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1. Introduction

This paper deals with certain new graphical techniques which may be of value
in exploratory biometry. In two senses, emphasis is placed upon the systemati-
zation of graphical procedures. One, a new theoretical result is obtained which
gives conditions under which nonparametric histogram procedures of Parzen
[11], Rosenblatt [13], Watson and Leadbetter [25], as well as others, can be
treated as a special case of Fourier series methods of Cencov [2], Tarter and
Kronmal [8], [19], [22], and Watson [24]. Two, by utilizing alternative weighted
Fourier series, most hitherto considered graphical procedures such as the histo-
gram, scatter diagram, and cumulative polygon are placed within a single com-
putational framework. This systematization is shown to provide a researcher
with both a comprehensive as well as a statistically and computationally efficient
approach to graphical data analysis.

In Section 6 of this paper, an example of the graphical display of biomedical
data is presented. The bivariate case, for example, generalizations of the scatter
diagram, is considered in detail and the biomedical variable pair, bone age and
chronological age, is used to demonstrate the application of this new graphical
procedure.

Before proceeding to the sections of this paper that deal with the systemati-
zation and exemplification of graphical methods in biometry, it may be worth-
while to offer a brief explanation concerning what we consider to be the particular
relevance of the new graphical procedures to biometry. By way of contrast, the
following quotation ([1], p. 1), provides a clear exposition of the purpose under-
lying what might be called the old graphical procedures:
"Time after time it happens that some ignorant or presumptuous member of a

committee or a board of directors will upset the carefully-thought-out plan of
a man who knows the facts, simply because the man with the facts cannot
present his facts readily enough to overcome the opposition. It is often with
impotent exasperation that a person having the knowledge sees some fallacious
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conclusion accepted, or some wrong policy adopted, just because known facts
cannot be marshalled and presented in such manner as to be effective."

This quotation clearly indicates that the primary function the older graphical
methods were usually designed to fulfill was the summarization of information
once this information had been obtained.

It is the contention of the authors that while the older methods emphasized
the expository, the newer graphical methods place an emphasis on the exploratory.
While it is certainly important for the biometrician or biostatistician to be able
to present his "conclusions," the process of reaching these conclusions would
now seem to be an equally important application of graphics.

Unquestionably, the major impetus leading to exploratory graphics has been
the availability of high speed digital computation. In particular, recent develop-
ments involving the transmission of digitized graphical information over voice
grade phone lines may substantially increase the potential for graphical presen-
tation. Unlike the now fairly common IBM 2250 graphics configuration, which
usually requires cathode ray tube (CRT) display units to be located within one
hundred feet of a large central computer, the new IMLAC and other terminals
will make interactive graphics economical for those with access only to a small
computer or to a distant time shared computer system.

Before providing details of several new biostatistical graphic methods, one
additional comment should be made. In a context where a new and substantially
more powerful means of implementation becomes available, it may be of value
to thoroughly reconsider traditional methods and the modes of thinking which
engendered them and were engendered by them. The histogram, fractile diagram,
scatter diagram, and other graphical tools were devised to meet certain specific
goals and to cope with a narrow range of practical limitations. Today it is rarely
necessary to group continuous data as a preliminary to the computation of
sample moments (and then apply Sheppard's corrections). The construction of
the traditional histogram based on the division of the range of the random
variable into class intervals may be similarly reconsidered.

In the next section, the recent evolution of the histogram will be described.
Fortunately, in this situation the methods which in our opinion are the most
suitable for biostatistical graphics will be shown to include histogram procedures
as a special case. However, it may not always be true that an elaboration of a
conventional procedure is the most suitable alternative when matched with new
means of implementation. For example, in Section 4, where an alternative to the
fractile diagram is considered briefly, and in Section 6 which primarily concerns
alternatives to the scatter diagram, it appears that the traditional graphical
methods may be supplanted or at least supplemented by substantially different
procedures.

2. Nonparametric and series graphical procedures

In this section, the symbolic or mathematical substructure of certain new
graphical procedures will be presented. Following an heuristic introduction to
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the generalized histogram, a nonparametric procedure, introduced in [13] and
investigated in [11], [25], [22], and others, it will be shown that for most practi-
cal purposes generalized histogram type nonparametric procedures can be treated
as special cases of the series procedures, investigated in [2], [8], [22], and [24],
as well as Schwartz [14]. Although this identity between nonparametric and
series procedures was previously mentioned in [8], it was not explicitly presented,
primarily because of the lack of a practical method for implementing this result.
However, new procedures devised by Tarter and Fellner [18] have recently been
found to make it practical and desirable to consider nonparametric procedures
from a series point of view.

The process of constructing a typical "old style" histogram can be considered
as consisting of two separate steps. In Step 1 (see Figure 1), the domain of
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FIGURE 1
Step 1.

interest is divided into equally spaced class intervals and it is ascertained into
which interval each data point is to be allocated. In Step 2 (see Figure 2), for
each data point Xi, j = 1, . . ., n, a rectangular block, with width equal to the
class interval length h and with height equal to (nh)-l is added to the pile of
blocks already piled within the class interval which contains Xi. It is apparent
that Step 1, which is the geometrical analog of moment computation using a
frequency table of grouped data, is necessary only if hand rather than machine
calculation is used. It is more sensible and efficient to center the jth data point
at the exact value assumed by Xj. The resulting irregularly packed pile of blocks
can be easily "compressed" numerically by even the smallest digital computer
(see Figure 3).
Once one revises Step 1, it is a simple matter to generalize Step 2 and consider

alternatives to the rectangular shape of the blocks or counters that compile the
contribution of the individual data points to the final graph of the density
estimator 7 (see Figure 4).
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Step 2.

At this point, it is advisable to switch from graphical to symbolic expression.
Let f(x) represent the joint probability density function of the p dimensional
random variate colunm vectors {Xj}, j = 1, * * *, n, where the Xj will be assumed
to be independent and identically distributed. Let k represent an arbitrary
column vector of integers or p-tuples and let N represent the set of all k. For a
fixed sample size n, a generalized histogram.A that is, nonparametric estimator
of f [13], can be expressed as

(1) ](z) = n jElAE8(X Xi).nj=1
If Step 1 but not Step 2 is revised so that the rectangular shape of each counter
is retained but the jth counter is centered at Xj, then

(2) n (Z) =I(Z)

Contribution Centered at the Data Point

FIGURE 3
Improving Step 1.
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Contribution Distributed Over the Entire Range

FIGuRE 4
Improving Step 2.

where H is a p dimensional rectangular parallelopiped within space EP with
diagonal corners 1t(Xi, X2, ... , £p), where £k = h/2 for aR k and IH represents
the indicator function of H.
We will now show that a broad class of nonparametric estimators can be

expressed as series estimators. The latter were introduced independently in [2],
[8], [22], as well as [24]. This result is somewhat surprising since at least two
authors, Schwartz [14] and Wegman [26], have stressed comparisons between
nonparametric and series estimators and, hence, given the impression that there
are fundamental mathematical and statistical differences between them. Theo-
rem 1 tends to indicate that for almost all purposes, nonparametric and series
estimators can be treated as being different forms of the same estimator. Thus,
in our opinion, the choice between the two alternatives should be made solely
on the basis of computational criteria.
THEOREM 1. Assume that we are interested in the estimation of the multivariate

density f over a finite subregion of the p dimensional Euclidean space. (Without loss
of generality we will define the support off to be the hypercube

(3) U--{X:-i < X. < s = l, * * *, p},
where X. is the sth component of X.) Assume that the p dimensional nonparametric
kernel, as defined in expression (1) has a uniformly convergent Fourier expansion
on the hypercube

(4) V = {X: -1 < X. < i, S = 1, P}
of the form
(5) 6,(X) - bk eXp {27rik'(X - R)},

kEIV

where R' = (- * * ,-q). Then at every point X of the support region of f, the
"nonparametric" estimator.? defined by expression (1) is identical to the "series"
estimator
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(6) E f3kbkexp {27rik'(X -R%
kEN

where

(7) f3k = I-IF_ exp {-27rik'(Xi - R)}.
j=1

The proof of Theorem 1 is obtained through simple algebraic substitution and
interchange of the order of summation. It is, of course, not necessary to expand
a about the point R. However, expansion about R helps to establish the identity
between expression (7) and the definition of Dk given in [22]. (In the remaining
sections of this paper we will use the earlier definition, that is, omit R and assume
V to be the usual unit hypercube.) It might also be noted that if the functionf
is defined as
(8) f(X) = fl~/n if X =Xi, j=1,*.*n,

(8) f(X) = {O/n otherwise,
then the Fourier series associated with f is

(9) ](X) -E' f3k exp {27rik'(X - R)}
kEN

and

(10) ](X) = fvA(Z) S.(X - Z) dZ,
where the integral is taken in the Lebesgue-Stieltjes sense. Hence, f can be
considered to be the convolution of f with 6,.
Now define the Fourier coefficient of the density f as

(11) Bk = fV exp {-27rik'(X - R)}f(X) dX
and the usual goodness of fit criterion [22], [25], mean integrated square error
(MISE), as

(12) J = E If(X) - (X)I2 dX.

By simple algebraic manipulation as in [24] and [18], one finds that the MISE
of nonparametric-series estimator 7 equals
(13) J(f, f) = E, {n1lbk12(1 - IBk12) + 11 - bk12IBk12}.

kEN

Consequently, forf and 8 as defined in the statement of Theorem 1, the prob-
lem of optimal choice of the "best" kernel a is identical to the problem of choice
of "best" weights, bk = bkPt, in expression (6). This problem has been considered
in [24] as well as [18] with the result that

(14) bt = 1 + (n - 1)lBkj 2

The estimation of bkPt is considered separately by Fellner and Tarter in [18],
where an estimator

Pt n - 1(15) ~~~~~bkn -1 - (n - 1)I3k 12
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is derived as an analog to the inclusion rule for the choice of bk = 0 or 1 investi-
gated in [22].

3. Computational considerations

It is not usually feasible to directly apply the series estimator derived in
Theorem 1. For biomedical and other applications, graphical procedures must
be considered from computational as well as statistical points of view. While
optimum weights (14) are estimable from given data, it is impractical to compute
more than a moderate number of these coefficients. On the other hand, the esti-
mators considered in [22] result in a very simple inclusion rule, namely, include
the coefficient Bk if and only if

(16) jBkl >

which is the dichotomous analog of weight (14) or, in the usual situation where
Bk is unknown, use

(17) lf3kl2 > 2 )

which is the dichotomous analog of weight (15).
Furthermore, since the asymptotically optimal kernel is the Dirac a function

(see [24]), the above procedure approaches optimality, that is, the MISE
approaches zero as n approaches infinity. Investigations with real data by
Raman [12] indicate that satisfactory results may be obtained by using the
above technique with sample size as low as 45 pairs of observations to estimate
certain bivariate distributions.

In contradistinction to series methods, the use of nonparametric estimates of
form (1) for graphical purposes requires that the entire file of data points be
either stored or reentered into the computer in order to graph ] at each specific
value of x. Since the estimator Ak and the inclusion rule (17) are symmetric
functions of the observations, there is no need to allocate memory space in the
computer for the storage of data. On heuristic considerations, we propose as a
stopping rule the termination of the search for a subsequence of coefficients (in
the bivariate case) as soon as two consecutive coefficients become negligible in a
horizontal and vertical scan of the array of coefficients.

Since the inclusion rule is the same for Bk and B_k, it becomes necessary to
compute and store the real and imaginary parts of only half the total number of
coefficients. This again results in saving of computer memory and time.
To further optimize the running time, we test the coefficients by the inclusion

and stopping rule after reading each set of 100 data points. Since the observa-
tions are assumed independent, these intermediate estimates are unbiased.
However, to be conservative we perform the test with the final sample size
substituted for n in the right side of inequality (17).
In a typical example with 1000 pairs of observations from a 50 per cent
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mixture of Gaussian distributions, the computation of the Fourier coefficients
took about nine minutes on an IBM 1130. The computational advantage of the
method will be evident by noting that in the above situation, the first 100
observations took three minutes, the second 100 took one and a half minutes,
the third 100 took one minute, the fourth and the rest took half a minute each.
Moreover, the economy of summarizing the characteristic density by the series
technique can be appreciated by noting that the number of coefficients needed
in the above situation was only 23. Studies performed by Kronmal and Tarter
[8] have shown that the number of parameters required in the univariate case
is less than fifteen for most distributions, sample sizes, and intervals of estimation.

Besides the advantage of series forms that is related to the condensation of
statistical information into a relatively few estimators, one might note a second
closely related computational property possessed by most series procedures and,
in particular, by expression (6). The statistics S are symmetric functions of the
observations and, hence, can be computed iteratively.
The utility of the iterative computation of fAk is best illustrated by the appli-

cation of univariate modifications of expression (6) to the problem of estimating
a cumulative distribution function. Consider that the process of graphing the
sample cumulative is almost identical to the process of ranking the data points.
This has led to investigations [8] and [21] which deal with the use of series
estimators as replacements for the sample cumulative.

In the next section, a general result is derived for which a special case, related
to estimation of the cumulative distribution function, has been considered by
Kronmal and Tarter [8]. It has been shown ([8], Section 7) that the same subset
of indices M, minimizes the MISE of estimator PM that minimizes the MISE of
density estimator fm. Specifically, in the notation of this paper, letting p = 1,
and x- represent the sample mean, and defining density estimator JM and cumu-
lative estimator PM, respectively, as

(18) JM(X) = 1 + X_ fAk exp {27rikx}
kEM

and

(19) PM'(x) = ( + x - ) + E (27rik) lf3k exp {27rikx},
kEm'

where 0 ¢ M or M', then if goodness of fit is measured in terms of MISE, the
set M should equal the set M'. Note that one can treat the term

(20) E_ (27rik)-YA exp {27rikx}

of expression (19) as a special case of the general series estimator defined by
expression (6), where

(21) bk ={r(27ik)-1 if kEr M',(21) = l,o ~ ~~~otherwise.
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4. Weighted series estimators of functions derived from the density

In Sections 4 and 5, the choice of specific predetermined sequences of bk will
be considered from the following two points of view. One, the researcher may
wish to obtain an estimate of a distribution density which possesses certain
desirable mathematical or statistical properties. (Weights chosen for this pur-
pose will be considered in Section 5.) For example, one may wish to constrain
a density estimator to be nonnegative. Two, the target of the estimation process,
rather than the density itself, may be a function derived from the density. For
example, as previously discussed, one may wish to estimate and graph the
cumulative distribution function. In this section, we will consider approaches
to the latter class of problems which may be desirable from both a computational
and statistical point of view.

It may be of value to distinguish between the previously described two classes
of problems by examining the MISE criteria associated with estimates of the
density as opposed to the MISE between a statistical construct derived from a
density and alternative estimates of this construct. If this latter construct can
be expressed as a weighted sum of the coefficients of the Fourier series expansion
of the density, then the following result applies.
THEOREM 2. Define

(22) g(x) - , bkBk exp {21rikX}
kEN

and
(23) d(x) - _ bkBk exp {27rik'x},

where {bk}, k E N, is a preselected sequence of complex valued constants, N, Bk
and ak are as defined in Section 2, and M c N. Then the same set M minimizes
the MISE J(g, #) for all sequences {bk}.

PROOF. From Theorem 1 of [22], one finds that

(24) J(g, 0) = E Var (bkBk) + E - b'kBkI2.
kEM kE(NnM)

Therefore, the error increment A4Jk due to adding a term ko c M (as defined in
Corollary 2 [22]) equals
(25) bk((Var Bk) - iBkI2).
Theorem 2 follows from the observation that for all nonzero bk, the sign of
expression (25) is identical to the sign of

(26) (Var Nk) - IBkJ2.
It is easily seen that estimates of density derivatives can be obtained, for

which Theorem 2 applies. Also, consider the problem of estimating the function

(27) 9(x) = f(x) + C Of(x),Oix1
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which may (at least in the univariate case) be of value in empirical Bayes in-
vestigations (here xJ is the sth component of the vector x). To estimate g(x),
one might choose estimator D(x) of expression (23) with
(28) bk = 1 + 27riCk.,
where k. is the sth component of p-tuple k. If MISE is chosen as the measure
of fit of 0 to g, then Theorem 2 implies that M can be determined by means of
inclusion rule (17). Naturally, it is also possible to modify "Fenlner weights"
(15) to obtain a more statistically efficient estimator of expression (27). The
decision of whether to use an inclusion rule or a weighting procedure should, of
course, take into account computational as well as statistical properties of the
alternative procedures.
A function derived from the density, which differs substantially from the

integrals or derivatives of f, will be considered in the remainder of this section.
Define g(X) (x) as a univariate special case of expression (22) with
(29) bk = exp {2(irkX)2}.
Consider the following special case of the Fourier coefficients Bk of density f,

(30) Bk = E pa exp {2k7rk4L - 2(7rko8)2}.8=1

If all values of g,. and o, are sufficiently small, then f closely approximates a
superposition of c Gaussian densities with component means equal to {Ms},
s = 1, ... , c, component standard deviations equal to {v,,}, s = 1, *--, c,
and mixing parameters {pa}, s = 1, ... , c. Moreover, assuming X < a. for
all s, the function g(0)(x) closely approximates a superposition of Gaussian den-
sities which differs from f(x) only in that the set of component variances equals
(31) {(a28 _ 2}S = 1, I- C.

Thus, if f3k is obtained from independent and identically distributed data arising
from a superposition of c Gaussian densities, one can estimate g(l)(x) by sub-
stituting the special case of bk given by expression (29) into expression (23) and
then determining the set M by means of inclusion rule (17).

It may be of interest to mention that a very slight modification of the method
of decomposing superpositions described above can be shown to be identical to
a particular form of nonparametric density estimation procedure considered in
[11] (see p. 1068) and elsewhere. From expression (5), one finds that

(32) bk = fS6(x) exp {-27rik'(x - R)} dx.

If one considers the univariate Gaussian kernel a (see [11], p. 1068), one finds
that bk of expression (32), that is, a constant times the Gaussian characteristic
function evaluated at t = -27rk, is identical to expression (29) with X = ai
(where a- is the standard deviation of the Gaussian kernel). Hence, the method
for decomposing superpositions of distribution functions described in this section
and considered from other points of view in [3], [4], [7], [9], [10], and [15] is
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closely connected to the nonparametric method for estimating densities based
upon Gaussian kernels. In fact, asM approaches N the specific series estimator 0
with bk given in expression (29), which is used to decompose superpositions of
Gaussian densities, approaches the specific nonparametric estimator (1) with 6,,
set equal to a complex Gaussian function with p = 0 and o- = Xi. Interestingly,
this particular choice of 8 reduces the variances of superimposed Gaussian com-
ponents while a choice of 8 with a real positive variance can be shown from
expression (10) to cause the variance of the density estimate to be greater than
that of the density which is estimated.
Although functions of form g of expression (22) are of interest and of practical

value in biomedical investigations, the display of composite functions, especially
transgenerations of f and F are probably of primary biomedical utility (at least
in the univariate case). Consider, for example, the ratio of f(x) to the survival
curve 1 - F(x), that is, the hazard function or, in some applications, the age
specific death rate.

It would not be appropriate to give an extensive survey of composite graphical
functions here, and hence, the remaining sections of the paper will deal with a
discussion and examples of the use of 0 with various choices of bk for the purpose
of estimating a multivariate density. However, before leaving the topic of com-
posite functions and statistical constructs derived from the density, two general
comments seem appropriate.

One, the inclusion rule given by Theorem 2 applies to derived functions g of
expression (20). Composite functions such as the hazard, fractile [6], confidence
band [16], transformation selection [20], [17] functions may make use of com-
binations of derived functions 0. However, there is no guarantee that the par-
ticular choices of 0 which are optimal (even in the weak sense of inclusion rule
(16)) for the purpose of estimating various choices of g singly will, when com-
bined to form a composite estimate, be optimal.
Two, the computational convenience of the various estimators, which can be

put into form 0, makes it feasible to try new and more complex composite func-
tions. For example, Tarter and Kowalski [20] have found graphs of the function

(33) 0,1-1 P(XA(x)
(where 0 and b represent the standard Gaussian and ? and P the estimated
unknown density and cumulative) to be superior in many instances to the usual
fractile diagram for the purpose of selecting a transformation of data to nor-
mality.

5. Series density estimators utilizing a predetermined sequence of weights
In this section a hybrid form of density estimator will be taken up. Consider

the case where one is interested in density estimates that are constrained to
satisfy certain mathematical properties, for example, be nonnegative. Alter-
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natively, suppose that one wishes to find a computationally convenient esti-
mator that corresponds as closely as possible to a conventional statistical form,
for example, a histogram that utilizes rectangular blocks. We will consider in
this section a hybrid or compromise technique that tends to retain certain
of the above prespecified mathematical properties while it approaches the statis-
tical and computational efficiency of the series estimators introduced in Section 2.

Consider a specific nonparametric estimator, or equivalently, a series estimator
O with coefficients bk chosen to satisfy some mathematical constraint. For ex-
ample, let I be defined by expression (1) with An given by expression (2). Here

(34) 1. ~~~~~~sin'rk'h
(34) bk = 7,k'h
Alternatively, if one wishes to estimate a density f with an estimator I that is
constrained to be nonnegative one might, in the univariate case, choose coeffi-
cients bk to be the Fejer weights

b {(1 k) if mkl<m
(35) b

O elsewhere,
where m is some predetermined constant. Fejer forms of series estimators are
considered in the univariate case in [8] and in the multivariate case in [16].

This section deals with density estimators a of form (23) with predetermined
sequences of weights bk, for example, as given in expressions (34) or (35). Theo-
rem 3 concerns the choice of an appropriate inclusion rule (choice of set M)
for such density estimators.
THEOREM 3. Let a be any prespecified kernel whose Fourier expansion (as-

sumed, as in Theorem 1, to converge in V) generates the weight sequence {bk}.
Then the weighted series estimator 0 of form (21), chosen so that an index ko E M
if and only if2
(36) n'llbk,12 < IBkI2(1 + n-1b1 2- 11 -bk-11),
has at least as small a MISE as the nonparametric estimator obtained by substituting
a into expression (1).
The proof of Theorem 3 follows directly from MISE expression (13). Note

that if we assume that 8 is a symmetric kernel, then the bk are all real and the
above inequality reduces to

(37) +k 2nIBkj2bk < 1+ (n - 1)jBkI2
which is equivalent to

(38) bk < 2b°tPI
(see expression (14)).
An alternative interpretation of inclusion rule (37) can be obtained as follows.

Define 8oPt(z) by using the values of bkPt given in expression (14) as the coeffi-
cients of the Fourier expansion of 6oPt(z) (see expression (5)). Consider that by
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Parseval's theorem the integrated square error ISE between 5 and 5opt that is,
J (a(z) - 5Ot(z))2 dz, equals E kEN (bk - bkPt)2. Hence, to minimize the ISE one
should include index k in the set M if and only if (bk - bkPt)2 < (b, t)2, that is,
if bk < 2bkPt, which is identical to inequality (38).

It is, of course, necessary to check whether estimate O, to which the above
inclusion rule is applied, retains the mathematical properties of the nonpara-
metric estimators based upon 5. However, empirical studies with prespecified
sequences of bk, for example, Fejer weights (35), have tended to show that
guaranteed possession of "mathematical" property, for example, nonnegativity,
can usually be purchased only with an unacceptable increase in MISE. Thus,
the hybrid procedures considered in this section may offer a reasonable com-
promise in certain applications.
While the choice of prespecified Fejer weight sequence (35) in conjunction

with inclusion rule (38) appears to be a useful graphical method, we are not at
all certain of the value of prespecified sequences of bk, as given by expressions
(34) and (29), for the purpose of density estimation. Like most procedures which
arise from nonparametric estimator (1), the effective use of weights (34) and
(29) depends on the estimation of at least one parameter, for weight (34) the
class interval length h and for weight (29) the kernel standard deviation X.
Although it is, of course, possible to estimate the parameters of "prespecified"
bk by fitting bk, considered as a function of h or X, to bspt, this seems to be a round-
about way of handling the estimation problem. Hence, in the example which
will be considered in the next section, estimation is implemented from the series
point of view, using the computational procedures described in Section 3.

6. Biomedical application

In this section, we consider a specific application of the computational methods
outlined in Section 3, for estimating a bivariate density.
The basic data used in these calculations were measurements of chronological

age and bone age of children included in the Child Development Studies (Kaiser
Foundation, Oakland, California). The children included were a 10 per cent
sample, stratified by sex, race, and height (classified as tall, medium, short).
For purposes of illustration, we have included here the data for white males of
medium height. The particular bone selected is hamate and the bone ages are
determined by matching the X-ray picture of the child with the standard
radiological atlas prepared by Gruelich and Pyle [5]. The values read in are
close to within three months of the actual bone age since the graduation of the
atlas is in intervals of three months.
The program computes the bivariate probability density nonparametrically

from the data, using the technique of Fourier approximation of multivariate
densities (see [22]). The x variable is the chronological age in months and the
y variable is the bone age in months. The lower and upper limits are obtained
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by calculating the maximum and minimum values and choosing the closest
number in tenths. Table I gives the Fourier coefficients calculated from the
data for the upper half plane. The values for the lower half plane can be obtained
as conjugates of the values on the upper half plane.

TABLE I

HAMATE BONE AGE STUDY, GROUP II: WHITE MALES, MEDIUM HEIGHT
X lower = 30.0, X upper = 130.0, Y lower = 20.0,
Y upper = 130.0. Number of observations = 98.

Fourier coefficients (upper half plane)
X coord Y coord Real Imaginary

-3 1 -0.16353922E-04 0.79695746E-05
-3 2 -0.11921363E-04 -0.73126666E-05
-2 0 -0.26822795E-04 0.13461094E-04
-2 1 -0.16394707E-04 -0.22885004E-04
-2 2 0.40507031E-04 -0.24095239E-04
-1 0 -0.17124028E-04 -0.31696021E-04
-1 1 0.75077390E-04 -0.18168164E-04
-1 2 -0.22633103E-05 0.23782737E-04
0 0 0.90909103E-04 0.OOOOOOOOE 00
0 1 -0.12383168E-04 0.32439042E-04
0 2 -0.18815233E-04 -0.34065936E-06
0 3 -0.13230197E-04 -0.13690030E-04
1 0 -0.17124028E-04 0.31696021E-04
1 1 -0.27838021E-04 -0.83455852E-05
1 2 -0.52113328E-05 -0.19308896E-04
2 0 -0.26822795E-04 -0.13461094E-04
2 1 0.41055191E-05 -0.16014244E-04

Table II shows the bivariate probability density calculated from the Fourier
coefficients for the grid of points within the specified limits. The corresponding
scatter diagram for these limits are shown in Table III. The limits chosen for
the display of scatter diagram and bivariate density are not the same as the
ones used for the calculation of the Fourier coefficients, which accounts for the
discrepancy in the number of observations shown on the scatter diagram. Since
total probability density is always unity, the appropriate actual density height
in Table II can be obtained by dividing the number shown by the scale factor
given in the title.
For ease of visualization, the table was converted to a contour diagram which

is shown in Table IV. In the preparation of this table, numbers to be displayed
were truncated to tenths. The table displays only those numbers starting with
even second digits which are greater than or equal to 20.
By abstracting the essential features of the scatter diagram, the contour chart

clearly exhibits distributional features of the data. For example, Table IV in-
dicates the possible decomposition of the data into a bivariate normal distribu-
tion and a degenerate uniform distribution.
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Table V shows the empirical conditional probability distribution.(YiX) (ob-
tained by dividing the bivariate probability density by the marginal density).

Also shown, in Table VI, are the estimated regression E(YIX), the standard
deviation, mode, median, and the two quartiles of I(YIX).

TABLE VI

ESTIMATED MODE, QUARTILES, MEDIAN, REGRESSION, CONDITIONAL STANDARD
DEVIATION, VARIANCE, AND CORRECTION

X Mode Q(1) Q(3) Median E(YIX) S.D. V(YIX) Correction

35.0 34.6 31.7 36.8 34.3 35.0 6.1 38.20 0
38.4 34.6 31.6 42.9 33.6 35.7 6.9 47.79 2
41.8 34.6 31.5 42.2 33.3 36.1 7.2 52.19 5
45.2 34.5 30.0 44.2 37.8 43.4 20.7 432.55 1
48.6 38.3 34.7 55.1 47.4 49.3 21.7 473.22 0
52.0 38.3 39.6 59.0 50.6 49.3 14.8 220.58 2
55.4 64.0 41.9 62.2 51.2 53.9 14.2 202.41 1
58.8 63.9 49.3 66.2 60.2 58.8 13.0 171.01 0
62.2 67.7 56.5 71.1 63.4 63.8 9.9 99.70 -1
65.6 67.6 60.3 69.7 68.5 66.5 8.3 69.52 0
69.0 67.5 65.4 75.8 66.9 68.2 7.6 58.18 0
72.4 71.4 63.3 73.9 72.2 70.4 7.4 55.68 1
75.8 71.2 68.7 79.1 70.3 72.3 7.5 57.16 3
79.2 75.0 66.7 81.5 74.3 74.2 14.2 203.40 4
82.6 78.6 70.7 88.1 83.3 78.9 18.4 339.89 3
86.0 89.6 73.2 96.8 84.7 84.3 18.6 346.65 1
89.4 97.0 82.7 100.1 94.5 89.4 17.3 301.94 0
92.8 96.9 85.2 104.2 97.9 94.1 15.1 230.55 -1
96.2 100.6 89.2 109.1 102.4 97.4 13.8 190.81 -1
99.6 104.4 93.2 106.7 99.7 101.1 10.6 114.47 -1
103.0 104.3 98.0 111.9 104.8 103.5 10.4 109.38 0
106.4 104.2 95.7 110.1 102.8 105.6 10.1 102.50 0
109.8 108.0 100.8 115.3 108.1 107.8 9.9 99.85 1
113.2 107.9 105.9 113.6 106.2 109.9 9.6 93.53 3
116.6 111.7 104.9 119.6 112.3 108.7 17.5 307.17 7
120.0 111.6 101.4 119.7 113.3 98.2 32.1 1032.62 21

Biologically, for the average normal child the bone age should be the same as
the chronological age. In practice, however, there are sources of error due to
observer bias. Further, the atlas on which the assessments are based was cali-
brated 40 years ago and, hence, the possibility of a secular trend on the osteo-
logical maturation of California's children cannot be ruled out. Consequently, a
correction at each age to within three months can be obtained from the difference
of the chronological age and the regression estimate shown in the last column
of Table VI. After applying the correction to the original data, we then recom-
puted the bivariate distribution. The corresponding results are shown in Tables
VII, VIII, and IX. It can be seen from TableX that the second order corrections
are now negligible, at least at those levels where there are observations. Further,
the contour chart after the correction shows a sharper segregation of the com-
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TABLE X

ESTIMATED MODE, QUARTILES, MEDIAN, REGRESSION, CONDITIONAL STANDARD
DEVIATION, VARIANCE, AND CORRECTION

X Mode Q(1) Q(3) Median E(YIX) S.D. V(YIX) Correction

35.0 34.6 31.4 36.6 34.0 35.2 6.1 37.78 0
38.4 34.6 31.6 42.9 33.6 35.7 6.9 47.71 2
41.8 34.6 31.5 41.8 33.2 39.2 18.9 359.02 2
45.2 34.6 31.2 40.2 39.6 40.8 20.3 414.60 4
48.6 34.5 36.1 58.1 42.3 46.6 20.3 415.92 1
52.0 38.3 33.7 65.7 44.9 48.7 15.6 244.81 3
55.4 67.7 36.5 67.9 51.2 53.8 15.9 253.14 1
58.8 67.6 49.3 72.3 59.0 59.4 13.7 187.86 0
62.2 67.6 55.3 70.3 62.3 64.7 9.9 98.65 -2
65.6 67.6 59.6 76.7 68.0 67.0 8.2 67.57 -1
69.0 67.5 65.3 75.8 66.9 68.3 7.5 57.15 0
72.4 71.4 63.7 74.7 72.9 69.6 7.0 49.84 2
75.8 71.3 62.1 80.1 71.2 71.4 7.5 56.62 4
79.2 75.0 68.1 77.3 76.4 72.1 12.4 154.25 7
82.6 74.9 72.7 84.8 79.1 76.7 16.4 271.27 5
86.0 82.3 75.2 98.4 86.9 82.9 18.2 334.86 3
89.4 93.3 76.9 100.4 88.1 88.6 17.4 304.33 0
92.8 96.9 85.9 104.0 98.0 93.9 15.4 237.68 -1
96.2 100.6 88.7 108.5 101.9 98.2 13.2 175.87 -2
99.6 104.3 92.6 106.2 99.2 101.6 10.7 114.89 -2

103.0 104.3 97.4 111.4 104.2 104.1 10.4 108.39 -1
106.4 108.0 102.4 117.0 109.6 106.1 10.0 100.14 0
109.8 107.9 100.3 115.1 107.7 108.2 9.8 97.14 1
113.2 107.9 105.7 113.6 113.4 109.9 9.5 90.45 3
116.6 111.7 105.3 120.2 112.7 108.3 16.7 280.88 8
120.0 111.7 100.6 120.7 106.3 101.0 27.3 748.79 18

ponents. Also, it will be noted that the quartiles after correction give a more
reasonable range between the Po.26 and Po.75 quartiles.

> K K K K
The authors would like to thank Professor J. Yerushalmy for making avail-

able the data utilized in Section 6 and Dr. W. Feilner and Dr. R. Brand for
suggestions concerning statistical aspects of this paper.
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