Aut(L → X → C)
)

.

We also say that a test configuration is trivial if L = L × C with the trivial
action ρ(τ)(l, w) = (l, τw), for (l, w) ∈ L × C, τ ∈ C×.

An important property of a test configuration T is that it defines for
each k an (Nk + 1) × (Nk + 1) diagonal matrix Bk and its traceless part
Ak. Indeed, in a test configuration T , the fiber L0 → X0 is fixed by the C×

action ρ. Thus we obtain an induced automorphism ρk(τ) of H0(X0, L
k
0)

(6.21) ρk(τ) : H0(X0, L
k
0) −→ H0(X0, L

k
0)

and hence, if we choose a basis s of H0(X0, L
k
0), we obtain a one-parameter

subgroup ρ : C× → GL(Nk + 1). Since every one-parameter subgroup
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is a direct sum of one dimensional subgroups, there exists a basis s with
the following property. The matrix ρ(τ) is diagonal with entries τλα where
λ

(k)
0 ≤ · · · ≤ λ

(k)
Nk

are integers that are independent of τ . We let Bk be the

diagonal matrix with entries λ
(k)
α and we shall often write

(6.22) ρ(τ) = τBk

The matrix Ak is then defined to be the traceless part of Bk.
We shall see shortly (c.f. Lemma 1 below) that a test configuration can

be imbedded equivariantly into CPNk , with τBk defining a one-parameter
subgroup completed by the central fiber X0 (6.5). Thus, for each choice of
bundle η over the Hilbert scheme, as in the case of one-parameter subgroups
described in section §6.1.2, we can define a numerical invariant. Since we
had not given any detail there of the construction of the numerical invariant,
we do so now, in the equivalent context of test configurations.

Let as before p(k) ≡ dim H0(X, Lk) be the Hilbert polynomial of L → X,
and let H be the Hilbert scheme of all subvarieties of CPp(k)−1 with Hilbert
polynomial p(k). Let η → H be a line bundle on H, not necessarily ample,
which carries a linearization of GL(p(k),C), that is, an action of GL(p(k),C)
which is a lift of the natural action of GL(p(k),C) on H.

Let T = (ρ : C× → Aut(L → X → C)) be a test configuration. Then
we have seen that T induces an endomorphism ρk(τ) on H0(X0, L

k
0) defined

by

(6.23) (ρk(τ)(s))(x) = ρ(τ)−1(s(ρ(τ)x)) for all x ∈ X0

so if we fix a basis s = (s0, . . . , sp(k)−1) then ρ(τ)(sα) =
∑

σ(τ)αβsβ for
some invertible matrix σ(τ) = (σ(τ)αβ) ∈ GL(p(k)). Moreover, σ : C× →
GL(p(k)) is a one parameter subgroup. For k >> 1 we let ιs : X0 ↪→
CPp(k)−1 be the imbedding x �→ [s0(x), . . . , sp(k)−1(x)]. Then one easily
sees that ιs(X0) is invariant under the action of σ(τ). Indeed, if x ∈ X0
then ρ(τ)x ∈ X0 and

(6.24) σ(τ)(ιs(x)) = (ιs(ρ(τ)x))

To see this we observe

σ(τ)(ιs(x)) = (ρk(τ)(sα))(x) = (ρ(τ)−1(sα(ρ(τ)x))

=
sα(ρ(τ)x)
sα0(ρ(τ)x)

ρ(τ)−1(sα0(ρ(τ)x)) = (sα(ρ(τ)x))(6.25)

Now let [ιs] ∈ H be the point in the Hilbert scheme corresponding to
the imbedding ιs : X0 ↪→ CPp(k)−1. The discussion above shows that [ιs]
is a fixed point for the action of σ(τ) ∈ GL(p(k)). Since the GL(p(k),C)
action on the Hilbert scheme H lifts to an action on η, it follows that there
exists F ∈ Z such that

(6.26) σ(τ)ns = τ−F ns

for all ns in the fiber of η above [ιs] ∈ H.
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We claim that F is independent of the basis s. To see this, let s̃ be an-
other basis and γ ∈ GL(p(k)) chosen so that s̃ = γs. Let σ̃(τ) be the matrix
representing ρk(τ) with respect to the basis s̃. Then σ̃(τ) = γσ(τ)γ−1.
Moreover γιs(x) = ιs̃(x) so γ[ιs] = [ιs̃]. Fix ns as above and define ns̃ = γns.
Then

(6.27) σ̃(τ)ns̃ = γσ(τ)γ−1γns = γτ−F ns = τ−F ns̃

establishing the desired invariance.
The bundle L → X is consequently defined to be η-stable if F > 0

for all test configurations. In view of the correspondence between test-
configurations and one-parameter subgroups given below, this definition is
just a rephrasing in terms of test configurations of the earlier definition of η-
stability. However, it allows us to make now contact, in the case of η = ηK ,
with the original definition of K-stability by Donaldson [47]:

Definition 3. Let X0 be a projective scheme and α : C× → Aut (L0 →
X0) an algebraic homomorphism. Then F (α) is defined by the asymptotic
expansion2

(6.28)
Trace Bk

k (Nk + 1)
= F0 − F (α)k−1 + O(k−2)

where Bk : H0(X0, L
k
0) → H0(X0, L

k
0) is the infinitesimal generator of the

one-parameter group of endomorphisms induced by the action of α.
Now let L → X be an ample line bundle. Let T be a test configuration for

L → X. Then the Donaldson-Futaki invariant F (T ) is defined by F (T ) =
F (ρ̃) where ρ̃ is the restriction of ρ to the central fiber.

In [47], Donaldson defined L → X to be K-stable if F (T ) > 0 for any
non-trivial test configuration T . As we had mentioned earlier, it was noted
by Paul-Tian [100] that F (T ) coincided with the numerical invariant F of
the bundle ηK . Thus the definition of K-stability of [47] coincides with
ηK-stability as defined in section §6.1.3.

6.1.7. Equivariant imbeddings of test configurations. The correspondence
between one-parameter subgroups and test configurations is described by the
following lemma, which provides an equivariant imbedding of test configu-
rations into projective space (see the original statement in [50], and [114]
for the version presented here):

Lemma 1. (i) Let X be a subvariety of CPNk and let λ : C× → GL
(Nk + 1) be a one-parameter subgroup of GL(Nk + 1). Let

(6.29) X × = { (λ(τ)x, τ) : τ ∈ C×, x ∈ X } ⊆ CPNk × C×.

Then the closure (or, more precisely, the flat limit) of O(1) × C× → X × →
C× inside O(1) × C → PNk × C → C, is a test configuration.

2Our conventions for F (α) differ from those of [47] by a minus sign.
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(ii) Conversely, let L → X be a positive line bundle, and ρ : C× →
Aut(L → X → C) be a test configuration. Let k be an integer such that Lk

is very ample. Let Bk be the matrix defined in (6.22). Then there exists a
basis s of H0(X, Lk), and an imbedding

(6.30) Is : (Lk → X → C) → (O(1) × C → CPNk × C → C)

which restricts to ιs on the fiber X1 and intertwines ρ(τ) and Bk, i.e.,

(6.31) Is(ρ(τ)lw) = (τBk · Is(lw), τw) for each lw ∈ Lk

(iii) If h is a metric on L with positive curvature ω = − i
2∂∂̄ log h, then

we may choose s to be an orthonormal basis of H0(X, Lk) with respect to
the L2 metric on H0(X, Lk) induced by h and ω. Moreover, the basis s is
unique up to U(Nk + 1) elements commuting with Bk.

6.1.8. Bott-Chern secondary characteristic classes. We have seen how
the energy functionals F 0

ω(φ) and Kω(φ) are readily related to Deligne
intersection pairings, and whence to Chow-Mumford and K-stability. There
is an alternative construction of energy functionals, based on Bott-Chern
secondary characteristic classes, which is also of interest. It began with
Donaldson’s [43] construction of the functional for Hermitian-Einstein met-
rics, and has been developed further by Tian [144] in a more general context.
We give a brief exposition following [144].

Let E → X be a holomorphic vector bundle of rank r over a compact
Kähler manifold X. For each function Φ(A) on gl(r,C) which is a symmet-
ric polynomial of degree k in the eigenvalues of A, we have a Chern-Weil
(k, k)-form Φ( i

2πF (H)), defined for each Hermitian metric Hᾱβ on E, where
F = −∂̄(H−1∂H) is the curvature of H. These forms are cohomologically
equivalent for different metrics Hᾱβ . In fact, we can write explicitly

(6.32) Φ(
i

2π
F (H)) − Φ(

i

2π
F (H ′)) = −∂∂̄BC(Φ; H, H ′),

where BC is a form given explicitly modulo Im ∂ + Im ∂̄ by

(6.33) BC(Φ; H, H ′) =
∫ 1

0
Φ′(

i

2π
F (Ht), H−1

t Ḣt)dt.

Here Ht is a smooth one-parameter family of metrics joining H = H0 to H ′ =
H1, and the derivative Φ′ of Φ is defined by Φ′(A; B) = d

dt |t=0(AetB). The
form BC is called the Bott-Chern secondary characteristic class associated
to Φ. The corresponding Donaldson functional is then defined by

(6.34) D(Φ; H, H ′) =
∫

X
BC(Φ; H, H ′).

To make connection with the functionals F 0
ω0

(φ) and Kω0(φ) introduced in
the previous sections, let L be now a positive line bundle over X with metric
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h0 and positive curvature ω0. If we choose Φ(A) = Trace(An+1), then for
any other metric e−φh0 with positive curvature ωφ = ω0 + i

2∂∂̄φ, we have

(6.35) F 0
ω0

(φ) = D(Φ; h0, e
−φh0).

Similarly, Kω0(φ) coincides with D(Φ; H, H ′), when E is the virtual bundle
defined by

(6.36) E = (n + 1)(K−1
X − KX) ⊗ (L − L−1)n − μ(L − L−1)n+1.

6.2. Donaldson’s infinite-dimensional GIT. Beginning in the late
1990’s, Donaldson [44] developed an approach to the problem of constant
scalar curvature Kähler metrics, motivated partly by the interpretation of
the scalar curvature as the moment map of an infinite-dimensional group of
symplectic automorphisms. Central to this approach is a natural interpre-
tation of the space K of Kähler potentials3 in c1(L),

(6.37) K = {φ ∈ C∞(X); ω0 +
i

2
∂∂̄φ > 0}

as an infinite-dimensional symmetric space, whose geodesics would play a
similar role to one-parameter subgroups in the usual finite-dimensional GIT.

The starting point is that K admits a natural Riemannian metric, given
at φ by

(6.38) ‖δφ‖2
φ =

∫
X

|δφ|2ωn
φ

where we have identified the tangent space to K at φ with C∞(X). The
following theorem is then due to Donaldson [44], Semmes [120], and
Mabuchi [91]:

Theorem 7. The Riemannian manifold K is an infinite-dimensional
symmetric space of non-positive curvature, in the sense that its curvature is
covariant constant and non-positive. In fact, the Riemann curvature tensor
Rφ and the sectional curvature Kφ at the point φ ∈ K are given by the
following expression

Rφ(δ1φ, δ2φ)δ3φ = −1
4
{{δ1φ, δ2φ}φ, δ3φ}φ,

Kφ(δ1φ, δ2φ) = −1
4
‖{δ1φ, δ2φ}φ‖2

φ,(6.39)

where { , }φ is the Poisson bracket on C∞(X) defined by the symplectic
form ωφ.

It is also shown in [21] that the space K is non-positive in the sense
of Alexandrov, and essentially that the Calabi flow (see §10.1) is distance
decreasing in this space.

3We denote the space of Kähler potentials and the space of corresponding Kähler
metrics by the same letter K, although strictly speaking, the latter is equal to the former
modulo constants.
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6.2.1. Geodesic segments and geodesic rays. The geodesics (−T, 0] � t →
φ(t) in K are by definition the solutions of the Euler-Lagrange equation of
the length functional. They are readily seen to be given by

(6.40) φ̈ − gjk̄
φ ∂jφ̇∂k̄φ̇ = 0,

where we have denoted by (gφ)k̄j = g0
k̄j

+ ∂j∂k̄φ the metric corresponding
to the Kähler form ωφ. The geodesic equation admits an interpretation
as a completely degenerate complex Monge-Ampère equation which will be
crucial in subsequent developments: let A = {w ∈ C; e−T ≤ |w| ≤ 1} and
define the S1 invariant function Φ(z, w) on X × A as in (5.17) by Φ(z, w) =
φ(z, log |w|). Let Ω0 be again the Kähler form ω0 viewed as a form on
X × A. Then in view of the equation (5.20), we see that the above geodesic
equation is equivalent to the following completely degenerate Monge-Ampère
equation [120, 44]

(6.41) (Ω0 +
i

2
∂∂̄Φ)n+1 = 0 on X × A.

Geodesic segments with given end points correspond to S1 invariant solu-
tions of the degenerate complex Monge-Ampère equation with given Dirich-
let boundary conditions on X ×∂A. We shall also be particularly interested
in geodesic rays, which would be defined for t ∈ (−∞, 0], and which cor-
respond to the same set-up with A replaced by the punctured disk D× =
{w ∈ C; 0 < |w| ≤ 1}. In the case of a given starting point for the geodesic
ray, the Dirichlet boundary condition would be specified at X × {|w| = 1}.
The formulation in terms of the complex degenerate Monge-Ampère equa-
tion also provides us with a natural notion of generalized geodesics: these
will be by definition S1 invariant, locally bounded, generalized solutions of
the Monge-Ampère equation (6.41) in the sense of pluripotential theory (see
§12.3.1).

6.2.2. Stability conditions in terms of geodesic rays. We have seen that,
by the Tian-Yau-Zelditch theorem, the space K of Kähler potentials can be
viewed as the limit of the spaces Kk as k → ∞. Now stability conditions
are conditions on the numerical invariants of one-parameter orbits of Kk.
Since Kk is a symmetric space, these are the same as geodesics, and it is
then natural to construct a GIT theory based directly on geodesic rays in
the infinite-dimensional symmetric space K.

The cost of working in an infinite-dimensional setting is partly offset
by the intuition we gain from the theory of symmetric spaces and moment
maps [44]. There is also a very powerful incentive for the use of geodesic
rays in K: it is the fact that the K-energy is convex along these rays. In
fact, if φ(t) is any smooth path in K, then we have

(6.42) K̈ω(φ(t)) =
1
V

∫
X

|∇̄∇̄φ̇|2ωn
φ − 1

V

∫
(φ̈ − gjk̄

φ ∂jφ̇∂k̄φ̇)(R − μn)ωn
φ .
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This implies that Kω(φ(t)) is convex when φ(t) is a geodesic, and in fact,
strictly convex if Aut0(X) = 0. This strict convexity has some immediate
consequences: if geodesics always exist, the critical points, and thus the
metrics of constant scalar curvature, would be unique.

The analogy with stability in GIT leads to the following early conjec-
ture/question of Donaldson [44]: the non-existence of constant scalar cur-
vature Kähler metrics in c1(L) should be equivalent to the existence of an
infinite geodesic ray φt, t ∈ (−∞, 0] such that

(6.43)
1
V

∫
X

φ̇ (R − μn) ωn
φ < 0

for all t ∈ (−∞, 0]. Since the left-hand side is just −K̇ω(φ) at φt, this condi-
tion is very close to the formulation of stability in terms of the asymptotic
behavior of energy functionals, and can be viewed as an infinite-dimensional
version of K-stability.

6.3. Stability conditions on Diff(X) orbits. There is another con-
cept of stability which arises naturally if we try to construct the moduli space
of complex structures on a smooth manifold X as the space of equivalence
classes of integrable almost-complex structures J on X, modulo diffeomor-
phisms

(6.44) {J integrable almost − complex structure }/Diff(X).

A point in this moduli space would then be an orbit Diff(X) · J for some
J , and the orbit would have to be closed in order for the point to be a Haus-
dorff point. From this point of view, the closedness of orbits is a condition
similar to the ones in stability in GIT, except that the orbits are now that of
the infinite-dimensional group Diff(X) rather than the finite-dimensional
groups SL(N + 1). We describe now some specific versions of such stability
conditions, motivated as we shall see by the convergence of the Kähler-Ricci
flow ([112, 105], and section §8.2).

6.3.1. Condition (B). Let X be a compact Kähler manifold and let J
be the almost-complex structure of X, viewed as a tensor. Condition (B) is
the following condition [112]:

(B): There exists no almost-complex structure J̃ in the C∞ closure of
the orbit Diff(X) · J with

(6.45) dimH0(X, T 1,0
J̃

) > dim H0(X, T 1,0
J )

Here H0(X, T 1,0
J̃

) denotes the space of holomorphic (1, 0) vector fields with
respect to the integrable almost-complex structure J̃ .

Clearly, if Condition (B) is violated, the orbit Diff(X) · J cannot be
closed, and thus does not define a Hausdorff point.

For our purposes (see section §8.2.4), we actually do not need the full
strength of condition (B), but actually only the following weaker version
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which may be closer in spirit to the other stability conditions formulated in
this chapter:

(B∗): Let gm be any sequence of metrics in c1(X) with K-energy bounded
from above, and which converges in C∞ in the sense of Cheeger-Gromov,
i.e., there is a family of diffeomorphisms Fm : X → X so that F ∗

m(gm) con-
verges in C∞. Then the sequence of almost-complex structures F ∗

m(J) does
not admit any C∞ limit point J∞ satisfying (6.45).

6.3.2. Condition (S). A second type of stability condition that arises in
the study of the Kähler-Ricci flow is a condition called there Condition (S).
Let X be a compact Fano manifold and let J be again the almost-complex
structure of X, viewed as a tensor. Condition (S) is the following condition
[105, 106]:

(S): There exists some solution ω(t) to the Kähler-Ricci flow ġk̄j(t) =
−(Rk̄j − gk̄j) so that

(6.46) λ ≡ inft≥0 λω(t) > 0,

where λω is the lowest strictly positive eigenvalue of the Laplacian ∂̄†∂̄ =
−gjk̄∇j∇k̄ acting on smooth T 1,0(X) vector fields,

(6.47) λω = infV ⊥H0(X,T 1,0)
‖∂̄V ‖2

‖V ‖2

Condition (S) can be interpreted as a stability condition in the following
sense: Assume that there exist diffeomorphisms Ft : X → X so that
(Ft)∗(g(t)) converges in C∞ to a metric g̃(∞). Then if J is the complex
structure of X, the pull-backs (Ft)∗(J) converge also to a complex structure
J(∞) (see [112], §4). Clearly, the eigenvalues λω(t) are unchanged under Ft.
If they do not remain bounded away from 0 as t → ∞, then the complex
structure J(∞) would have a strictly higher number of independent vector
fields than J . Thus the C∞ closure of the orbit of J under the diffeomor-
phism group contains a complex structure different from J , and J cannot
be included in a Hausdorff moduli space of complex structures.

Just as the condition (B) can be weakened to condition (B∗), we can
strengthen condition (S) to a condition (S∗) which requires more than we
need, but which has now the advantage of not referring specifically to the
Kähler-Ricci flow:

(S∗) Let gm be any sequence of metrics in c1(X) with K-energy bounded
from above. Then the corresponding eigenvalues λgm are bounded uniformly
from below by a strictly positive constant.

7. The Necessity of Stability

After describing at one end the analytic problem and at the other end
the expected algebraic-geometric answer, we turn now to describing some
of the partial results linking the two which have been obtained so far. The
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more complete results go in the direction of necessity, that is, the existence
of constant scalar curvature metrics implies various forms of stability or
semi-stability. We describe some of these results in this section.

7.1. The Moser-Trudinger inequality and analytic K -stability.
Consider first the case of L = K−1

X and thus Kähler-Einstein metrics. In this
case, we have the following theorem of Tian [143], which shows the equiv-
alence between the existence of a Kähler-Einstein metric and a properness
property of the Fω0 functional, and which led to the notion of K-stability
(see Theorem 10 below):

Theorem 8. Let (X, ω0) be a compact manifold with [ω0] = c1(X) > 0.
If Aut0(X) = 0, then X admits a Kähler-Einstein metric if and only if there
exists γ > 0 and constants Aγ > 0, Bγ so that

(7.1) Fω0(φ) ≥ Aγ Jω0(φ)γ − Bγ

for all φ which are ω0-plurisubharmonic.

It was conjectured in [143] that the exponent γ in the inequality (7.1)
can be taken to be γ = 1. This conjecture, as well as the following extension
to the case Aut0(X) 	= 0, was established in [104]:

Theorem 9. Let (X, ω0) be a compact manifold with [ω0] = c1(X) > 0.
Let G ⊂ Aut0(X) be any closed subgroup whose centralizer in the stabilizer
Stab(ωKE) is finite. Then X admits a G-invariant Kähler-Einstein metric
if and only if there exists constants A > 0, B, so that the following inequality
holds for G-invariant ω0-plurisubharmonic potentials φ,

(7.2) Fω0(φ) ≥ A Jω0(φ) − B

As a consequence of Theorem 8, Tian [143] deduced the following the-
orem, which implies in particular that the Iskovskih manifolds are smooth
manifolds with c1(X) > 0, Aut0(X) = 0 (and hence automatically vanish-
ing Futaki invariant), and yet no Kähler-Einstein metrics. Define a special
degeneration to be a one-parameter test configuration where the central fiber
X0 is a Q-Fano variety. This means that X0 is a normal variety, and if K−1

is the anti-canonical line bundle on Xreg
0 ⊆ X0 (the smooth points of X0)

then there exists L, an ample line bundle on X0 whose restriction to Xreg
0

is K−1. In this set-up, by using a resolution of singularities, Ding and Tian
[41] showed that one can define a generalized Futaki invariant fX0 . This
invariant can also be constructed explicitly as follows.

Let φLk : X0 → PN be a Kodaira imbedding corresponding to some
basis sj of H0(X0, L

k), let h = φ∗
Lkh

1/k
FS , which is a metric on the line bundle

K−1, and let ω = 1
kφ∗

LkωFS , which is a Kähler metric on Xreg
0 . Then ωn

defines a second metric on K−1. Two metrics on the same holomorphic line
bundle differ by a positive function: ωn = he−f/k. Thus Ric(ω)−ω = i

2∂∂̄f .
In fact, we have an explicit formula for f :

(7.3) f = − log
∑

|sj |2ω



132 D.H. PHONG AND J. STURM

Let V be the holomorphic vector field induced by the C× action on Xreg
0 .

Then fX0 =
∫
Mreg

V (f)ωn is the generalized Futaki invariant defined previ-
ously by [41].

Theorem 10. [143] Let X be a compact Kähler manifold with c1(X) > 0
and no holomorphic vector field. If X admits a Kähler-Einstein metric,
then X is analytically K-stable in the sense that, for any non-trivial special
degeneration, fX0 > 0.

A very rough sketch of the arguments in [143] is as follows. Let Xt ⊂
CPN be a special degeneration of a smooth projective variety X, and let φt

be the Kähler potential of the Fubini-Study metric on Xt, pulled-back to X.

– If the degeneration is non-trivial, then supt‖φt‖C0 = ∞.
– There exists constants C1, C2 so that ‖φt‖C0 ≤ C1 Jω0(φt) + C2.

This is a Harnack-type inequality, and follows from the uniformity
of Sobolev constants for the family Xt of subvarieties of CPN .

Assume next that X has a Kähler-Einstein metric ωKE and that Aut0

(X) = 0. By Theorem 8, it follows that Kω0(φt) → +∞ as t → 0. On the
other hand, we always have an expansion of the form

(7.4) Kω0(φt) = fX0 log
1
|t| + O(1)

as t → 0 for a degeneration. It follows that fX0 > 0, as claimed. In the
Iskovskih examples, fX0 = 0 always, and thus Theorem 10 implies that they
do not admit Kähler-Einstein metrics.

7.2. Necessity of Chow-Mumford stability. Donaldson [45] has
proved that the existence of a constant scalar curvature metric implies Chow-
Mumford stability. More precisely, we have:

Theorem 11. Let X be a compact complex manifold and L → X a pos-
itive holomorphic line bundle. Assume that X admits a metric ω ∈ c1(L) of
constant scalar curvature, and that Aut (X, L)/C× is discrete. Then (X, Lk)
is Hilbert-Mumford stable for k sufficiently large.

The discreteness assumption was later weakened by Mabuchi [92].
The key intermediate notion for the proof of Theorem 11 is the notion

of balanced imbedding. By the result of Zhang [166] (see also §9.1 below),
the bundle L → X is k Chow-Mumford stable if and only if Lk → X admits
a balanced imbedding into O(1) → CPNk . Both notions of constant scalar
curvature and of balanced imbedding are related to properties of the density
of states ρk(z). On one hand, by the Tian-Yau-Zelditch theorem and Lu’s
formula, we have the following expansion for the density of states ρk(z),

(7.5) ρk(z) = kn +
1
2
R(ω)kn−1 + O(kn−2),

and thus, the condition that R(ω) is constant means that ρk(z) is constant
up to errors of order O(kn−2). On the other hand, if h is a metric on
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L, with respect to which the density of states ρk(z) is constant, then the
orthonormal bases s = {sα(z)}Nk

α=0 of H0(X, Lk) with respect to h provide
a balanced imbedding. Indeed, in view of the formula (4.8), we have then

(7.6) ω − 1
k
ι∗s(ωFS) = − i

2k
∂∂̄ log ρk(z) = 0,

and hence

1
VFS

∫
X

sα(z)sβ(z)∑Nk
γ=0 |sγ(z)|2

ι∗s(ωFS)n =
1
V

∫
X

〈sβ, sα〉
ρk

ωn

=
1

ρk V

∫
X

〈sβ, sα〉ωn = λ δβα(7.7)

showing that the imbedding is balanced. Thus, heuristically, one would like
to construct a metric h with ρk(z) constant. In practice, one proceeds in
two steps. The first step uses the Tian-Yau-Zelditch theorem to produce
metrics where ρk(z) is constant to arbitrarily high order in k−1, and whence
a basis of H0(X, Lk) which is “approximately balanced”. The second step
shows how to construct a balanced metric from one which is approximately
balanced.

In this section we give an outline of the two steps in the proof. The first
is based directly on [45]. The second step is based on [45] together with the
estimates proved in [108]. This step is motivated by the methods of [45]
concerning moment maps and infinite dimesnsional symplectic geometry, but
it does not make explicit use of these notions. Moreover, Deligne’s formula
for the curvature of the Deligne pairing, which plays a key role in the second
step below, has an elementary proof (which is given in [107]) and one does
not need to invoke Deligne’s theory [39] to implement the method (thus
simplifying the presentation in [108]).

7.2.1. Approximately balanced imbeddings. Donaldson [45] uses the Tian-
Yau-Zelditch theorem together with the formula of Lu [85] to prove the
following two lemmas:

Lemma 2. Assume that ω∞ ∈ c1(L) has constant scalar curvature and
fix q > 0. Then for k >> 0 there exists a basis s = s(k) of H0(X, Lk) with
the following properties.

(7.8) Mᾱβ =
1
V

∫
ιs(k)(X)

x̄αxβ

|x|2 ωn
FS =

kn

N + 1
δαβ + (Ek)ᾱβ

where ιs : X → PNk is the imbedding of X via the basis s and, for k
sufficiently large,

(7.9) ‖Ek‖op ≤ k−q−1

where ‖ · ‖op denotes the operator norm.

Remark: The matrix Ek vanishes precisely when the basis s(k) is bal-
anced. Thus we may think of s(k) as “approximately balanced”.
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Lemma 3. There exists C > 0 with the following properties. Let ξ ∈
su(Nk + 1)), with ‖ξ‖op = 1 and, for t ∈ (− 1

10 , 1
10) and x ∈ PNk with

k >> 0, let σt(x) = exp (itξx). Let ω̃∞ = kω∞. Then

(7.10) ‖ι∗s(k)σ
∗
t ωFS − ω̃∞‖C4(ω̃0) ≤ Ct + O(

1
k
)

Remark: Lemma 3 is a rewording of Proposition 27 in [45].
The idea of the proof of Lemma 2 goes as follows: Theorem 1 says that

the density of states functions has an asymptotic expansion

(7.11) ρk(ω) = kn + A1(ω)kn−1 + A2(ω)kn−2 + · · ·
where the Ap are polynomials in the curvature tensor of ω and its covariant
derivatives. If ω = ω∞ has constant scalar curvature, then Lu’s theorem
implies that A1(ω∞) is constant. The key step in proving Lemma 2 is to
construct a metric ω̃ with the property

(7.12) ρk(ω̃) = kn + Ã1k
n−1 + Ã2k

n−2 + · · ·
where the Ãj are constant for 1 ≤ j ≤ q. To do this, we let ω̃ = ω∞ + i

2k∂∂̄η
where η is an unknown smooth function. Now the variation δR of the scalar
curvature under a variation δφ of the potential is given by

(7.13) δR = −D∗Dδφ + gjk̄∂jR ∂k̄δφ,

where D is the Lichnerowicz operator, mapping scalar functions to symmet-
ric two-tensors

(7.14) Dδφ = ∇k̄∇j̄δφ.

Since ω has constant scalar curvature, we have then A1(ω̃) = A1(ω)+ 1
kL(η)+

O( 1
k2 ) and A2(ω̃) = A2(ω) + O( 1

k ), where L(η) ≡ D∗D. Under the assump-
tion that Aut (L → X) is discrete, L is a self-adjoint elliptic operator whose
kernel consists only of the constants. Thus

(7.15) ρk(ω̃) = kn + A1(ω∞)kn−1 + (A2(ω∞) + L(η))kn−2 + · · ·
Now we choose Ã2 to be the average of A2(ω∞) and we choose η, the unique
smooth function (up to additions of scalars) satisfying L(η) = Ã2 −A2(ω∞).
This proves the result for q = 2, and the statement for arbitrary q is proved
in a similar manner.

7.2.2. Estimates for the normal projection. This step consists of two
lemmas which concern estimates for the normal projection operator πN

under the assumption of R−bounded geometry. We first recall the defi-
nitions of “R-bounded geometry” (introduced in [45]) and of πN and then
we state the results.

Definition of R-bounded geometry. Let k be a positive integer, R a positive
real number and let ω̃0 = kω0. We say that a Kähler metric ω̃ ∈ kc1(L) is
R-bounded if

(7.16) ω̃ > R−1ω̃0 and ‖ω̃ − ω̃0‖C4(ω̃0) < R
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We say that a basis s of H0(X, Lk) is R-bounded if the corrseponding
Bergman metric ω̃ = ι∗sωFS is R-bounded. Note that (7.10) implies that
for |t| ≤ ρ and k sufficiently large, the metric ι∗sσ

∗
t ωFS is R bounded with

R = 1
2 . In other words, the basis σt(s) is 1

2 -bounded.

Definition of the operator πN . Let s be a basis of H0(X, Lk) and consider
the exact sequence of holomorphic vector bundles

(7.17) 0 → TX → ι∗sTPNk → Q → 0

where Q → X is, by defintion, the quotient bundle ι∗sTPNk/TX. Let N ⊆
ι∗sTPNk be the orthogonal complement of TX with respect to the Fubini-
Study metric. Then we define πT : ι∗sTPNk → TX and πN : ι∗sTPNk → N
to be the corresponding projections. If V ∈ ι∗sTPNk then we shall write
|V |FS to be its norm with respect to the Fubini-Study metric on TPNk and
we define

(7.18) ‖V ‖2
L2(ι∗sωFS) =

∫
X

|V |2FS (ι∗sωFS)n

With these notions in place, we can state the two lemmas. Fix ξ ∈
su(Nk + 1), with ‖ξ‖ = 1. Let Xξ be the holomorphic vector field on PNk

generated by ξ. More explicitly, let us recall that the holomorphic tangent
bundle T 1,0(PNk) can be describe as follows.

T 1,0(PNk) = {(z, v) : z, v ∈ CNk+1, z 	= 0}/ ∼
where (z, v) ∼ (z′, v′) if and only if z′ = λv and v′ = λv + μz for some
λ, μ ∈ C. Then Xξ : PNk → T 1,0(PNk) is the map Xξ(z) = (z, ξz).

To simplify the exposition, we assume throughout that Aut (X) is dis-
crete (this assumption can be removed – see [108] for details).

Lemma 4. Let s be a basis of H0(X, Lk) with 1
2 -bounded geometry. Then

there exists C1 > 1 such that

(7.19) 1 ≤ C1k‖Xξ‖2
L2(ι∗sωFS)

Lemma 5. Let s be a basis of H0(X, Lk) with 1
2 -bounded geometry. Then

there exists C2 > 1 such that

(7.20) ‖πT Xξ‖2
L2(ι∗sωFS) ≤ C2k‖πNXξ‖2

L2(ι∗sωFS)

Remark: The assumption that Aut (X) is discrete implies that Xξ is
not tangent to ιs(X) and thus, ‖πNXξ‖2

L2(ι∗sωFS) > 0. Lemma 5 shows that

‖πNXξ‖2
L2(ι∗sωFS) cannot be too close to zero.

7.2.3. Synthesis. We show how steps one and two can be combined to
prove Theorem 11. We must show that the existence of the almost balanced
basis s(k) implies the existence of a balanced basis. For this, it is simplest
to reformulate the problem in terms of the functional −F 0

ι∗s(ωFS): our task is
to find a critical point (in fact, a minimum) for this functional. This is now
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easy, since section §7.2.1 provides upper bounds for the absolute value of its
first derivatives, while section §7.2.2 provides a positive lower bound for its
second derivative.

We first introduce some necessary notation: Let ω̃(k) = ι∗s(k)ωFS . If

σ ∈ SL(Nk + 1,C) we let φσ(x) = log |σ(x)|2
|x|2 . Then to prove existence of a

balanced metric, in view of Theorem 3, it suffices to show that −F 0
ω̃(k)(φσ)

achieves its minimum at some point σ ∈ SL(Nk + 1). Fix ξ ∈ su(Nk + 1)
and let σt(x) = exp (itξx) and φt(x) = φσ(t) . Consider
(7.21)

−(n + 1)VFSF 0(t) = −(n + 1)VFSF 0
ω̃(k)(φt) =

∫
ιs(X)

φt ·
n∑

j=0

(σ∗
t ω

j
FS ∧ ωn−j

FS )

Then (5.7) combined with Lemma 2 yields

|(n + 1)Ḟ 0(0)| =

∣∣∣∣∣ 1
V

∫
ιs(X)

x∗ξx

x∗x
· ωn

FS

∣∣∣∣∣ = |Tr(ξEk)|

≤ (Nk + 1)
1
2 ‖ξ‖ · ‖Ek‖op ≤ kn/2−q−1(7.22)

On the other hand we have the following formula of Deligne [39] for F̈ 0 (see
(5.7) and [107] for an elementary proof):

(7.23) −F̈ 0(t) = ‖πNXξ‖2
L2(ι∗sσ∗

t ωFS) =
∫

X
|πNXξ|2FS · (ι∗sσ

∗
t ωFS)n

To estimate ‖πNXξ‖2 we wish to use Lemma 4 and Lemma 5. First we
apply Lemma 3 to deduce that the basis σt · s(k) is 1

2 -bounded for |t| ≤ 1
4C

and for k � 0. Now Lemma 4 and Lemma 5 imply that for such t,

−F̈ 0(t) ≥ 1
C2(k + 1)

(C2k‖πNXξ‖2 + ‖πNXξ‖2)

≥ 1
C2(k + 1)

‖Xξ‖2 ≥ 1
C1C2k(k + 1)

(7.24)

Thus, if we take q > n/2 + 1, comparing (7.22) and (7.24) we see that, for
k sufficiently large,

(7.25) −F 0(t) > −F 0(0) if |t| ≥ 1
4C1

.

This shows that −F 0
ω̃(k)(φσ) achieves its minimum at some point σ ∈ SL

(Nk + 1) which is of the form σ = exp (iξ) where ξ ∈ su(Nk + 1) and
‖ξ‖ ≤ 1

4C1
.

7.3. Necessity of semi K -stability. The following theorem due to
Donaldson [50] provides an attractive lower bound for ‖R(ω) − μn‖2

L2 in
terms of Futaki invariants of test degenerations:
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Theorem 12. Let L → X be a positive line bundle. Then we have

(7.26) infω∈c1(L)‖R(ω) − μn‖L2 ≥ supT

(
− F(T )

D(T )

)
where the supremum on the right hand side runs over all test configurations
T , and the invariant D(T ) of a test configuration T is defined by,

(7.27) D(T ) = limk→+∞
‖Ak‖
k

n
2 +1 .

where ‖A‖ = (
∑

i,j |aij |2)1/2 is the Hilbert-Schmidt norm.

This implies immediately the following corollary:

Corollary 1. If L → X is a positive line bundle over a compact com-
plex manifold, and if X admits a metric of constant scalar curvature in
c1(L), then L → X is K-semistable.

Another lower bound for the Calabi energy involving instead a version
of the Futaki invariant along geodesic rays can be found in [28].

In the particular case when L = K−1
X , it is known that the boundedness

of the Mabuchi K-energy from below on c1(L) implies that infω∈c1(L)‖R(ω)−
μn‖L2 = 0 (see e.g. [7, 111, 105]). Thus we also have:

Corollary 2. Let X be a compact complex manifold with c1(X) >
0. If the Mabuchi K-energy is bounded from below on c1(X), then X is
K-semistable.

Lower bounds for the K-energy have been obtained in certain cases by
Weinkove [155] using the J-flow.

The proof of Theorem 12 is so basic and elegant that we can include
it here. In fact, it relies on the properties of F 0

ω0
(φ) on the spaces Kk of

Bergman metrics which have already been discussed in section §5. The
version that we present here is slightly shorter, thanks to the use of Lemma
6 below.

Let T be a test configuration, and let Ak, Bk be the endomorphisms on
H0(X0, L

k
0) as defined in section §6.1.6. Let σ

(k)
t = etBk : R → GL(Nk + 1),

σ
(k)
t = etAk : R → SL(Nk + 1) be the one-parameter subgroup defined by

Bk and Ak. For k >> 0 embed X ⊆ CPNk by a basis s of H0(X, Lk). Let

φt(x) = log |σ(k))
t (x)|2
|x|2 and define

(7.28) μ(Ak) = − lim
t→−∞

VFS Ḟ 0
ι∗s(ωFS)(φt)

Then we have the following alternative description of the Donaldson-Futaki
invariant of the test configuration T [114].

Lemma 6. Let T be a test configuration. Then

(7.29) F (T ) = lim
k→∞

μ(Ak)
kn
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Assuming the lemma for the moment, we can give the proof of the theo-
rem. Fix h a metric on L, and let s be the Kodaira imbedding defined by an
orthonormal basis s of H0(X, Lk) with respect to the L2 norm defined by
h and ω = − i

2∂∂̄ log h. By the convexity of F 0
ι∗s(ωFS) along one-parameter

subgroups, we have

(7.30) −limt→−∞VFS Ḟ 0
ι∗s(ωFS)(t) ≤ −VFS Ḟ 0

ι∗s(ωFS)(0)

We can now evaluate both sides of the equation, using Lemma 6 for the
numerical invariant μ(Ak) and (5.7) for −Ḟ 0

ι∗s(ωFS) (with δσ = δσ∗ = Ak).
This gives

(7.31)
μ(Ak)
‖Ak‖

≤ VFS
Tr(Ak · M)

‖Ak‖
≤ VFS ‖M‖,

where M is the traceless part of the matrix M defined by (5.8) and (5.15),
and thus given by

(7.32) Mαβ̄ = − 1
kVFS

∫
X

〈sα, sβ〉(R − R̄)ωn + O

(
1

kn+2

)
.

We estimate the Hilbert-Schmidt norm of M . By an orthonormal transfor-
mation, we may assume that Mαβ̄ is diagonal. The diagonal entries can be
estimated by the Cauchy-Schwarz inequality and the fact that ‖sα‖2

L2 = 1,

VFSMαᾱ = −1
k

∫
X

|s|2hk(R(ω) − R̄)ωn + O

(
1
k2

)

≤ 1
k

(∫
X

|s|2hk |R(ω) − R̄|2ωn

) 1
2

+ O

(
1
k2

)
.(7.33)

Applying the Tian-Yau-Zelditch theorem, we obtain

V 2
FS

Nk∑
α=0

M2
αᾱ ≤ 1

k2

∫
X

ρk(z)|R(ω) − R̄|2ωn + O

(
1

k−n+3

)

≤ 1
k−n+2 ‖R(ω) − R̄‖2

L2 + O

(
1

k−n+3

)
.(7.34)

Substituting this bound into (7.31) and letting k → ∞ gives the desired
statement. Q.E.D.

Proof of Lemma 6: We begin by recalling some basic facts about the Mum-
ford numerical invariant for projective varieties. Let Z ⊆ PN be a smooth
subvariety, and B an (N +1)×(N +1) matrix. Let ωFS be the Fubini-Study
metric on PN . We shall also denote by ωFS the restriction of the Fubini-
Study metric to Z. For t ∈ R let σt ∈ GL(N +1,C) be the matrix σt = etB

and let ψt : PN → R be the function

(7.35) ψt(z) = log
|σtz|2
|z|2
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Here we view z as an element in PN and, when there is no fear of confusion,
a column vector in CN+1.

Then ψt is a smooth path in H: In fact, σ∗
t ωFS = ωFS + i

2∂∂̄ψt. Define

(7.36) μ(Z, B) = − lim
t→−∞

VFS Ḟ 0
ωFS

(ψt) = −dotVFS F 0(−∞)

where VFS denotes the volume of Z with respect to ωFS . The function
F 0(t) = F 0

ωFS
(ψt) : R → R is convex so the above limit exists. Suppose

λ : C× → GL(N +1,C) is an algebraic homomorphism, let B ∈ gl(N +1,C)
be such that λ(et) = etB for all t ∈ R and Z(0) = limτ→0 λ(τ)(Z) the flat
limit of Z. Thus Z(0) ⊆ PN is a subscheme of PN with the same Hilbert
polynomial as Z. Let M0 = O(1)|Z(0) and M = O(1)|Z . We assume that
Z ⊆ PN is an imbedding of Z by a basis of H0(Z, M). Then λ(τ) defines
an automorphism of H0(Z(0), Mp

0 ) and, for p > 0, we let w̃(Z, B, p) be the
weight of this action on det(H0(Z0, M

p
0 )). One easily sees that

(7.37) w̃(Z, B, 1) = Tr(B)

and, if I is the identity matrix,

(7.38) w̃(Z, I, p) = p dim H0(Z(0), Mp)

It is then known by the work of Mumford [97] and Zhang [166] that
w̃(Z, B, p) is a polynomial in p for p large such that for B = A ∈ sl(N +1,C)
we have

(7.39) w̃(Z, A, p) =
μ(Z, A)
(n + 1)!

· pn+1 + O(pn) and w̃(Z(0), A, 1) = 0

We apply these general remarks to the case considered in Lemma 6, that
is, to the case B = Bk. Thus we let L → X be an ample line bundle, and
ρ : C× → Aut(L → X → C) a test configuration T . Let k be an integer
such that Lk is very ample. By Lemma 1, there exists a basis s of H0(X, Lk),
and an imbedding

(7.40) Is : (Lk → X → C) → (O(1) × C → CPNk × C → C)

which restricts to ιs on the fiber X1 and intertwines ρ(τ) and Bk, i.e.,

(7.41) Is(ρ(τ)lw) = (τBk · Is(lw), τw) for each l ∈ Lk

Let Zk ⊆ CPNk be the image of X by the map ιs. Then, (Lr)p = Lrp

implies (with k = rp)

(7.42) w̃(Zr, Br, p) = w̃(Zk, Bk, 1) = Tr(Bk)

In particular we see that Tr(Bk) is a polynomial in k of degree n + 1 (for
k >> 1).

On the other hand, Ak = Bk − 1
dk

Tr(Bk) (where dk = Nk + 1) implies

rdrTr(Bk) = rdrw̃(Zr, Br, p) = w̃(Zr, rdrBr, p)

= w̃(Zr, rdrAr, p) + w̃(Zr, rT r(Br), p)(7.43)
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Thus

(7.44)

rdrTr(Bk) − kdkTr(Br) = rdrw̃(Zr, Ar, p) = eT (r)kn+1 + O(kn) for k � 1

where eT is a polynomial in r (for r � 1) of degree at most n. If follows
from the definition of F (T ) that F (T ) is the leading coefficient of eT (r).
Comparing with (7.39) we get

(7.45) lim
r→∞

μ(Zr, rNrAr)
rnrn+1(n + 1)!

= F (T )

Since r−nNr = 1
n!

∫
ωn + O(r−1), we obtain the desired formula.

8. Sufficient Conditions: the Kähler-Einstein Case

We describe next some of what is known in the direction of sufficiency of
stability conditions. The case of Kähler-Einstein is better understood, so we
begin with this case. As noted earlier, the constant scalar curvature equation
reduces to a complex Monge-Ampère equation, which can be investigated
either as an elliptic equation by the method of continuity, or as a parabolic
flow, giving rise to the Kähler-Ricci flow.

8.1. The α-invariant. An approach to the problem of Kähler-Einstein
metrics is through the α-invariant, defined on a compact Kähler manifold
(X, ω0) as follows [139],

(8.1) α(X) = sup{κ > 0; supφ

∫
X

e−κφωn
0 < ∞},

where the supremum on the right hand side is taken over all φ which are ω0-
plurisubharmonic and normalized by supXφ = 0. It was shown in Tian
[139], using Hörmander’s estimate for subharmonic functions [73], that
α(X) > 0, and that the lower bound α(X) > n

n+1 would imply the existence
of a Kähler-Einstein metric on X. Other applications of lower bounds for
α(X) are in [146]. For toric manifolds, the α-invariant has been completely
determined in Song [128], generalizing earlier special cases established in
Batyrev and Selivanova [9] and [127]. It has very recently been evaluated
for the Mukai-Umemura 3-fold in Donaldson [53]. More general exponential
estimates for plurisubharmonic functions with respect to certain probability
measures are in Dinh, Nguyen, and Sibony [42]. The important role of an
α-invariant for tame symplectic manifolds, if it is strictly positive, has been
brought to light by Tosatti, Weinkove, and Yau [151].

8.2. Nadel’s multiplier ideal sheaves criterion. In the case of vec-
tor bundles, as proved by Donaldson [43] and Uhlenbeck-Yau [152], the
obstruction to the existence of a Hermitian-Einstein metric is precisely the
presence of destabilizing subsheaves in the sense of Mumford-Takemoto. It is
natural to expect that the obstruction to Kähler-Einstein metrics, and more
generally, to Kähler metrics of constant scalar curvature, can ultimately be
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also encoded in suitable notions of destabilizing sheaves. An early impor-
tant result is the following theorem of Nadel [98], which we quote here in the
simpler version of Demailly-Kollár [40]. Let (X, ω0) be a compact Kähler
manifold with c1(X) > 0. For each ω0-plurisubharmonic ψ (that is, upper
semi-continuous and satisfying ω0 + i

2∂∂̄ψ ≥ 0), define the multiplier ideal
sheaf I(ψ) by

(8.2) Iz(ψ) = {f ; ∃U � z, f ∈ O(U),
∫

X
e−ψ|f |2ωn

0 < ∞}

Theorem 13. If (X, ω0) does not admit a Kähler-Einstein metric, then
for any p ∈ ( n

n+1 , 1], there exists a ω0-plurisubharmonic function ψ so that
the multiplier ideal sheaf I(pψ) defines a proper, coherent analytic sheaf on
X with acyclic cohomology, i.e.,

(8.3) Hq(X, J (pψ)) = 0, q ≥ 1.

If X admits a compact subgroup G of holomorphic automorphisms, and ω0
is G-invariant, then I(pψ) and the corresponding subscheme are also G-
invariant.

Multiplier ideal sheaves were introduced by Kohn [78] in the context
of subelliptic estimates for the ∂̄-Neumann problem. Their applications to
complex geometry have been pioneered by Siu [124, 125].

The original proof of Nadel’s theorem [98] is based on the method of
continuity for the complex Monge-Ampère equation (3.5),

(8.4) (ω0 +
i

2
∂∂̄φ)n = ef0−tφωn

0 , 0 ≤ t ≤ 1.

By Yau’s estimates [157], a C∞ solution of (3.5) exists if the equation (8.4)
admits a C0 a priori estimate

(8.5) supt‖φ‖C0 ≤ C < ∞.

On the other hand, the solutions of the equation (8.4) satisfy the following
[123, 139]

1
V

∫
X

(−φ)ωn
φ ≤ n

1
V

∫
X

φωn
0

osc φ ≤ A
1
V

∫
X

φωn
0 + B(8.6)

The second inequality is a Harnack-type inequality which can be proved by
Moser iteration, since the equation (8.4) implies that the Ricci curvature of
ωφ is bounded from below for t ≥ ε > 0, and the Sobolev constants with
respect to ωφ are then uniformly bounded from below. Another important
observation is the following lemma:

Lemma 7. If there exists a constant p ∈ ( n
n+1 , 1] so that

(8.7) supt

1
V

∫
X

exp
(

− p(φ − 1
V

∫
X

φωn
0 )

)
ωn

0 < ∞,
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then it follows that

(8.8) supt

1
V

∫
X

φ ωn
0 ≤ C < ∞.

Proof. Since the logarithm is concave, the given inequality implies
(8.9)

C >
1
V

log
(∫

X
e(t−p)φ−f0+p 1

V

∫
X φωn

0 ωn
φ

)
≥ 1

V

∫
X

((t−p)φ−f0)ωn
φ + p

1
V

∫
X

φωn
0 ,

and thus, in view of (8.6),

(8.10) p
1
V

∫
X

φωn
0 ≤ (t − p)

1
V

∫
X

(−φ)ωn
φ + C ≤ n(1 − p)

1
V

∫
X

φωn
0 + C.

where the last inequality applies if 1
V

∫
X(−φ)ωn

φ ≥ 0. The desired bound
follows in this case if p > n(1 − p). When 1

V

∫
X(−φ)ωn

φ < 0, we just observe
that it suffices to prove the upper bound on 1

V

∫
X φωn

0 for t ≥ t0, for some
fixed small time t0 > 0. Since the given bound (8.7) implies a similar bound
for p0 = 1

2 t0, we can just apply the first inequality in (8.8) with p → p0 and
deduce that 1

V

∫
X φωn

0 is uniformly bounded from above. Q.E.D.
The proof of Nadel’s theorem can now be completed as follows. If X

does not admit a Kähler-Einstein metric, then the C0 estimate (8.5) must
fail. Now, if we normalize f0 by

(8.11)
1
V

∫
X

ef0ωn
0 = 1

then the equation (8.4) implies that φ must vanish somewhere, and thus
‖φ‖C0 ≤ osc φ. It follows that osc φ is unbounded, and in view of the
Harnack inequality (8.6) that 1

V

∫
X φωn

0 is unbounded. By Lemma 7, for
any p ∈ ( n

n+1 , 1], the left hand side of the inequality (8.7) is unbounded for
some sequence φ = φ(tj). Let ψ be a limit point of φ(ti)− 1

V

∫
X φ(ti)ωn

0 . By
the semi-continuity theorem of Demailly-Kollár [40], e−pψ is not in L1, and
thus I(pψ) is a proper sheaf. It is also coherent and acyclic as a consequence
of the general theory of multiplier ideal sheaves. This completes the proof
of Theorem 13.

8.3. The Kähler-Ricci flow. Although there has been important
developments since the late 1980’s, particularly concerning complex sur-
faces [146, 141], we jump now to the more recent progresses, based on the
Kähler-Ricci flow.

Let (X, ω0) be a compact Kähler manifold, with μω0 ∈ c1(X). Recall
that the Kähler-Ricci flow is the flow of metrics defined by (3.8). Since it
preserves the Kähler class, we may write as usual gk̄j = (g0)k̄j + ∂j∂k̄φ,
ωφ = ω0 + i

2∂∂̄φ, and the flow for the metrics gk̄j is equivalent to the flow
(3.9) for the potentials φ. It follows readily from the maximum principle
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that

(8.12) ‖φ‖CM (X×[0,T )) ≤ CMT ,

and thus the flow exists for all t ∈ [0,∞) [22]. The main issue is the
convergence of the flow. It has been shown to converge when μ < 0 and
μ = 0 [22], and thus we restrict to the case μ > 0, which is the case of
positive curvature. Clearly μ can be normalized to be μ = 1, and we shall
do so henceforth. For the convenience of the reader, we reproduce here the
equation

(8.13) φ̇ = log
ωn

φ

ωn
0

+ φ − f0, φ(0) = c0

where c0 is a constant, and f0 is the Ricci potential of the initial Kähler
form, defined with normalization by

(8.14) Ric(ω0) − ω0 =
i

2
∂∂̄f0,

1
V

∫
X

ef0ωn
0 = 1.

.
8.3.1. Perelman’s estimates. The following are key estimates for the

Kähler-Ricci flow. They are all consequences of Perelman’s crucial mono-
tonicity formulas [101, 36, 129], with the first three statements directly
due to him, and the last one to Ye [161] and Zhang [165]:

Theorem 14. (i) The Ricci potential f satisfies the following estimates
along the Kähler-Ricci flow,

(8.15) supt≥0(‖f‖C0 + ‖∇f‖C0 + ‖Δf‖C0) < ∞.

(ii) The diameters of X with respect to the metrics gk̄j(t) are uniformly
bounded for t ≥ 0.
(iii) Let ρ > 0 be fixed. Then there exists a constant c > 0 so that for all
x ∈ X, t ≥ 0, and r with 0 < r ≤ ρ, we have

(8.16)
∫

Br(x)
ωn

φ > c r2n,

where Br(x) is the geodesic ball centered at x of radius r with respect to the
metric gk̄j(t).
(iv) There exists a constant C, independent of t ≥ 0, so that the Sobolev
inequality

(8.17) ‖u‖
L

2n
n−1

≤ C (‖∇u‖L2 + ‖u‖L2), u ∈ C∞(X),

holds, with all norms taken with respect to the metric gk̄j(t).

All these estimates are for quantities which depend only on the metrics
gk̄j , and not on the potentials φ and the normalization c0 for the initial
potential. To translate them into estimates for φ, we need to pick a precise
normalization for φ. First, we note that the quantity

∫ ∞
0 ‖∇φ̇‖2

L2e
−tdt (first

written down in [34]; see also [84]) is finite and independent of the choice
of initial condition c0. This is because two solutions of (8.13) with different
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initial values c0 and c̃0 differ by the expression (c̃0 − c0) et, which cancels
out in the norm ‖∇φ̇‖2

L2 ≡ ‖∇φ̇‖2. Furthermore,

(8.18) φ̇ = −f + α(t),

for some α(t) independent of z, and by Perelman’s estimate (i) in Theo-
rem 14 above, the quantity ‖∇φ̇‖2 is bounded, and hence the integral in t
converges. It is then shown in [103] that, if the initial value c0 is chosen
to be

(8.19) c0 =
∫ ∞

0
‖∇φ̇‖2e−tdt +

1
V

∫
X

f0ω
n
0 ,

then the constant α(t) is uniformly bounded, and (i) in Theorem 14 implies

(8.20) ‖φ̇‖C0 ≤ C.

8.3.2. Energy functionals and the Kähler-Ricci flow. Recall the energy
functionals F 0

ω(φ), Fω(φ), and Kω(φ) introduced in section §3. It is well-
known that both energy functionals Fω(φ) and Kω(φ) decrease along the
Kähler-Ricci flow. For the K-energy, this is an immediate consequence of
its variational definition, and the fact that φ̇ = −f +α, where f is the Ricci
potential,

(8.21)
d

dt
Kω(φ) = − 1

V

∫
X

φ̇(R−n)ωn
φ =

1
V

∫
X

φ̇Δφ̇ωn
φ = − 1

V

∫
X

|∇φ̇|2ωn
φ .

As for the functional Fω(φ), we have, with W ≡
∫
X e−φ̇ωn

φ ,

(8.22)

d

dt
Fω(φ) =

∫
X

(
1
W

e−φ̇ − 1
V

)
φ̇ωn

φ =
∫

X

(
1
W

e−φ̇ − 1
V

) (
φ̇ − log

V

W

)
ωn

φ ,

which is negative since the integrand is of the form −(x − y)(ex − ey) ≤ 0.
Henceforth, we choose the initial value c0 for the flow (8.13) to be (8.19),

so that the inequality (8.20) holds. The following identity and bounds will
also be very useful:

Lemma 8. (i) The following identity holds along the Kähler-Ricci flow

(8.23) Kω(φ) − F 0
ω(φ) − 1

V

∫
X

φ̇ ωn
φ = C.

(ii) There exists a constant C so that

(8.24) |Fω(φ) − Kω(φ)| + |F 0
ω(φ) − Kω(φ)| ≤ C

along the Kähler-Ricci flow.

Proof. From the derivative of F 0
ω(φ) and the definition of the flow, we

have

(8.25) − d

dt
F 0

ω(φ) =
1
V

∫
X

φ̇ωn
φ =

1
V

∫
X

φ̈ωn
φ ,
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since 0 = d
dt(

1
V

∫
X ωn

φ) = d
dt

(
1
V

∫
X ef0−φ+φ̇ωn

0

)
= − 1

V

∫
X φ̇ωn

φ + 1
V

∫
X φ̈ωn

φ .

On the other hand,

1
V

∫
X

φ̈ωn
φ =

d

dt

(
1
V

∫
X

φ̇ωn
φ

)
− 1

V

∫
X

φ̇Δφ̇ ωn
φ

=
d

dt

(
1
V

∫
X

φ̇ωn
φ

)
+

1
V

∫
X

|∇φ̇|2ωn
φ

=
d

dt

(
1
V

∫
X

φ̇ωn
φ

)
− d

dt
Kω(φ).(8.26)

This establishes (i). Since |φ̇| is bounded by Perelman’s results, |F 0
ω(φ) −

Kω(φ)| is bounded. Finally, consider the difference between F 0
ω(φ) and

Fω(φ),

(8.27)
∣∣∣∣ log

(
1
V

∫
X

ef0−φωn
0

)∣∣∣∣ =
∣∣∣∣ log

(
1
V

∫
X

e−φ̇ωn
φ

)∣∣∣∣ ≤ C
1
V

∫
X

ωn
φ = C,

and thus |Fω(φ) − Kω(φ)| is bounded as well. Q.E.D.
It is convenient to group together the essential inequalities between the

quantities 1
V

∫
X φ ωn

0 , 1
V

∫
X(−φ)ωn

φ , and Jω(φ) in the following lemma. Note
that the first inequality is the analogue for the Kähler-Ricci flow of the first
inequality in (8.6) for the complex Monge-Ampère equation:

Lemma 9. There exists constants C so that
1
n

1
V

∫
X

(−φ) ωn
φ − C ≤ Jω(φ) ≤ 1

V

∫
X

φ ωn
0 + C

1
V

∫
X

φ ωn
0 ≤ n

1
V

∫
X

(−φ) ωn
φ − (n + 1)Kω(φ) + C.(8.28)

uniformly along the Kähler-Ricci flow.

Proof. Since Fω(φ) is monotone decreasing along the Kähler-Ricci flow,
we have Fω(φ) ≤ 0. As noted in the proof of Lemma 8, this implies that
F 0

ω(φ) ≤ C. Now let Iω(φ) be the following functional,

(8.29) Iω(φ) =
1
V

∫
X

φ(ωn − ωn
φ) =

i

2

n−1∑
k=0

∫
X

∂φ ∧ ∂̄φ ∧ ωn−1−k ∧ ωk
φ.

Comparing with the expression for Jω(φ) in §3.3.2, we readily see that

(8.30) 0 ≤ 1
n

Jω(φ) ≤ 1
n + 1

Iω(φ) ≤ Jω(φ).

Furthermore, the functional F 0
ω(φ) can be written in terms of Iω(φ) and

Jω(φ) in two different ways,

(8.31) F 0
ω(φ) = Jω(φ) − 1

V

∫
X

φωn = −[(Iω − Jω)(φ) +
1
V

∫
X

φωn
φ ].
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Using the first way of writing F 0
ω(φ), we obtain the inequality on the right

of the first statement of Lemma 9. Using the second way of writing F 0
ω(φ),

we obtain

(8.32)
1
V

∫
X

(−φ)ωn
φ ≤ (Iω − Jω)(φ) + C ≤ n Jω(φ) + C.

and the inequality on the left of the first statement of Lemma 9 also follows.
The second statement of Lemma 9 is an easy consequence of Lemma 8. The
inequality F 0

ω(φ) − Kω(φ) ≥ −C can be rewritten as

(8.33)
1
V

∫
X

φωn
0 ≤ Jω(φ) − Kω(φ) + C ≤ n

n + 1
Iω(φ) − Kω(φ) + C,

and expressing Iω(φ) by its definition gives the desired result. Q.E.D.
The following lemma can be found in Rubinstein [119]. It is the analogue

of the second inequality in (8.6) for the complex Monge-Ampère equation.
As in that case, it is Moser iteration, applied originally by Yau [157] to the
Monge-Ampère equation in his proof of the Calabi conjecture, and subse-
quently used in the method of continuity for the case of positive c1(X) by
[143, 148]. Its key ingredient is a uniform Sobolev constant, which has now
become available for the Kähler-Ricci flow thanks to Theorem 14:

Lemma 10. We have the following estimate along the Kähler-Ricci flow,

(8.34) osc φ ≤ A
1
V

∫
X

φ ωn
0 + B.

Proof. Let ψ = maxXφ − φ + 1 ≥ 1. Then for any α ≥ 0, we have∫
X

ψα+1ωn
φ ≥

∫
X

ψα+1(ωn
φ − ω0 ∧ ωn−1

φ ) =
i

2
(α + 1)

∫
X

ψα ∂ψ ∧ ∂̄ψ ∧ ωn−1
φ

=
i(α + 1)
2(α

2 + 1)2

∫
X

∂(ψ
α
2 +1) ∧ ∂̄(ψ

α
2 +1) ∧ ωn−1

φ(8.35)

Thus we obtain

(8.36) ‖∇(ψ
α
2 +1)‖ ≤

n(α
2 + 1)2

α + 1

∫
X

ψα+1ωn
φ ,

and hence, in view of Theorem 14, (iv) and setting β ≡ n
n−1 > 1, p = α + 2,

(8.37)
[ ∫

X
ψpβ

] 1
β

≤ C p

∫
X

ψpωn
φ , p ≥ 2.

Taking p = 2 and iterating, p → pβ → · · · pβk, it follows that

(8.38)

log ||ψ||L∞(ωφ) ≤
∞∑

k=1

log (2Cβk)
2βk

+ log ||ψ||L2(ωφ) = C1 + log ||ψ||L2(ωφ).
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On the other hand, a simple Bochner-Kodaira argument shows that

(8.39)
1
V

∫
X

ψ2efωn
φ ≤ 1

V

∫
X

|∇ψ|2efωn
φ +

(
1
V

∫
X

ψefωn
φ

)2

since Rk̄j − gk̄j = ∂j∂k̄f (see [59], or [148, 105]). By Theorem 14, (i), the
measures efωn

φ and ωn
φ are equivalent. Together with (8.36) with α = 0, we

find that

(8.40)
[

1
V

∫
X

ψ2ωn
φ

] 1
2

≤ C

(
1 +

1
V

∫
X

ψωn
φ

)
.

Finally, up to an additive constant, the expression on the right hand side can
clearly be bounded by supXφ and 1

V

∫
X(−φ)ωn

φ . Both of these expressions
are bounded, up to an additive constant, by 1

V

∫
X φωn

0 , the first because of
the plurisubharmonicity property ω0 + i

2∂∂̄φ > 0, and the second in view of
Lemma 9. Q.E.D.

Lemma 11. Let (X, ω0) be a compact Kähler manifold, ω0 ∈ c1(X), and
consider the Kähler-Ricci flow (8.13), with initial value c0 given by (8.19).
If there exists a constant C with

(8.41) supt∈[0,∞)
1
V

∫
X

φ ωn
0 ≤ C < ∞,

then the Kähler-Ricci flow converges exponentially fast in C∞ to a Kähler-
Einstein metric.

Proof. By Lemma 10, the hypothesis implies that the oscillation oscφ
is uniformly bounded. But since

∫
X ωn

φ = 1 and ‖φ̇‖C0 is bounded, we also
have

(8.42) 0 < C1 ≤ 1
V

∫
X

e−φωn
0 ≤ C2

which implies that

(8.43) infX φ ≤ − log C1, supX φ ≥ − log C2.

Combined with the bound for oscφ, this implies that ‖φ‖C0 is bounded. As
in Yau’s proof of the Calabi conjecture [157], the C0 bound for φ implies a
uniform bound for ||φ||Ck , for each k ∈ N. Detailed derivations in the case
of the Kähler-Ricci flow can be found in [103, 99, 22]. This already implies
that there exist subsequences of times tm → +∞ with gk̄j(tm) converging
to a Kähler-Einstein metric. The proof that the full flow gk̄j(t) converges
exponentially fast to a Kähler-Einstein metric is more involved, and actually
makes use of bounds for the lowest eigenvalue λω(t) for the operator ∂̄†∂̄
introduced earlier in section §2.6.2. It can be found in the second part of
the proof of Lemma 6 in [105].
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8.3.3. Perelman’s convergence theorem. We are now in position to give
a proof, different from the earlier one in Tian-Zhu [148], of the following
version of a result announced by Perelman in private communications:

Theorem 15. If X admits a Kähler-Einstein metric ωKE and Aut0(X) =
0, then for any initial metric (g0)k̄j, the Kähler-Ricci flow converges to a
Kähler-Einstein metric. More generally, if Aut0(X) 	= 0 and G ⊂ Stab(ωKE)
is a closed subgroup whose centralizer in the stabilizer Stab(ωKE) of ωKE is
finite, then the Kähler-Ricci flow converges to a Kähler-Einstein metric for
all G-invariant initial metrics (g0)k̄j.

Proof. Under the hypotheses of the theorem, the Moser-Trudinger
inequality (7.1) holds. Since Fω(φ) is decreasing under the flow, it follows
that Jω(φ) is uniformly bounded. The bound (7.1) also shows that Fω(φ) is
bounded from below. By Lemma 8, Kω(φ) is then bounded. By the second
statement in Lemma 9, 1

V

∫
X φ ωn

0 is bounded from above. By Lemma 11,
the Kähler-Ricci flow converges. Q.E.D.

We note that by an early result of Bando-Mabuchi [8], Kähler-Einstein
metrics are unique up to diffeomorphisms. An extension of Theorem 15 of
the case of Kähler-Ricci solitons has been given recently in [148], using an
extension of works of Kolodziej [79]. When restricted to the Kähler-Einstein
case, [148] also yields a proof of Theorem 15.

8.3.4. Condition (B). There has been so far relatively few results on the
convergence of the Kähler-Ricci flow when c1(X) > 0. The first such result
is due to Hamilton [70], who showed convergence for X = CP1, when the
initial metric (g0)k̄j has positive curvature everywhere. This assumption
was removed later by B. Chow [35], who showed that, for any initial metric
(g0)k̄j , the curvature eventually becomes positive everywhere. Convergence
in higher dimensions under the assumption of positive bisectional curvature
is treated in Chen and Tian [32, 33]. This assumption is preserved under
the Kähler-Ricci flow [6, 95], but it is restrictive, since it implies that X
is holomorphically equivalent to CPN [96, 126]. In fact, the arguments in
[32, 33] rely on the existence a priori of a Kähler-Einstein metric. More
recently, convergence in the case of toric varieties with vanishing Futaki
invariant has been established by Zhu [168], and, as we have seen above,
for general manifolds manifolds X under the assumption that X admits
a Kähler-Einstein metric (see Theorem 15 above) or Kähler-Ricci soliton
[148]. Since toric manifolds with vanishing Futaki invariant are known to
admit Kähler-Einstein metrics [154], all these results turn out to require
manifolds for which the existence of such metrics were known in advance.

In view of the conjecture of Yau, the convergence of the Kähler-Ricci flow
should be tied with the stability of X in the sense of GIT. We describe next
some recent results in this direction, where the stability conditions involved
are the conditions (B) and (S) described in section §2. The following theorem
was proved in [112]:
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Theorem 16. Let (X, ω) be a compact Kähler manifold with c1(X) > 0.
Then the Kähler-Ricci flow converges if and only if the Riemann curvature
tensor is bounded along the flow, the K-energy is bounded from below, and
Condition (B) holds.

We have stated the theorem as it was stated in [112]. But clearly, the
condition (B) can be replaced by the weaker condition (B)∗ defined in section
§2.6.1, since in the proof of Theorem 16, only metrics along the Kähler-Ricci
flow are considered, and their K-energy decreases along the flow and hence
is bounded above.

We discuss briefly the role of Condition (B) in the proof of Theorem 16.
Note that the assumption of uniform boundedness of the curvature, together
with the fixed volume and the boundedness of the diameter by Perelman’s
results, implies already that there exist subsequences gk̄j(tm) which converge
in the sense of Cheeger-Gromov, that is, after suitable reparametrizations
depending on tm. The issue is full convergence, and more important, the
convergence of gk̄j(t) as a sequence of tensors, point by point on X.

Now the assumptions that the K-energy is bounded from below and the
Riemann curvature tensor is bounded imply that ‖ġk̄j‖Ck = ‖Rk̄j − gk̄j‖Ck

tends to 0 for all k, but where norms are taken with respect to the evolving
metric gk̄j(t). The main step is then to show that the metrics gk̄j(t) are
uniformly equivalent. For this, according to a lemma of Hamilton [68], it
suffices to establish an exponential decay for ‖ġk̄j‖t. The key starting point
is the following differential inequality ([112], eq. (3.7)) for Y (t) defined by

(8.44) Y (t) =
∫

X
|∇f |2ωn

φ

where f is the Kähler-Ricci potential defined by (2.4),

Ẏ (t) ≤ −2λt Y (t) + 2λt Fut(πt(∇jf)) −
∫

X
|∇f |2(R − μn)ωn

−
∫

X
∇jf∇kf(Rk̄j − gk̄j)ω

n
φ .(8.45)

Here πt is the orthogonal projection of (1, 0)-vector fields onto the space
of holomorphic vector fields, Fut(V ) is the Futaki invariant acting on V ∈
H0(X, T 1,0(X)), and λt is the lowest strictly positive eigenvalue of the ∂̄†∂̄
operator on vector fields. Under our assumptions, all the terms on the right
hand side of (8.45) tend to 0 except for the term −2λtY (t). To obtain
exponential decay for Y (t), we shall produce a strictly positive lower bound
for λt.

This follows from Condition (B): assume otherwise. Since the curva-
tures, volume, diameter of the metrics g(t) ≡ gk̄j(t) are bounded above
and their injectivity radii bounded from below, by the Cheeger-Gromov-
Hamilton compactness theorem [25, 61, 71], a subsequence F ∗

tj (g(tj)) con-
verges in C∞, after suitable reparametrizations Ftj . The eigenvalues of the
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∂̄†∂̄ operator with respect to the metric F ∗
tj (g(tj)) and the almost-complex

structure Ftj (J) are the same as λtj . By going to a subsequence if nec-
essary, we may assume that Ftj (J) converges to an almost-complex struc-
ture J∞ ∈ Diff(X) · J . But λt → 0, and thus dimH0(X, T 1,0

J∞
(X)) >

dim H0(X, T 1,0
J (X)), contradicting Condition (B).

Once the exponential decay of Y (t) = ‖∇f‖2
(0) is established, repeated

applications of Bochner-Kodaira formulas show that ‖∇f‖(s) converge ex-
ponentially to 0 for all s. This implies the exponential convergence to 0 of
‖ġk̄j(t)‖C0 , in the gk̄j(t) norm, which implies the uniform equivalence of all
metrics gk̄j(t), by the lemma of Hamilton [68]. Once the uniform equivalence
of gk̄j(t) is established, the proof of C∞ convergence is easy.

The method of integral estimates has also been applied successfully
by Hou and Li [74] to boundary value problems for real Monge-Ampère
equations.

8.3.5. Condition (S). One advantage of Condition (B) is that it is clearly
a necessary condition for the orbit of J to be a Hausdorff point in the mod-
uli space of orbits of almost-complex structures. However, the assumption
of uniform boundedness of the Riemann curvature tensor along the Kähler-
Ricci flow in Theorem 16 is very restrictive. The following theorem due to
[105] eliminates the curvature assumption completely, by replacing Condi-
tion (B) by the closely related Condition (S):

Theorem 17. (i) If infω∈πc1(X)Kω0(ω) > −∞, and Condition (S) holds,
then the Kähler-Ricci flow gk̄j(t) converges exponentially fast to a Kähler-
Einstein metric.

(ii) Conversely, if the metrics gk̄j(t) converge in C∞ to a Kähler-Einstein
metric, then the above two conditions are satisfied.

(iii) In particular, if gk̄j(t) converge in C∞, then the convergence is
exponential.

We sketch the proof of the convergence of the flow under the assumptions
in the theorem. It depends on the following criterion for the convergence of
the flow [105]:

Lemma 12. If the following inequality is satisfied,

(8.46)
∫ ∞

0
‖R − n‖C0dt < ∞,

then the Kähler-Ricci flow converges exponentially fast in C∞ to a Kähler-
Einstein metric.

Indeed, by definition of the Kähler-Ricci flow, ∂t log (ωn
φ/ωn

0 ) = −(R −
n), and the condition in the lemma implies that the volume forms ωn

φ are
all equivalent in size to the volume form ωn

0 . But then φ = − log (ωn
φ/ωn

0 ) +
φ̇ + f0 is bounded in C0, and we can apply Lemma 11.
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Returning to the proof of the theorem proper, the first important step
is to show that, under the sole assumption that the K-energy is bounded
from below, we have

(8.47) ‖R(t) − n‖C0 → 0 as t → +∞.

This is the analogue for the Kähler-Ricci flow of an estimate established
by Bando [7] for the method of continuity. Combined with the inequality
(8.45), this leads to the following key difference-differential inequality for
Y (t) = ‖∇f‖2

L2 ,

(8.48) Ẏ (t) ≤ −2λt Y + ε

N∏
j=0

Y (t − j)
δj
2 ,

N∑
j=1

δj = 2, δj > 0,

for a fixed integer N , any given ε > 0, and t ∈ [Tε,∞), for a suitable Tε large
enough. The point is that a difference-differential inequality of this form can
still guarantee the exponential decay of Y (t). In fact, let Z(t) = Z0 e−μ(t−Tε),
for some 0 < μ < 1, and take ε = 1

2 inftλt > 0. We claim that, for Z0 large
enough and μ small enough, Z(t) is a barrier for Y (t). Indeed, write Tε = 0
for simplicity, and let Z0 be chosen so that Y (t) < Z(t) for t ∈ [0, N ]. We
claim that Y (t) < Z(t) for all t. Otherwise, let T be the first time with
Y (T ) = Z(T ). Then Ẏ (T ) ≥ Ż(T ). On the other hand,

Ẏ (T ) − Ż(T ) ≤ −2εY (T ) + μZ(T ) + ε

N∏
j=0

Y (T − j)δj

≤ Z0

{
(μ − 2ε)e−μT + ε e−μT+μ

∑N
j=0 jδj

}
< 0(8.49)

for μ small enough, depending only on ε, N , and δj . This is a contradiction,
and thus we do have Y (t) < Z(t) = Z0e

−μt for all t ≥ 0. Combined with Fu-
taki’s L2(efωn) Poincare inequality [59] and Perelman’s non-collapse
theorem, the exponential decay of Y (t) = ‖∇f‖2

L2 can be shown to imply an
exponential decay for ‖f‖C0 , and ultimately for ‖Δf − n‖C0 = ‖R − n‖C0 ,
and the theorem follows.

Several extensions and applications of Theorems 16 and 17 have been ob-
tained in [106]. In particular, the condition that the K-energy be bounded
from below in Theorem 16 can be weakened to just the vanishing of the Fu-
taki invariant. It is also shown in [106] that, under the assumption that the
K energy is bounded from below (or just the vanishing of the Futaki invari-
ant when dimX ≤ 2), if the initial metric has positive bisectional curvature,
then the Kähler-Ricci flow converges to a Kähler-Einstein metric. We stress
that the convergence of the Kähler-Ricci flow has been treated in [32, 33],
but the arguments there rely on the existence of a Kähler-Einstein metric,
and thus on the solution of the Frankel conjecture. Here it is essential that
the arguments do not assume the a priori existence of such a metric, in order
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to be viewed as a progress in the problem of giving an independent proof of
the Frankel conjecture by flow methods.

8.3.6. Multiplier ideal sheaves. We have seen in section §8.2 how multi-
plier ideal sheaves arise from the continuity method for the complex Monge-
Ampère equation. Here we discuss the adaptation of such ideas to the
context of the Kähler-Ricci flow.

Theorem 18. Consider the Kähler-Ricci flow (8.13) on a compact Kähler
manifold (X, ω0), with ω0 ∈ c1(X), and initial value c0 given by (8.19). Then
the Kähler-Ricci flow converges if and only if there exists p > 1 so that

(8.50) supt≥0
1
V

∫
X

e−pφωn
0 < ∞.

The convergence is then in C∞ and exponentially fast.

This theorem is proved in [103], using a priori estimates of Kolodziej [79,
80] for Monge-Ampère equations with Lp right hand sides, p > 1. (In [103],
the proof of the full convergence of the flow, by opposition to convergence
only along a subsequence of times tm → +∞, was given only under the
assumption that Aut0(X) = 0. But we now have at our disposal Lemma
11, based on the recent improvements in [105] for convergence arguments,
and this technical assumption can be removed.) Clearly, Theorem 18 can
be restated in terms of a version of multiplier ideal sheaves: let J p be the
sheaf whose stalk J p

z at z ∈ X is defined by

(8.51) J p
z = {f ; ∃U � z, f ∈ O(U) supt≥0

∫
U

e−pφ|f |2ωn
0 < ∞}

Then the necessary and sufficient condition for the convergence of the Kähler-
Ricci flow is that there exists p > 1 so that J p admits the global section 1.

An application of Theorem 18 to del Pezzo surfaces can be found in [72].
Theorem 18 implies the following weaker, but simpler statement. First

note that for any p > 1 we have

(8.52) supt≥0
1
V

∫
X

e−pφωn
0 = ∞ ⇒ supt≥0

1
V

∫
X

e−p(φ− 1
V

∫
X φωn

0 )ωn
0 = ∞.

In fact, replacing φ → φ − supXφ in the integrals on the left hand side
only increases their sizes, in view of the estimate (8.43). But supXφ ≤
1
V

∫
X φωn

0 + C by ω0-plurisubharmonicity, hence the assertion. Assume now
that a Kähler-Einstein metric does not exist, so that for all p > 1, there exists
a subsequence of times tm → +∞. Let ψ be a weak limit of φ − 1

V

∫
X φωn

0 .
Then the multiplier ideal sheaf I(pψ) defined as in (8.2) defines a proper,
coherent sheaf, with Hq(X, K

−[p]
X ⊗ Ip) = 0, q ≥ 1.

This last statement has been recently strengthened by Rubinstein [119]
to the same range p ∈ ( n

n+1 ,∞) that Nadel [98] established for the multiplier
ideal sheaves obtained from the method of continuity. The point is that,
together with Lemmas 9, 10 and the following Lemma 13, we have now
the analogues in the case of the Kähler-Ricci flow of all the ingredients
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required for Nadel’s arguments in the method of continuity, namely (8.6)
and Lemma 7:

Lemma 13. The exact same statement as in Lemma 7 holds, with φ the
solution of the Kähler-Ricci flow (8.13).

Proof. As in the proof of Lemma 7, the concavity of the logarithm
implies

(8.53) C >
1
V

∫
X

e(1−p)φ−f0+φ̇ωn
φ ≥ 1

V

∫
X

((1−p)φ−f0+φ̇)ωn
φ+p

1
V

∫
X

φωn
0 ,

and thus, by Perelman’s uniform bound for |φ̇| and Lemma 9,

(8.54) p
1
V

∫
X

φωn
0 ≤ (1 − p)

1
V

∫
X

(−φ)ωn
φ + C ≤ n(1 − p)

1
V

∫
X

φωn
0 + C.

and Lemma 13 follows as before [119]. Q.E.D.
Assume now that X does not admit a Kähler-Einstein metric. Then

1
V

∫
X φωn

0 must diverge to +∞ for some subsequence of times tm → +∞,
for otherwise Lemma 11 would imply that the Kähler-Ricci flow converges
to a Kähler-Einstein metric. Thus the integrals in (8.7) must diverge to ∞
for some p ∈ ( n

n+1 , 1]. If we let ψ be an L1 limit point of φ− 1
V

∫
X φωn

0 , then
I(pψ) provides the desired coherent, acyclic multiplier ideal sheaf.

9. General L: Energy functionals and Chow points

With this section, we begin the description of results which address, at
least partially in some way, the eventual sufficiency of stability conditions for
constant scalar curvature metrics in a general Kähler class L, which is not
necessarily K−1

X . A first class of results links directly the energy functionals
Kω(φ) and F 0

ω(φ) to the Chow point. That there should be some relation
is to some extent already built into the notion of stability: we have seen
that Kω(φ) and F 0

ω(φ) are just the conformal changes of metrics in the
very Deligne pairings which define the line bundles ηK and ηChow over the
Hilbert scheme giving the notions of K and Chow-Mumford stability. But
the direct relations which we describe below are much more precise, and one
can hope that, combined with some suitable k → ∞ limiting process, they
may eventually allow to deduce the asymptotic growth of Kω(φ) and F 0

ω(φ)
on K from stability conditions.

9.1. F 0
ω and Chow points. We start with the case of F 0

ω . Here the
basic result is the following theorem due to Zhang [166], which links all
three concepts of critical points for F 0

ω(φ), balanced imbeddings, and Chow-
Mumford stability:

Theorem 19. Let X̂ ⊂ CPN be a smooth projective variety. Let ω =
ωFS, φσ(x) = log |σx|2

|x|2 , and view F 0
ω(φσ) as a function of σ ∈ SL(N + 1)/

SU(N + 1). Then
(a) −F 0

ω is convex along one-parameter subgroups;
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(b) A point σ0 is a critical point for F 0
ω if and only if σ0(X̂) is balanced,

in the sense c.f. (5.11) that

(9.1)
∫

σ(X̂)

x̄αxβ

|x|2 σn
FS ∼ δᾱβ .

(c) Define a norm ‖f‖ on f ∈ H0(Gr, O(d)) by

(9.2) log ‖f‖2 =
1
D

∫
Gr

log
|f(z)|2

|Pl(z)|2d
ωm

Gr

where Gr = Gr(N −n−1,CPN ) is the Grassmannian of N −n−1 planes in
CPN , Pl is the Plücker imbedding, ωGr is the Fubini-Study metric restricted
to Gr, and D is its volume. Then we have

(9.3) −F 0
ω(φσ) = log

‖σ · Chow(X̂)‖2

‖Chow(X̂)‖2
.

(d) In particular, X̂ is Chow-Mumford stable if and only if there exists
a unique σ0 ∈ SL(N + 1)/SU(N + 1) with σ0(X̂) balanced.

The statements (a) and (b) and their proofs have been given in section
§5. Zhang’s original proof of (c) using Deligne pairings is in [166]. A
different and perhaps simpler proof based on comparing the derivatives of
both sides along one-parameter subgroups can be found in [107]. We show
now how (d) follows from (a), (b), and (c). The theorem of Kempf and Ness
[75] says that X̂ is stable if and only if ‖σ · Chow(X̂)‖2 is a proper map
from SL(N +1) in to R, in the sense that the inverse image of any compact
subset is compact. Equivalently, X̂ is stable if and only if

(9.4) log ‖σ · Chow(X̂)‖2 ≥ −C and limσ→∞ log ‖σ · Chow(X̂)‖2 = ∞
(where the latter statement means that for any constant M , there exists a
compact set K ⊂ SL(N + 1) so that log ‖σ · Chow(X̂)‖2 ≥ M for σ /∈ K.)

Assume that X̂ is Chow-Mumford stable. In view of the above Kempf-
Ness characterization of stability, this implies that log ‖σ ·Chow(X̂)‖2 must
attain its mimimum, and −F 0

ω must have a critical point σ0. This critical
point is unique, since if there are two distinct critical points, the convexity
of −F 0

ω along the one-parameter subgroup joining them would force log ‖σ ·
Chow(X̂)‖2 to be constant along this geodesic, contradicting its properness.
By (b), a point σ0 is a critical point if and only if σ0(X̂) is balanced.

Conversely, assume that there exists a unique balanced, or equivalently,
a unique critical point σ0. By the convexity of −F 0

ω along one-parameter
subgroups, this point must be a minimum along any such path. And since
any point in SL(N + 1) can be joined to σ0 by such a path, σ0 must be a
minimum for −F 0

ω on the whole of SL(N+1). It is a strict minimum since the
existence of another minimum would contradict the uniqueness assumption
of balanced points. It follows that log ‖σ · Chow(X̂)‖2 is bounded from
below, and must tend to ∞ when restricted to any one-parameter subgroup.
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This implies that the numerical invariant along any one-parameter subgroup
must be strictly positive, and, in view of the Hilbert-Mumford criterion, the
variety X̂ must be stable.

9.2. Kω and Chow points. The analogue for the K-energy of the
formula of the previous section is the following [107]:

Theorem 20. Let X ⊂ CPN be as in Theorem 19. Then

Kω(φσ) +
1
V

〈[Ys], Φσ

m−1∑
i=0

ωi
Zσ∗ωm−1−i

Z 〉

−D

V

m deg(Ys)
m + 1

log
||σ · Chow(X)||2
||Chow(X)||2

=
D(m + 2)(d − 1)

V (m + 1)
log

||σ · Chow(X)||2#
||Chow(X)||2#

(9.5)

Here Z = {w ∈ Gr(N − n − 1,CPN ); w ∩ X̂ 	= 0} is the Chow variety
of X. In general, Z is a singular variety, and we denote by Ys = {w ∈
Gr(N − n − 1,CPN ); #(w ∩ X̂) > 1} the subvariety where it is singular.
We denote by ωZ the restriction of the Fubini-Study Kähler form ωGr on
the Grassmannian to the regular part Z \ Ys of Z, and by [Ys] the current
of integration on Ys. Let P� : Gr(N − n − 1,CPN ) → P(∧N−nCPN+1) be
the Plücker imbedding, and set for each σ ∈ GL(N + 1), φσ(z) = log |σz|2

|z|2 ,

Φσ(z) = log |P�(σz)|2
|P�(z)|2 . The norm ‖ · ‖ is the norm defined in Theorem 19,

while ‖·‖# is a degenerate semi-norm defined for f ∈H0(Gr, O(d)) as follows

log ||f ||2# =
m + 1

(m + 2)(d − 1)
1
D

∫
Z

log
(ωm

Gr ∧ ∂∂̄ |f(z)|2
|P�(z)|2d

ωm+1
Gr

)
ωm

Gr

+
d − m − 2

(m + 2)(d − 1)
1
D

∫
Gr

log
|f(z)|2

|P�(z)|2d
ωm+1

Gr ,(9.6)

with m = (N − n)(n + 1) − 1 and D the dimension and the volume of
the Grassmannian. The various ingredients in the formula (9.5) have an
interesting interpretation. We can define a K-energy KωZ (Φσ) associated to
the regular part Z \Ys of the variety Z ⊂ Gr just like the K-energy Kω(φσ)
for the variety X ⊂ CPN . Remarkably, an exact Radon transform argument
shows that KωZ (Φσ) = Kω(φσ). The left hand side of the equation (9.5) can
then be viewed as a notion of K-energy associated to the full variety Z, and
it is this modified K-energy associated to a singular variety which satisfies
an identity analogous to the identity for F 0

ω(φσ) stated in Theorem 19.
A formula for the K-energy in terms of a Quillen norm, up to a bounded

error, has also been obtained by Tian [142]. The Futaki ivariant and
K-energy for hypersurfaces have been evaluated by Lu [86, 88], Yotov [162],
and in [110].
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We note that (9.5) can be interpreted as a degenerate norm on a suitable
line bundle over the Hilbert scheme. More precisely, let ηChow be the Chow
line bundle defined before, and define another line bundle ηChows by associ-
ating to each variety X the Chow line of Ys ⊆ P(∧N−nCPN+1), equipped
with the corresponding norm ‖ · ‖s defined as in (9.2). Then K-energy re-
stricted to SL(N + 1) orbits is the change in the norm (‖ · ‖ ⊗ ‖ · ‖#) ⊗ ‖ · ‖s

on the line bundle

(9.7) ηChow ⊗ ηChows

Besides this formal application, it would be very interesting to explore the
full consequences of the formula (9.5), since it relates several basic objects,
namely the K-energy, the Chow point, the singular locus Ys, and a degen-
erate semi-norm.

10. General L: the Calabi energy and the Calabi flow

We have seen that in the case L = K−1
X , the metrics of constant scalar

curvature metrics are Kähler-Einstein metrics, and from the point of view of
geometric flows, the problem can be reduced to the issue of convergence of
the Kähler-Ricci flow. For general L, we need to deal with the full 4th-order
equation, the natural parabolic version of which is the Calabi flow, which
we discuss briefly in this section.

10.1. The Calabi flow. Let L → X be a positive line bundle over
a compact complex manifold X, and let ω0 = i

2g0
k̄j

dzj ∧ dz̄k be a Kähler
form in c1(L). The Calabi flow is the 4th-order flow defined by the following
equation

(10.1) ġk̄j = ∂k̄∂jR, gk̄j(0) = g0
k̄j .

Clearly, it preserves the Kähler class of ω0. If we write then gk̄j = g0
k̄j

+∂k̄∂jφ,
the Calabi flow is equivalent to the following flow for φ,

(10.2) φ̇ = R − R̄.

In view of the fact that the variational derivative of the K-energy is −(R−R̄)
ωn

φ , we see that the Calabi flow is just the gradient flow of the K-energy,
and that

(10.3)
d

dt
Kω0(φ) = − 1

V
C(φ),

where C(φ) is the Calabi functional, defined by

(10.4) C(φ) =
∫

X
|R(ωφ) − R̄|2ωn

φ .

Clearly, metrics of constant scalar curvature are the minima of the Calabi
functional C(φ). However, the other critical points of C(φ), called “extremal
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metrics”, are also of considerable interest. Now a straightforward calculation
gives the following variational formula for C(φ)

(10.5) δC = −
∫

X
δφ (Δ2R + |∇R|2 + Rk̄j∇k̄∇jR) ωn

φ .

Applying the Bianchi inequality, we can easily verify that

(10.6) Δ2R + |∇R|2 + Rk̄j∇k̄∇jR = ∇l̄∇q̄∇q̄∇l̄R.

Thus the extremal metrics are given by the following equation

(10.7) ∇q̄∇l̄R = 0

which means exactly that ∇jR is a holomorphic vector field. It follows also
immediately from the variational formula for C(φ) that it decreases along
the Calabi flow,

(10.8)
d

dt
C(φ) = −2

∫
X

|∇q̄∇l̄R|2ωn
φ ≤ 0.

The operator f → ∇q̄∇l̄f mapping functions to symmetric two-tensors is
the Lichnerowicz operator D which we have already encountered in section
§7.2. Its central role in the problem of canonical metrics had been stressed
by Calabi [22].

When dimX = 1, the Calabi flow has been shown to converge to a metric
of constant scalar curvature by Chrusciel [38], Chen [26], and Struwe [135].
In higher dimensions, both the long-time existence and the convergence of
the Calabi flow are open problems. There has however been several recent
progresses. In [29], the flow was shown to exist as long as the Ricci curvature
stays uniformly bounded. In [150], the flow was shown to converge if the
Calabi functional is initially small enough, and either c1(X) = 0, or c1(X) <
0 and c1(L) is sufficiently close to c1(X). In the case of ruled surfaces, the
long-time existence for initial metrics given by the momentum construction
has been established in [64] under the assumption of existence of an extremal
metric, and in general in [137].

10.2. Extremal metrics and stability. We have seen that the ex-
tremal metrics are the critical points of the Calabi energy, while the metrics
of constant scalar curvature are its minima. Just as in the case of constant
scalar curvature metrics, the existence of extremal metrics is expected to be
equivalent to some suitable form of stability. In [136], a notion of K-stability
of a line bundle L → X, relative to a maximal torus of automorphisms, is
introduced and conjectured by Szekelyhidi to be equivalent to the existence
of an extremal metric in c1(L). We give here a brief description of these
ideas.

It is well known that the map J �→ R(gJ) − R is a moment map for the
action of the symplecto-morphism group of (X, ω) on the space J , consisting
of integrable complex structures on X compatible with the symplectic form ω
(here gJ is the Kähler form gJ(v, w) = ω(v, Jw)). Thus the Calabi function
may be viewed as the norm squared of the moment map and, in order to gain



158 D.H. PHONG AND J. STURM

some insight into the nature of its critical points, Szekelyhidi first examines
the finite-dimensional picture: Let L → (X, ω) be as above and let K be a
compact Lie group acting biholomorphically on L → X and preserving ω. A
moment map for the action of K on (X, ω) is a smooth K-equivariant map
μ : X → Lie(K)∗ with the property

(10.9) W (〈μ, ξ〉) = ω(Vξ, W )

for every smooth vector field W and every ξ ∈ Lie(K) (here Vξ is the vector
field on X generated by ξ). Let G be the complexification of K and assume
G acts as well on L → X and that the action is compatible with that of
K. Recall that an orbit Gx is stable if for every one-parameter subgroup
λ(t) = exp (tα), the weight Fx(α) = Fx(λ) is positive. We say that the orbit
is polystable if Fx(λ) ≥ 0 with equality only if λ fixes x. Then the Kempf-
Ness theorem says that a G-orbit Gx contains a zero of μ if and only if the
orbit is polystable.

The analogue of the Calabi functional in this finite-dimensional setting
is the function c = ‖μ‖2 : X → [0,∞) (the norm is taken with respect to
a fixed inner product ( , ) on Lie(K)), and extremal metrics correspond
to critical points of the function c(x). The following generalization of the
Kempf-Ness theorem is proved in [136]:

Theorem 21. A point x ∈ X is in the G-orbit of a critical point of c if
and only if it is polystable relative to a maximal torus in Gx, where Gx is
the stabilizer of x.

Let us explain the terminology of the theorem: Let T ⊆ Gx be a maxi-
mal torus and let GT be the connected component of the centralizer of T
(elements of G which commute with all the elements of T ). Then there is
a connected subgroup GT ⊥ ⊆ GT which can be characterized as follows: it
is isomorphic to G/T under the map GT ⊥ ↪→ GT → GT /T , and it has the
property that (α, β) = 0 for all α ∈ Lie(T ) and all β ∈ Lie(GT ⊥). We say
that x ∈ X is polystable relative to T if it is polystable for the action of
GT ⊥ on (X, L), that is, if and only if

(10.10)
Fx(α) ≥ 0 for all α ∈ Lie(GT ⊥) with equality if and only if λα fixes x.

One can rewrite condition (10.10) as a condition on the set of all one-
parameter subgroups GT as follows: consider the linear map Lie(T ) → R
given by α �→ Fx(α) where α ∈ Lie(T ), and let χ ∈ Lie(T ) be its dual. Thus
Fx(α) = (α, χ) for all α ∈ Lie(T ). Let Fx,χ(α) = Fx(α) − (α, χ). Then one
shows that (10.10) can be rewritten as follows

(10.11) Fx,χ(α) ≥ 0 for all α ∈ Lie(K) ∩ Lie(GT )

with equality if and only if α fixes x.
To generalize these notions to the infinite-dimensional setting,

Szekelyhidi first constructs an inner product on the space of test configura-
tions: Let V be a projective scheme and L → V a very ample line bundle.
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A C× action for L → V is a homomorphism α : C× → Aut (L → V ). If
α, β are two such C× actions, let Ak, Bk be the infinitesimal generators on
H0(V, Lk) and define 〈α, β〉 by the equation

(10.12) Tr(AkBk) − Tr(Ak)Tr(Bk)
dim H0(V, Lk)

= 〈α, β〉kn+2 + O(kn+1)

Next we construct the extremal C× action χ as follows. Let T ⊆ Aut (L →
V ) be a maximal torus. Define χ : C× → T by requiring

(10.13) F (α) = 〈χ, α〉 for all α : C× → T.

Now let L → X be an ample line bundle over a smooth projective variety and
let T ⊆ Aut (L → X) be a maximal torus. Let ρ : C× → Aut (L → X → C)
be a test configuration. Let X × = π−1(C×) and define a homomorphism
T → Aut (L× → X ×) by

(10.14) t · lτ = ρ(τ)tρ(τ−1)lτ for all lτ ∈ Lτ

We say that ρ is compatible with T if the action defined by (10.14) extends
to an action T → Aut (L → X ). If ρ is compatible with T , we let χ̃ : C× →
Aut (L0 → X0) be the restriction of χ : C× → T → Aut (L → X ) to the
central fiber, and we let ρ̃ : C× → Aut (L0 → X0) be the restriction of ρ to
the central fiber.

Definition 4. Let (X, L) be a polarized variety and T ⊆ Aut (L → X)
a maximal torus. Let χ : C× → T be the extremal C× action. We say that
(X, L) is K-stable relative to T if for all test configurations ρ compatible with
T , we have

(10.15) Fχ̃(ρ̃) ≡ F (ρ̃) − 〈χ̃, ρ̃〉 ≥ 0

with equality if and only if the test configuration is a product.

It is then conjectured in [136] that a polarized variety L → X admits
an extremal metric if and only if it is K-stable relative to a maximal torus.

11. General L: toric varieties

In the case of general L, perhaps the greatest advances in the direc-
tion of sufficiency have taken place in the context of toric varieties, where
the equations for the Kähler potential can be re-expressed in terms of its
Legendre transform, namely the symplectic potential. They become then
real equations, and the tools from convex analysis can be brought to bear.
There have been many remarkable developments in this direction, even a
perfunctory description of which is beyond the scope of this paper. We
shall limit ourselves to a few words, mainly to provide references for further
reading.
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11.1. Symplectic potentials. The basic properties of Kähler forms
and their scalar curvatures on toric varieties have been worked out by
Guillemin [67] and Abreu [1]. A brief summary is as follows. Let L → X be
a positive toric line bundle over a toric variety. Then a dense orbit in X of
the (C×)n action can be parametrized by z = (z1, . . . , zn), with zi = ξi + iηi.
If ω is a Kähler form on the orbit which is invariant under the (S1)n subgroup
of (C×)n, then ω must be of the form

(11.1) ω =
i

2
∂2φ

∂ξj∂ξk
dzj ∧ dz̄k

with φ a strictly convex function of the variables ξi alone, φ = φ(ξ). Asso-
ciated to φ is its Legendre transform u(x) defined by

(11.2) u(x) = supζ(〈x, ζ〉 − φ(ζ)) = 〈x, ξ〉 − φ(ξ), x =
∂φ

∂ξ
,

which is a function on the polytope P given by the image of the moment
map

(11.3) μ : z → x =
∂φ

∂ξ
.

The polytope P does not depend on the choice of Kähler form ω within
c1(L). The function u(x) is called the symplectic potential. It is strictly
convex. The metric ω can be re-written in terms of the coordinates (x, η)
as uijdxidxj + uijdηidηj , where uij is the Hessian metrix of uij , and uij is
its inverse. The scalar curvature becomes

(11.4) R(ω) = − ∂2uij

∂xi∂xj
.

The form ω extends to a smooth Kähler form on X if and only if u(x)
satisfies

(11.5) u(x) − 1
2

∑
δk(x) log δk(x) ∈ C∞(P̄ ).

Here we have written P as the intersection of half-spaces δk(x) > 0.

11.2. K -stability on toric varieties. The main concepts in K-
stability can also be re-written completely explicitly in terms of the sym-
plectic potential u and the polytope P . In particular, test configurations
correspond precisely to rational piecewise linear convex functions f on P ,
and the K-energy and the Futaki invariant are given by the following func-
tionals of u [47],

F (f) = −μ

∫
P

f dx +
∫

∂P
f dσ

K(u) = −
∫

P
log (detuij) dx + F (u),(11.6)

where dx is the Lebesgue measure on P and dσ is the measure on ∂P defined
by the requirement that dσ ∧ dδk = ±dx on the face defined by δk(x) = 0.
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The problem reduces then to finding a smooth convex solution in P for the
following 4-th order equation, called Abreu’s equation,

(11.7) − ∂2uij

∂xi∂xj
= R̄

subject to the boundary condition (11.5), assuming that the Futaki-
Donaldson invariant is strictly positive for all test configurations. This re-
mains a challenging problem, but when dimX = 2, the following progresses
have been made by Donaldson:

(a) It has been shown in [47] that K-stability implies that the K-energy
is bounded from below;

(b) Interior a priori estimates for Abreu’s equation have been obtained
in [48];

(c) A method of continuity has been developed in [52].
Generalized solutions, assuming the properness of the K-energy, are also
studied in [167].

11.3. The K -unstable case. In the K-unstable case, it has been
shown by Szekelyhidi [138] that there is a maximally destabilizing configu-
ration, in the class of functions which are in L2(P ), continuous and convex
on the union of P with its codimension 1 faces, and whose boundary values
are in L1(∂P ). It is not yet known, and perhaps not always the case that this
configuration is piecewise linear. If it is, he also shows how this maximally
destabilizing configuration would lead to a decomposition into semi-stable
components analogous to the Harder-Narasimhan filtration for an unstable
vector bundle. The Calabi functional is the analogue in this context of the
Yang-Mills functional. In general, it is not known and not expected that
this maximally destabilizing configuration should be piecewise linear. Thus
it should be viewed as a limit of test configurations [138]. An attractive sce-
nario for how to construct still a Harder-Narasimhan like filtration is also
given in [138].

12. Geodesics in the space K of Kähler potentials

As we have seen in section §6.2, Donaldson’s infinite-dimensional GIT
theory provides yet another possible approach to the problem of constant
scalar curvature metrics. In this approach, geodesic rays in the space K
of Kähler potentials play the role of test configurations, and numerical in-
variants and stability conditions are to be constructed from the asymptotic
behavior of the K-energy along geodesic rays.

The starting point for this approach is then the construction and reg-
ularity of geodesics. We have seen earlier that this can be viewed as an
existence and regularity problem for a Dirichlet problem for a completely
degenerate Monge-Ampère equation. There has been significant progress in
this direction, some of which we describe below.
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12.1. The Dirichlet problem for the complex Monge-Ampère
equation. Let L → X be a positive line bundle over a compact com-
plex manifold X of dimension n. Let h0 be a metric on L, with ω0 =
− i

2∂∂̄ log h0 > 0. Let A = {w ∈ C; e−T < |w|< 1}, and write Ω0 for ω0,
viewed as a non-negative (1, 1)-form on X × A. We consider the following
Dirichlet problem

(12.1) (Ω0 +
i

2
∂∂̄Φ)n+1 = 0 on X × A, Φ

∣∣
X×∂A

= Φb,

where Φ is continuous at X × ∂A, and the boundary ∂A and the boundary
data are specified in the following two possible manners:

• Geodesic segments: Here another metric h1 on L with ω1 = − i
2∂∂̄

log h1 > 0 is prescribed, T > 0 is finite, ∂A ≡ {w ∈ C; |w| = 1 or |w| = e−T },
and the boundary value Φb is given by

Φb(z, w) = 0 for |w| = 1

Φb(z, w) = log
h1(z)
h0(z)

for |w| = e−T .(12.2)

• Geodesic rays: Here T = ∞, and ∂A ≡ {w ∈ C; |w| = 1}, and the
boundary value Φb is given by

(12.3) Φb(z, w) = 0 for |w| = 1.

12.2. Method of elliptic regularization and a priori estimates.
The theory of a priori estimates for elliptic Monge-Ampère equations has
been developed by Calabi [22], Yau [157], and Aubin [5] in the compact
case, and by Caffarelli, Kohn, Nirenberg, and Spruck [18] in the case of
domains in Cn with boundary. The geodesics problem requires an extension
to the case of degenerate equations on complex manifolds with boundary.
The following theorem was established in [115]. The main interest lies in
its formulation, otherwise it is a generalization, requiring no new estimates,
of results in Chen [27]. As can be seen from the sketch of the proof given
below, it is a direct outgrowth of the estimates for Monge-Ampère equations
obtained in [18, 157, 62, 27]:

Theorem 22. Let M̄ be a compact complex manifold of dimension m,
with smooth boundary ∂M . Assume that M̄ admits a Kähler form Ω. Then
the Dirichlet problem for the completely degenerate Monge-Ampère equation

(12.4)
(

Ω +
i

2
∂∂̄Ψ

)m

= 0 on M, Ψ|∂M = 0

for a function Ψ which is Ω-plurisubharmonic, admits a unique C1,1 solution.

We sketch the proof of Theorem 22. Consider the elliptic regularization

(12.5)
(

Ω +
i

2
∂∂̄Ψ

)m

= ε Ωm on M, Ψ|∂M = 0
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for a constant ε > 0 which we shall ultimately let tend to 0. Since Ω is a
Kähler form, and hence positive definite, the function Ψ = 0 is a subsolution
of (12.5) for any 0 < ε ≤ 1. The elliptic regularization admits then a C∞

solution, and it suffices to establish C2 estimates for the solution uniform in
ε in order to obtain the theorem.

– The C0 estimates follow as in the case of domains in Cm from the
maximum principle [18], once a subsolution has been constructed;

– In the case of domains in Cm, the estimates for the first-order
derivatives can be reduced to the boundary, by differentiating the
equation along any constant, global vector field, and applying the
maximum principle. Since the solution is bounded by the subso-
lution and a harmonic function with same boundary condition, it
follows that the boundary values of its gradient must be bounded
[18]. This argument does not generalize to complex manifolds.
However, the blow-up arguments of Chen [27] still apply.

– The differential inequalities of Yau [157] and Aubin [5] for the
trace of the Hessian of the solution hold on general Kähler mani-
folds. Applying the maximum principle, they reduce the estimates
for the second derivatives to the boundary. A difficult barrier argu-
ment gives next these boundary estimates, in the case of strongly
pseudoconvex domains in Cn [18]. This barrier argument was sub-
sequently extended by Guan [62] to the general case, assuming
instead of strong pseudoconvexity the existence of a subsolution
with given boundary values. Q.E.D.

We observe that the C2 estimates give an upper bound for the eigenval-
ues of Ω+ i

2∂∂̄Ψ. If the Monge-Ampère equation is elliptic, the determinant
is bounded from below, and hence all the eigenvalues are bounded from
both above and below. The C3 identity of Calabi and Yau can then apply,
reducing again the C3 estimates to the boundary. An ingenious argument is
then provided in [18] for the logarithmic modulus of continuity of the second
derivatives, and hence the C3 boundary estimates. Alternative approaches
have also been provided by Evans [54] and Krylov [81].

In the degenerate case, the C2 estimates do not imply bounds from
below for the eigenvalues of the form Ω + i

2∂∂̄Ψ, and we cannot go further
and obtain estimates for higher order derivatives. This is consistent with the
optimal C1,1 regularity of known examples of solutions of degenerate Monge-
Ampère equations [60, 82]. A partial regularity theory for completely de-
generate complex Monge-Ampère equations has been put forth in [34].

We return now to the problem proper of geodesics in the space K of
Kähler potentials for a positive line bundle L → X. We consider first
the case of geodesic segments, when M = X × A with A an annulus,
the case of geodesic rays being somewhat different and treated separately
later. The following simple, but key lemma will allow to reduce the original
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equation (12.1) with degenerate background form Ω0 to the situation treated
in Theorem 22:

Lemma 14. There exists a function Φ ∈ C∞(X × Ā) which is a sub-
solution of the equation (12.1), in the sense that

(12.6) Ω0 +
i

2
∂∂̄Φ > 0, Φ

∣∣
X×∂A

= Φb.

Proof. Let φ(z, t) = t log h0(z)
h1(z) , and Φ̃(z, w) = φ(z, t), t = log |w|.

Then clearly Φ̃
∣∣
X×∂A

= Φb, and we have

(12.7) Ω0 +
i

2
∂∂̄Φ̃(z, w) =

⎛
⎜⎜⎝

(1 − t)ω0 + tω1
i

4w
∂z̄ log

h0(z)
h1(z)

− i

4w̄
∂z log

h0(z)
h1(z)

0

⎞
⎟⎟⎠

The upper left entry is uniformly strictly plurisubharmonic on X. Thus,
setting Φ(z, w) = Φ̃(z, w)+f(w), where f(w) is the solution of the Dirichlet
problem Δf = C, f

∣∣
∂A

= 0 for some constant C > 0 large enough, we
obtain the desired subsolution. Q.E.D.

Let now Ω = Ω0 + i
2∂∂̄Φ, Ψ = Φ−Φ. The equation (12.1) for a function

Φ which is Ω0-plurisubharmonic, is then equivalent to the equation in (12.4)
on M̄ = X × Ā, for a function Ψ which is Ω-plurisubharmonic. Theorem 22
gives then the following existence and C1,1 regularity for geodesic segments
which was proved by X.X. Chen [27], and which led to the more general
formulation provided in Theorem 22:

Theorem 23. [27] Let L → X be a positive line bundle over a com-
pact complex manifold, and h0, h1 C∞ metrics on L with positive curvatures
ω0, ω1. Then the Dirichlet problem (12.1) admits a unique C1,1 solution.
The solution is C1 invariant, and defines a C1,1 geodesic joining h0 to h1
in the space Kk of Kähler potentials.

Next, we discuss the construction of geodesic rays. Recall that they
are the analogues for K of the one-parameter subgroups in Kk. Since one-
parameter subgroups are essentially the same as test configurations, the
natural question which arises is whether one can associate a geodesic ray to
each test configuration.

In [4], Arezzo and Tian showed that, given a test configuration T for L →
X with smooth central fiber X0, then one can use the Cauchy-Kowalevska
theorem to find families of local analytic solutions to the geodesic equations
near infinity. The geodesic rays obtained in this manner are real-analytic,
but their origins cannot be prescribed. The condition that the central fiber
be smooth is also a severe restriction. In [115], the following was established:

Theorem 24. Let L → X be a positive line bundle on a compact complex
manifold, and let T : L → X → C be a test configuration for L → X in the
sense of Definition 2. Let h0 be any metric on L with ω0 = − i

2∂∂̄ log h0 > 0,
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and consider the Dirichlet problem (12.1) in the geodesic ray case, that is,
when A = {w ∈ C; 0 < |w| ≤ 1} = D×, and ∂A ≡ {w ∈ C; |w| = 1}.

Let p : X̃ → X → C be any smooth, S1 equivariant resolution of X .
Then the Dirichlet problem admits a solution Φ : X × D× → R, with Ω0 +
i
2∂∂̄Φ the restriction to p−1(X|D× ) of a non-negative (1, 1) current Ω+ i

2∂∂̄Ψ
on X̃D ≡ p−1(X|D) satisfying

(12.8) (Ω +
i

2
∂∂̄Ψ)n+1 = 0 on X̃|D .

Here Ω is a smooth Kähler metric on X̃|D , and Ψ is a C1,1 function.

A key step in the proof of this theorem is the construction of the Kähler
form Ω on X̃|D , the remaining part following readily from Theorem 22. This
is accomplished by constructing a line bundle M → X̃ with the properties
that

(a) p∗Lm ⊗ M → X̃ is a positive line bundle;
(b) M

∣∣
X̃ × is trivial, in the sense that M admits a meromorphic section

which is holomorphic and nowhere vanishing on X̃ ×.
The desired Kähler form can then be taken as the curvature of p∗Lm ⊗

M → X̃ .

12.3. Geodesics in K and geodesics in Kk. An important question
in the problem of constant scalar curvature metrics is to determine in what
precise sense Donaldson’s infinite-dimensional GIT is the limit of GIT. In
this context, it would be particularly valuable to realize geodesics in K as
limits of geodesics in Kk. This can be viewed also as the natural next step
in Yau’s general strategy of approximations by algebraic-geometric objects:
the Tian-Yau-Zelditch theorem says that K is the “pointwise” limit of Kk,
and the natural next step is to understand the external geometry of Kk as
k → ∞. If geodesics in K can be approximated by geodesics in Kk, as is
desirable from the point of view of GIT, this would mean that the subspaces
Kk satisfy a remarkable property, namely that they become asymptotically
geodesically flat as k → ∞. In this section, we describe in what precise
sense the answer to this question is indeed affirmative [113, 114].

12.3.1. An Ansatz for geodesic approximations. Our approach is based
on the following general Ansatz [112, 113, 115]. Let L → X be a positive
line bundle over a compact complex manifold X of dimension n, and let h0
be a metric on L with positive curvature ω0 = − i

2∂∂̄ log h0. Let s = {sα}Nk
α=0

be an orthonormal basis for H0(X, Lk) with respect to the metric h0 and the
volume form ωn

0 . For each k >> 1, let λ
(k)
α be a sequence of real numbers,

0 ≤ α ≤ Nk = dimH0(X, Lk). Set

(12.9) Φk(z, w) =
1
k

log
Nk∑
α=0

|w|2λ
(k)
α |sα(z)|2hk

0 − n
log k

k
.
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The function Φk(z, w) is manifestly Ω0-plurisubharmonic on X ×D×, where
D× = {w ∈ C; 0 < |w| < 1}, and Ω0 is the form ω0, viewed as a non-negative
form on X × D×. Let

(12.10) Φ(z, w) = lim�→∞

[
supk≥� Φk(z, w)

]∗
,

where u∗(z) ≡ limε→0(sup|z−ζ|<εu(ζ)) denotes the upper semi-continuous
envelope of a function u(z). Then Φ(z, w) is a Ω0-plurisubharmonic function
on X × D×, and Φk(z, w) = φk(z, log |w|) − n log k

k , where

(12.11) φk(z, t) =
1
k

log
Nk∑
α=0

e2λ
(k)
α t|sα(z)|2hk

0

is a geodesic in the space Kk of Bergman potentials. Geometrically, the
expression (12.9) has another nice motivation. Let π∗(Lk) be the direct
image of Lk over AT , that is, the vector bundle over AT whose fiber at
each w ∈ AT is the vector space H0(X, Lk). Holomorphically, the bundle is
trivial. However, the choice of a metric h0 on L equips the fiber of π∗(Lk)
at, say, w = 1 with the corresponding L2 metric, and then, by rotation
w → eiθw, to the fibers along |w| = 1. Then, at each w ∈ AT , the expression

(12.12) 〈sα, sβ〉 = |w|2λ
(k)
α δαβ̄

in (12.9) defines a metric which restricts on the boundary of AT to the L2

metric induced by h0, and is flat. The flatness is a consequence of the fact
that the bundle π∗(Lk) admits locally an orthonormal basis of holomorphic
sections, namely w−λ

(k)
α sα. Returning to our original problem, the question

is then under what circumstances does Φ satisfy the degenerate Monge-
Ampère equation. The following theorem can be extracted from [113, 114]
and provides an answer to this question:

Theorem 25. Let the set-up be as described above. Let AT = {w ∈
C; e−T < |w| < 1}, where T can be both finite or infinite. If the following
two conditions are satisfied,

(a) There exists a constant C > 0, independent of both k and α, so that

(12.13) |λ(k)
α | ≤ C k

(b) There exists a constant C > 0 independent of k so that

(12.14)
∫ ∫

X×AT

Ωn+1
k ≤ C k−1

then Φ(z, w) is continuous near |w| = 1, and we have, in the sense of pluri-
potential theory,

(Ω0 +
i

2
∂∂̄Φ)n+1 = 0 on X × AT Φ

∣∣
|w|=1 = 0.(12.15)
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Here the notion of (Ω0 + i
2∂∂̄Φ)n+1 in the sense of pluripotential theory,

for Φ a Ω0-plurisubharmonic function, can be defined as follows. It suffices to
define it locally, so we consider the case of a plurisubharmonic u function on
Cn. Let C be any non-negative (1, 1) closed current. Since the coefficients
of C are then non-negative measures, we may define

(12.16) (i∂∂̄u) ∧ C = i∂∂̄(uC).

Applying this to C = i∂∂̄u, and iterating, we obtain a definition of (i∂∂̄u)n

as an (n, n)-form with a positive measure as coefficient.
Some steps in the proof of Theorem 25 are as follows. The condition (a)

guarantees some a priori estimates for Φk(z, w), including a crucial uniform
bound for the normal derivative of Φk(z, w) at the component |w| = 1 of
the boundary of AT , which will guarantee that Φ has the desired boundary
value. The condition (b) suggests that a reasonable limit of Φk(z, w) should
have mass 0, and thus satisfy the degenerate Monge-Ampère equation. In
the foundational work [10, 11] of Bedford and Taylor, it is shown that this is
indeed the case, if the Φk(z, w) converge either uniformly or monotonically.
This is not the situation in the setting of Theorem 25, but a suitable exten-
sion of the Bedford-Taylor pluripotential theory can be established [113],
which does give the desired convergence, when T is finite and we have a stan-
dard Dirichlet problem for a domain with smooth codimension 1 boundary.
When T = ∞, the argument has to be supplemented by a careful limiting
process, first with T finite, and then letting T tend to ∞ [114].

Clearly, the assumption (b) can be weakened to
∫ ∫

X×AT
Ωn+1

k → 0,
in which case the conclusion of the theorem would be that there exists a
subsequence Φkj

(z, w), whose corresponding limit Φ(z, w) in the sense of
(12.10) satisfies the equations (12.15).

Other extensions of the Bedford-Taylor theory to the manifold setting
can be found in [66] and [15].

12.3.2. Construction of geodesic segments. We apply Theorem 25 in the
context of geodesic segments. In this case, we are given a second metric
h1 on L with positive curvature ω1 = − i

2∂∂̄ log h1, and the problem is to
construct the geodesic joining h0 to h1 (whose existence has been proved
by the Theorem 23 of X.X. Chen, using a priori estimates and elliptic reg-
ularization). In this case, let s(1) = {s

(1)
α (z)}Nk

α=0 be a basis for H0(X, Lk),
orthonormal this time with respect to the metric h1 and the volume form
ωn

1 . Without loss of generality, we may assume that the change of bases
from s to s(1) is given by a diagonal matrix,

(12.17) s(1)
α = eλ

(k)
α sα.

Let Φk(z, w) be defined as in (12.10), with this choice of weights λ
(k)
α . Then

it is shown in [113] that the two conditions (a) and (b) of Theorem 25 are
satisfied. It may be instructive to see how to verify condition (b), assuming
condition (a), since we have already at our disposal all the tools needed to
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estimate the Monge-Ampère masses in this context. By (5.18), this reduces
to computing Ḟ 0

ω at the two end points t = 0 and t = 1, and since φk(z, t)
is a path inside Kk, the formulas for Ḟ in section §5.1 apply. Thus we have∫ ∫

X×AT

Ωn+1
k =

∫
X

φ̇k(1)ωn
φ(1) −

∫
X

φ̇k(0)ωn
φ(0)(12.18)

and hence, more explicitly,

2
kn+1

∫
X

Nk∑
α=0

λ(k)
α |s(1)

α (z)|2h1(k)kω1(k)n

− 2
kn+1

∫
X

Nk∑
α=0

λ(k)
α |sα(z)|2h0(k)kω0(k)n.(12.19)

Applying the Tian-Yau-Zelditch theorem, we obtain easily the following
asymptotics,

2
kn+1

∫
X

Nk∑
α=0

λ(k)
α |sα(z)|2h1(k)kω1(k)n

=
2

kn+1

Nk∑
α=0

λ(k)
α + O

(
1

kn+2

)
· Nk · maxα|λ(k)

α |(12.20)

as well as an analogous expression with h1 ↔ h0. The leading term in this
expression cancels out between the contributions from h1 and from h0, and
the second term is O(k−1) in view of condition (a). Thus condition (b) is
satisfied. Theorem 25 implies then that the corresponding Φ(z, w) defines
then a solution of the equation (12.15). Furthermore, the roles of h0 and
h1 are clearly reversible, and it follows that Φ(z, w) satisfies the desired
boundary condition also when |w| = e−1, and is actually a solution of the
Dirichlet problem (12.1). By uniqueness, it must coincide with the solution
provided by Theorem 23. Thus we have the following theorem:

Theorem 26. Let L → X be a positive line bundle over a compact com-
plex manifold X. Let h0, h1 be two metrics on L with positive curvatures
ωi = − i

2∂∂̄ log hi. Let s, s(1) be two bases of H0(X, Lk), orthonormal with
respect to the metrics and volume forms h0, ω0 and h1, ω1 respectively. As-
sume without loss of generality that the matrix of change of bases is diagonal,
with eigenvalues λ

(k)
α . Then the C1,1 geodesic joining h0 and h1 can be ob-

tained by the construction (12.10).

12.3.3. Construction of geodesic rays. We turn next to the construction
of geodesic rays. Let L → X be a positive line bundle over a compact
complex manifold as before, and let T : L → X → C be a test configura-
tion, in the sense of Definition 2. Let Ak be the traceless endomorphism
of H0(X0, L

k
0), as defined in 6.45 and subsequent line, and let λ

(k)
α be its

eigenvalues. Then [114]
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Theorem 27. With this set-up, and this choice of weights λ
(k)
α , the

expressions (12.9) and (12.10) produce a generalized geodesic ray starting at
h0, i.e., Φ(z, w) is continuous and equal to 0 at |w| = 1, and we have, in
the sense of pluripotential theory,

(12.21) (Ω0 +
i

2
∂∂̄Φ)n+1 = 0 on X × {w ∈ C; 0 < |w| < 1}.

The geodesic is non-constant when the test configuration T is non-trivial.

To establish the theorem, we apply Theorem 25 and verify conditions
(a) and (b). Once again, in this exposition, we assume condition (a), and
concentrate on condition (b). Again, by (12.18), we can write

(12.22)
∫ ∫

X×A∞

Ωn+1
k = limT→∞

∫
X

φ̇(T )ωk(T )n −
∫

X
φ̇(0)ωk(0)n

We expand the second term on the right hand side, using the Tian-Yau-
Zelditch theorem as before. In view of (12.20) and the fact that the matrix
Ak is traceless, this term is O(k−1). By Lemma 6, we have

(12.23) limT→∞

∫
X

φ̇(T )ωk(T )n =
1
k
F

where F is the Donaldson-Futaki invariant. In particular, this shows that
this term is also O(k−1), establishing condition (b). Thus Theorem 27 fol-
lows from Theorem 25.

The construction of Theorem 25 is arguably canonical, and thus, given
a test configuration T , we have a canonical way of associating to any point
h0 ∈ K a generalized vector, namely the initial velocity vector at h0 of the
geodesic we have just constructed. In this sense, a test configuration defines
a generalized vector field on the space K of Kähler potentials. It would be
very valuable to be able to write this vector field down more explicitly in
terms of data from the test configuration T . Indeed, it would provide a
valuable model for how to relate behavior at ∞ to behavior well inside K, a
ubiquitous underlying theme in the problem of stability and constant scalar
curvature metrics.

12.3.4. Variations on the Ansatz and rates of convergence. Theorems 26
and 27 show that geodesics in K can be approximated by geodesics in Kk. It
is of great interest to understand how good such approximations can be, and
in particular, to analyze more precisely the approximation given in (12.10).
Replacing the potentials Φk in (12.10) with potentials Φ̃k associated instead
to the bundle Lk ⊗ KX , Berndtsson [12] has obtained another version of
(12.10) with C0 convergence and with precise error bounds O(k−1 log k). If
we stay instead with Φk, the sharpest results to date have been provided by
Song and Zelditch [132, 133], in the context of toric varieties:

Theorem 28. Let L → X be an ample toric line bundle over a compact
toric variety. Let h0, h1 be toric Hermitian metrics on L with positive
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curvatures ω0, ω1. Then the approximation Φk described in (12.9) converges
in C2(X) to the geodesic joining h0 and h1.

We note that, for toric varieties, the geodesic equation becomes a linear
equation for the Legendre transform of the potentials [63, 132], so that the
geodesic joining h0 and h1 is known to be smooth if h0 and h1 are smooth.

A similar sharp analysis of the construction of geodesic rays associated to
a test configuration by Theorem 27 has appeared very recently in [134]. In
particular, it is shown there that the regularity C1,1 for such rays is optimal.
Some remarkable and potentially far-reaching relations between the Ansatz
(12.9) for complex Monge-Ampère equations and ideas from the theory of
large deviations are also brought to light in this paper. Other unexpected
connections between approximations of the form (12.9) and classical topics
such as Bernstein polynomials and Dedekind-Riemann sums over lattice
points in polytopes can be found in [164].
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