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1. Introduction

The Public Health Service, and now the Environmental Protection Agency
(EPA), has operated a Continuous Air Monitoring Program (CAMP) since
January 1962 (see Larsen [7]). Under CAMP, air pollutant concentrations are
punched automatically into a computer tape every five minutes. Air pollutants
which are being monitored include carbon monoxide, various hydrocarbons,
nitric oxide, nitrogen dioxide, total oxidants (chiefly ozone), and sulfur dioxide.
Monitoring stations are located in Chicago, Cincinnati, Los Angeles, New
Orleans, Philadelphia, San Francisco, and Washington, D.C. Measurements are
recorded in parts per million (ppm), parts per hundred million (pphm), and
parts per billion (ppb), and micrograms per cubic meter (ug/m?). For example,
oxidant, a chief constituent of smog, is considered undesirable if its concentra-
tion reaches or exceeds 0.1 ppm.

In San Francisco, the Bay Area Air Pollution Control District (BAAPCD)
publishes, on a monthly basis, daily average high hour oxidant values as well as
daily peak oxidant values. Carbon monoxide values are similarly recorded.
However, sulfur dioxide values (in ppb) and particulate values (ug/m?) are
recorded only as 24 hour averages. Averaging times vary widely because of the
nature of the pollutant and the monitoring system used. For example, particulate
matter is measured by the high volume sampler. In this device, air is blown
through a filter which is then weighed after 24 hours. In the San Francisco Bay
Area, particulate readings tend to be made (for a 24 hour period) every other
day and ocecasionally every third day. Particulate readings are recorded at nine
locations in the Bay Area and there are wide variations in the data due to loca-
tion.

Table I, taken from the pamphlet “Air Pollution and the San Francisco Bay
Area” provides a summary of the main air pollutants, the 1969 California state
standards for these pollutants and reasons for controlling their concentrations.

For purposes of evaluating air quality, it is important to know the probability
of maximum pollutant concentrations exceeding state standards which are
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TABLE I

AR QUALITY STANDARDS—BAY AREA 1969

Substance

State standard

Objective

Oxidant

0.1 ppm for 1 hour

To prevent eye irritation and possible impair-
ment of lung function in people with respira-~
tory problems. Also to prevent damage to
vegetation

Carbon monoxide

20 ppm for 8 hours

To prevent carboxyhemoglobin levels greater
than 29,

Sulfur dioxide

0.04 ppm for 24
hrs. (particulate

To prevent possible increase in chronic respira-~
tory disease and damage to vegetation

>100 ug/m?)
0.5 ppm for 1 hour To prevent possible alteration in lung function;
(regardless of also odor prevention
particulate)
Particulate matter 60 ug/m3 ann. ge- To improve visibility and prevent acute illness
om. mean when present with about 0.05 ppm sulfur
No single 24 hour dioxide.
sample to exceed
100 ug/m?
Visibility reducing Visibility of not  To improve visibility
particles less than 10 mi.

when relative
humidity is less
than 709,

Nitrogen dioxide

0.25 ppm for 1
hour

To prevent possible risk to public health and
atmospheric discoloration

Hydrogen sulfide

0.03 ppm for 1
hour

To prevent odor

stated for various averaging times. We use extreme value theory to determine
the limiting distribution of maximum air pollutant concentrations as a function
of averaging time. Bounds on the location parameter of the corresponding
extreme value distribution are used to evaluate air quality. These are then used
to evaluate suspended particulate data.

2. Larsen’s results

R. I. Larsen and co-workers in a series of papers [6], [7] analyzed three years
of gaseous air pollutant data, from December 1961 to December 1964, for the
seven cities previously mentioned. They stated [6] two main conclusions:

(1) Concentrations are approximately lognormally distributed for all pollut-
ants in all cities for all averaging times.
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(2) The median concentration (50th percentile) is proportional to averaging
time to an exponent (and thus plots as a straight line on logarithmic paper).

Figure 1, [6], is a plot of three years’ data for Washington, D.C. illustrating
empirically Larsen’s second assertion.
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Concentration versus averaging time and frequency for nitrogen oxides in
Washington from 12/1/61 to 12/1/64.

Since sums of (independent) lognormal distributed random variables are not
distributed as lognormal random variables, Larsen’s first result might be con-
sidered suspect. Histograms of air pollution concentration data are highly
skewed, much as are life test data plots. One suspects that the data might as
easily be fit with gamma or Weibull distributions as with a lognormal distribu-
tion. The randomness in air pollutant concentrations results mainly from
meteorological phenomena. For this reason, the observations will not be inde-
pendent. However, observations averaged over long time periods and within a
given season of the year may be considered to be statistically independent and
identically distributed.

Recently, N. D. Singpurwalla has interpreted Larsen’s results using extreme
value theory [11]. However, he again approximates sums of lognormal random
variables by lognormal random variables.
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3. A mathematical model based on extreme value theory

Suppose n observations 1, &s, * + + , Ty T4, * * * , Tn are taken, say over a year
or a season. We assume, for now, that observations are independent with
distribution F. For Larsen [7], F is the lognormal distribution. He estimates
parameters from the empirical distribution. Let z; + #; + - -+ + i have distri-
bution F; so that F; is the k-fold convolution of F with itself. Consider averages
of length k ‘ '

ntmt ot e T L. Tt e 42
k ’ k o k

where k < n. Let
(3.2) A‘ﬂk =max{xl+xz+”'+x" xw—k+1+"'+xn}.

(3.1)

k ’ ’ k
We are interested in the behavior of 7, as a function of the averaging time, k.
Larsen [6] estimates the median of 7. (say M; ) by

(3.3) M= Ck™®

where b > 01is tabulated [6] as a function of various one hour standard geometric
deviations. These values were apparently computed empirically from data.
Fix k and let ax.» > 0 and 8., be a sequence of norming constants such that

G4 lim P [2e=Brr g,

n—o (2779
exists and is nondegenerate. Gnedenko [4] showed that, for nonnegative random
variables, there are only two possible limiting distributions (up to scale and
location) namely

(3.5) A(x) = exp {—e%} —o <z <™
and ‘
(3.6) B(z) = {° 220 a> 0.

exp {—2z} z>0

The lognormal, Weibull, gamma and most other commonly used distributions
lie in the domain of attraction of A; that is, there exist constants ax.» > 0, Bi.n
for these distributions such that (3.4) equals A(x). Marcus and Pinsky [9] give
necessary and sufficient conditions for a distribution to lie in the domain of
attraction of A. For some a > 0, F belongs to the domain of attraction of &, if
and only if 1 — F(x) = z—=L(x) where

. L(z)
®.7 mIie T
for each z > 0. (See [3], pp. 270-272). Intuitively, A seems the more reasonable
limiting distribution for air pollution concentrations and we make that assump-
tion henceforth. In particular, we assume that F; belongs in the domain of
attraction of A.

1
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Let G(x) = 1 — e for x = 0 and Ri(z) = G—'Fi(x). Gnedenko [4] (see [9])
showed that the norming constants could be expressed as

_ Ri¢'[log n]
(3.8) Bim = A
and
(3.9) o = Ri'[1 + log n] — Ry [log n)
. " %
Hence for large n,
(3.10) Plua 5 o]~ 4 [£2Bes]

where 8i,» and o, are given by (3.8) and (3.9). 8. is the location parameter and
also approximately the 37th percentile of A[(x — Bi.n)/ck,a]. Since ay,, is typically
small relative to B, the latter provides a convenient way of summarizing 7 ».
The distribution of A is tabulated by Owen [10].

The main difficulty in using 8. occurs in computing the convolution F. In
the case where

3.11 F f Twle

@10 @ =)o orey
that is, the gamma distribution, then, of course, F; is again a gamma distribution

and there is no problem in computing R;. For n large and k << n, Gurland [5] has
approximated By, as

(3.12)  Brn~ -1,5 [9 log (-(—057,0—?75) + 6(kx — 1) log (70; log n)]
- (A

k
where I'(-) is the gamma function. Hence,
(313) Bk.n ~ % log n = an_l

for large n. Since the right tail of the gamma distribution behaves like the
exponential distribution, (3.13) is not surprising. If we let

(3.14) F(x) =1— exp {_(%)115} for =0

then B . behaves like k~? in a sense to be made precise. Of course, b = 1 corre-
sponds to the exponential distribution. The lognormal distribution has an R(x)
which is first convex and then concave over adjacent intervals.

4. Bounds on 8;,,

We wish to obtain bounds on 8: s for distributions other than the gamma
distribution. To motivate this discussion, consider the Weibull distribution
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(3.14). Unfortunately, numerical methods are necessary to compute convolutions
of Weibull distributions. For this distribution,

(4.1) R@) = G-'F(z) = ()"’

Note that for 0 < b < 1, R is convex while for b > 1, R is concave. Many other
distributions useful in life testing, especially, have the property that R is convex
for certain parameter values and concave for others. [A distribution F for which
R is convex (concave) is called IFR (DFR) in Barlow and Proschan [2].] It is
easily seen that if B(0) = 0 and R is convex, then R is superadditive, that is,

4.2) R(z + ) 2 R@) + R@) for z,y 2 0.

This weaker property is sufficient to provxde one sided bounds on R,,(x) and
hence on Bi,a.

TaEOREM 4.1. If F is continuous, F(0) = 0 and R is superadditive (subaddi-
tive), then : Coee - :

(43) R@) S (2)6-TIR@] 220,

k=1
where Tx(z) = 1 — ¢~ [Z‘b j—;] for x = 0 is the gamma distribution and G = Th.
’B
Proor. Assume R is superadditive so that R! is subadditive, that is,
(44) Rz +y) £ R'(z) + R~'(y) ~ for z,yz 0.

Let Y;,j=1,2,---,n, be iid. random variables with distribution G(z) =
1 —e=forz = 0. Then X; = R~Y(Y;),j = 1,2, - - - m,arei.i.d. with distribution
F. Since B! is subadditive, ‘

4.5) 3 R ) 2 R (&)

Then ’

(4.6) 1 Fy(x) = P L};l X;> x] >p [R-‘ (,:Zl Y,-) > x]
-p Lz Y;> R(x)] |
S [R@] CnMR@].

j=0 N
Hence, Ri(z) £ G~'T:[R(x)] as claimed. The proof for the subadditive case is
similar. Q.E.D.
The proof for R convex was first noted by Erwin Straub [12] Note that (4.3)
is an equality if k = 1 or if R(z) = ax for some a > 0. e
The following theorem provides additional bounds.
THEOREM 4.2. If F is continuous, F(0) = 0 and R is convex (concave), then

@7 Ri) 2 (S)07T [kR( )] . for zz0.
The proof is due to Straub [12]. -
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We can now state useful bounds on:the extreme value location parameter,
Bk.n-

CoRroLLARY 4.3. IfFis continuéus’, F(0) = 0 and R s convex (concave), then
@8 LROTFG(ogn) S (2) fen S (2) B[ 15 'Glogn) |

Proor. Equation (4.8) follows from (4.3), (4.7) and repeated use of the fact
that (AB)~'(x) = B—'A~Y(x) where AB(x) means A[B(x)]; that is, functional
‘composition. Q.E.D. '

From (3.12), we see that for large n and k < n

“(4.9) I';'G(log n) ~ [—lbg (%) + (k — 1) log log n:l = Ci\n

so that for R convex (concave)

(4.10) PR S (2) Bun S (2) B %2
Exampre. If F(z) = 1 — exp {—(x/6)V?}, then R—(y) = 8y’ and

(4.11) Bi.n S 8(ce,n)k® ~ 8[log n]?k~?

Brm Z 8(Ck,n) k¥t ~ 8[log n]okt—?

if 0 < b < 1. For the Weibull distribution, we see the connection between the
power of the averaging time and the shape parameter of the distribution.

6. Bounds on ay,,
We could also provide bounds on

-1 _ -1
(5.1) = (1+logn]>c Ri(log n)

by using Theorems 4.1 and 4.2. However, the bounds will be less elegant than the
bounds on 8,.. Typically, a,, will be small and probability will tend to be
concentrated around the location parameter ;... When R is convex, an upper
bound on a,, is available.

TueorEM 5.1. If F is continuous with mean 8, F(0) = 0 and R is convex, then

(5.2) A S k—lzé for large n.

Proor. If R is convex, then R, is also convex by Theorem 5.1 on p. 36 of [2].
Since Ri'(z) is concave, it crosses the ray xz/k8 at most once, and from above.
R:i(x) crosses z/k6 exactly once since F; and G(z) = 1 — exp {—z/k8} have the
same mean, namely k6. Hence for large values of x, the slope of R;! is less than
the slope of z/kf. It follows that

(5.3) o, = Bi'[L+logn] — R~'[logn] _ 1

z =% ED.
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6. An example using suspended particulate data

As was mentioned in the introduction, suspended particulates are averaged
over a 24 hour period. The California state standard for particulate matter is
60 ug/m? annual geometric mean. (The geometric mean is used because of the
lognormal distribution assumption.) The state standard also specifies that no
single 24 hour sample is to exceed 100 ug/m?. A severe pollution episode occurs
if average particulate values remain high for several days in succession. Hence,
an interesting question to ask is, what is the probability that the maximum of,
say, three day averages over the course of several seasons will exceed any
specified amount? An alternative approach is to ask for upper bounds on f.a,
the location parameter of 7, Table II shows 24 hour average particulate
measurements recorded in ug/m? for San Jose, California during November, 1969.

TABLE 1I

24 Hour PARTICULATE MEASUREMENTS
FOR SAN JosE, CALIFORNIA
NoVEMBER, 1969

Day in Suspended
November particulates
1969 (ug/m?)

s 1 140
Sunday 2 .
M 3 .

T 4 122
w 5 .

T 6 39
F 7 .
S 8 .
Sunday 9 .
M 10 .

T 11 129
w 12 .

T 13 147
F 14 L.

S 15 31
Sunday 16 .

. M 17

T 18 .

W 19 132

T 20 124
F 21 .
S 22 .
Sunday 23 .
M 24 .

T 25 158
W. 26 .

T 27 105
F 28 .

S 29 . 140
Sunday 30 .
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They were taken from the BAAPCD Contaminant and Weather Summary.
The particulate ‘“‘season’ in the San Francisco Bay Area is roughly September
through December, and November, 1969, was unusually high. Notice that only
11 out of 30 days were actually recorded. The mean value for this month was
115 pg/méd.

Assuming a Weibull distribution for particulate values during this month, we
found the linear invariant estimates for § and b using tables computed by
Nancy Mann [8]. For this particular data, we found § = 127.74 and b = .2727.
In this case,

6.1) R@) = (”—;)""

is convex. There is no a priori reason, however, why b should lie in [0,1]. Letting
n = 270 days corresponding to three seasons of 90 days each, we computed the
upper bounds on B, for k= 1,2, ... ,7, shown in Table III. The lower
bounds on B, however, were unreasonably low in view of the data at hand.

TABLE III

Urrer BoUNDS ON Bin (n = 270)

Lo

(ug/m?)

176.25
145.89
130.68
120.76
113.61
108.07
103.62

IO O OO
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