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1. Introduction

This paper is a survey of some recent work which generalizes standard results
in the Bellman-Harris single type critical age dependent branching process,
especially the asymptotic probability of nonextinction of the process, and a
limiting conditional exponential limit law. Also included are new results com-
bining existing extensions and suggestions for further research and techniques
in relaxing conditions on the processes.

2. Definition

The classical Bellman-Harris age dependent branching process ([8], Chapter
6) is defined as follows. At time 0, one new born cell starts the process with
nonlattice lifetime distribution function G(t), with G(0) = 0. At the end of its
life, the cell disappears and is replaced by k daughter cells with probability pk,
k = 0, 1, 2, 3, - - - . Each daughter cell behaves independent of all other cells,
and has the lifetime distribution G(t). Denote by h(s) the generating function

(2.1) h(s) = PkS
k=0

If h'(1)-m, the mean number of daughter cells born to a parent cell, then
the cases m > 1, m = 1, and m < 1 form a trichotomy for the behavior of the
process in crucial respects, where m = 1 is the critical case (see [8]). We will
consider now results for Z(t), the number of cells alive at t.

3. Early results

'When m = 1, h(2)(1) > 0 and h(l)(1) < , and G(t) = 1 -exp {-Xt},
Sevast'janov (see [8], Chapter 5) showed, by consideration of a differential
equation satisfied by the generating function F(s, t) --k-o P[Z(t) = k]sk, that

(3.1) lim tP[Z(t) > 0] = 2[Xh(2)(l)]-1
and
(3.2) lim P[2(Gh(2)(1)t)-1Z(t) > ujZ(t) > 0] = exp {-u},

for u > 0.
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The first generalization of the result (3.1) was a basic paper by Chover and
Ney [1] which stated that form = 1, 1 - G(t) = 0(t-3), and h(8)(1) < oo, that

2f u dG(u)
(3.3) limtP[Z(t) > 0] h(2)(1) --b.

Goldstein [7] has obtained this result by using the corresponding discrete time
result first given by Kolmogorov and Yaglom (see [8], Chapter 5) to approximate
the P[Z(t) > 0] above and below.
By means of Abelian and Tauberian arguments satisfied by the integral equa-

tions for E(Z-(t)), n 2 1, Weiner [20] showed that

(3.4) lim t-(&-')E[Zn(t)] = n!b-(n-

Since

(3.5) E[(bt-1Z(t))"IZ(t) > 0] = E[bt-'Z(t))"] I
P[Z(t) > 0]

by (3.4) and (3.5) above, and since n! is the nth moment of an exponential law
with parameter 1, Carleman's moment theorem yields that

(3.6) lim P[bt-hZ(t) > ulZ(t) > 0] = exp {-u}.

Sevast'janov [17] also claimed to prove (3.3) and (3.6) by different methods,
but his proof contained a gap [20] which was acknowledged and presumably
corrected.

4. One dimensional generalizations

Durham [3] has defined a generalization of the age dependent branching
process in which each cell is allowed to give birth to daughter cells throughout
its, lifetime. This process is the same as the classical Bellman-Harris process
except that we define N(t) to be the number of daughter cells born to the initial
parent cell by time t,.if the parent cell lives longer than t. Assume N(t)- T N < oo,
where N is a bona fide random variable. The case EN = 1 corresponds to the
critical case.
Let M(t) =EN(t) and A _E(N(N- 1)). Ifa = Ago u dG(u)/(Jo t dM(t))

andml = go u dG(u)/ f t dM(t), then

(4.1) lim t-("-l)E[Z-(t)] = M!mia"l1.
t+,

Suppose that Xo > E[N(N - 1)] - E[N(t)(N(t) - 1)] = 0(t-2) and that 1 -
G(t) = 0(t-2). Then, using an extension of the method of Chover and Ney [1],

(4.2) lim tP[Z(t) > 0] = b
t--o
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These two results (4.1) and (4.2) along with ENn < co for all n 2 1 yield, by
the argument in (3.5), that

(4.3) lim P[(at)-lZ(t) > uIZ(t) > 0] = exp {-u}.

Fildes [5] -has considered an extension to the Bellman-Harris process, where the
lifetime distributions of different generations may differ, with the lifetime distri-
butions of each member of the nth generation denoted by Gn(t). The basic results
are that for m = 1, 1 - G-(t) = o(2-) -uniformly in n, lim"_<Gn(t) -* G(t)
with f= t dG(t) and if X. are independent with P[X. < t] = Gf(t), and
(1/n) 17=i Xi --" p and if h(n)(1) < X for all n, then if b = 2,u(h(2)(1))-1, and
letting ZI(t) denote the number of cells:alive at t starting with one cell newborn at
t = 0 of generation 4, then

(4.4) lim tP[Z,(t) > 01 b

and

(4.5) Iim P[bt-hZj(t) > uIZ(t) > 0] = exp {-u}.

The proofs of. (4.4). and, (4.5) are formally the same as for (3.4) and (3.6). We
recall that Durham's proofs for (4.2) and (4.3) were along these lines.

Hence, one may state a theorem combining the extensions of Durham and
Fildes as follows. We consider an age dependent branching process with gener-
ation dependent cell lifetime distributions and with each cell giving birth to
offspring throughout its lifetime. Explicitly, the process starts at t = 0 with one
new born cell of generation t. Let Ne(t) be the number of daughter cells born
to a parent cell of generation C, given that the parent cell is alive at t. Then we
can state the following.
THEOREM 4.1. Assume N4(t) T Nu< X as t T X, and that all C and {Ni}

are independent random variables. Assume GI(t) G(t) as t -*00, with ,0 <,
t dG(t) <0, and that 1 -G (t) o(tlh2) uniformly in t as t -* 00. Assume

that NI(t) -*N(t) for all t as4 * oo and that limg 0 N(t) --lime . N4 = N < x0
a bonafide random variable. Assume further that if {X.} are independent random
variables with P[Xn < t] = Gn(t), that (1/n).- X, p. Assume that limn_o
(1/n) Et-, N4 = EN = 1, the critical case.

Define M(t) EN(t); b =' t dM(t); ml = ,/b; A = E(`N(N- 1)); and
a = mIA/b. Let E(NI(t)(NI(t) - 1)(NI(t) - 2)Icell lives longer than t) = B4(t).
IfB(t)- Be <X as t-X andBe- Bast x,andifENk <00 for all k 1,
B - BI(t) = o(1/t2) uniformly in tfor t sufficiently large and 1- (4(t) = o(l/t2)
uniformly in C for t sufficiently large, then

(4.6) lim tP[Z4(t) >0] b
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and
(4.7) lim P[(at)-'Z1(t) > uJZ1(t) > 0] = exp {-u}.

t-4ao

Sevast'janov has considered an extension of the Bellman-Harris process to
the case of variable offspring generating functions depending on the age at death
of- the parent.

Let a Bellman-Harris process start with one cell at time 0 with lifetime distri-
bution G(t). If the parent cell dies at time u, then n independent daughter cells,
each proceeding as the parent cell with lifetime distribution G(t), are born with
probability pn(u), where pn(u) > 0 and En-o pn(u) = 1 for all u > 0.

Let h(u, s) = En%-O p.(u)S . Let
ah

a(u) = d-'
a2h(4.8) b(u) =

c(u) = 3-h
Then Sevast'janov has shown by Taylor expansions and approximations in the

basic integral equation for F(s, t) = ,_; P[Z(t) = k]sk the following results.

THEOREM: 4.2 [18]. Assume J0 a(u) dG(u) = 1 (critical case); Xo >

f0 b(u) dG(u)> o;f' u3 dG(u) <Co ;jo uc(u) dG(u) <00; andfo c(u) dG(u) <X.

Then

2] fo, ua(u) dG(u)
(4.9) lim tP[Z(t) >] = 2 a0f b(u) dG(u)
PTHEOREM 4.3 [19]. In addition to the assumptions of Theorem 4.2, assume

further that

EZ(t) f u dG(u). f a(u) dG(u)+
(4.10) 0fa ua(u) dG(u) +

[f b(u) dG(u)(f udG(u))2 (fo a(u) dG(u))

( ua(u) dG(u))a
+ B2 + o(1),

where B2 is some constant, then

(4.11) lim [E(Z(t)Zf>) > UjZ(t) > o] = exp {-u}-

It is conjectured that adding the assumption that (Ona/s")hla.. < oo for all n,
and lumping together the extensions and assumptions of Fildes, Durham, and
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Sevast'janov into a generalization of the Bellman-Harris critical age dependent
branching process, to allow for generation dependent lifetimes, births of daughter
cells throughout the life of a parent, and parent age at death dependent daughter
cell generating functions, one could formulate a theorem giving that

(4.12) lim tP[Z(t) > 0] = c

and that

(4.13) LE(Z(t)Z(t)>O) > U=Z(t) > O exp {-u},

but this will not be attempted here.

5. Multitype processes

We will consider a branching process withm > 1 distinguishable particle types
as follows. At time 0, one newly born cell of type i is born, i = 1, 2, . .. , m.
Cell type i lives a random lifetime with continuous distribution function Gi(t),
G,(0+) = 0. At the end of its life, cell i is replaced by ji new cells of type 1, j2
new cells of type 2, * - *, jm new cells of type m with probability Pij,....j..., and
we define the generating functions

(5.1) hi(si, s.,* m) -hi(s) = pi..j,-- .' .'** apiis=
for i = 1, ***,m, where s = (s,, S**,s j)(j=(i*, j,) and si 'St,
s;. Each new daughter cell proceeds independently of the state of the system,
with each cell type j governed by Gj(t) and hi(s).
We will assume second moments of hi(s), i = 1, * , m to exist. Define mij =

(ahj(s)/s,j)I l,, where 1 = (1, * * *, 1), an m X 1 row vector, and let M = (min)
be the m X m matrix of first moments of the offspring distribution. Assume
min,> 0 for all i, j.
DEFINITION 5.1. Let Zij(t) = number of cells of type j alive at t given that the

process started at time 0 with one new cell type i, 1 . i, j .< m.
DEFINITION 5.2. Let Zi(t) = (Z,i(t), Za2(t), *. . , Zi,(t)) denote the row vector

of the numbers of cells alive at t given that the process started at time t = 0 with one
cell of type i.
DEFINITION 5.3. Define

(5.2) PM(t) = P[Zi(t) > 0].
We have from Frobenius' theory [12] that, assuming

(5.3) M = (i,) ahi(l)' 0 < mi, < a>,

is a positive matrix (it suffices that Mn > 0 for some n), we can make the basic
assumption of criticality.
DEFINITION 5.4. Let p be that positive eigenvalue ofM such that p 2 lvi, where

v is any other eigenvalue of M.
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The basic assumption of criticality of the branching process throughout this
paper is p = 1.

It follows that there are strictly positive eigenvectors u > 0, v > 0 such that
m

(5.4) Mu = u, vM = v, Eui Q u8l = 1
i-l

and

(5.5) u v- £ U.v,= 1.
i=l

ASSUMPTION 5.1. The second moments of h(s) -(hi(s), * , hm(8)) exist at 1.
DEFINITION 5.5. The sum

(5.6) Q(U) 1 E u2h(1) vi <2 i 1 x1r-1i Sasts,
and is strictly positive.
ASSUMPTION 5.2. The partial derivative

(5.7) 02h1(1)- aijk > O for all 1 . i, j, k S m.

ASSUMPTION 5.3. All moments of hi(s) exist at a = 1.
ASSUMPTION 5.4.

(5.8) lim t2(1 - Gi(t)) = 0, 1 S i s m.

DEFINITION 5.6. Let p, - |O t dGi(t).
Then we have the following.
THEOREM 5.1 [21]. Under all assumptions except Assumption 5.3 we have,

(5.9) lim tPi(t) = ( lA,leue) (u
e3-l Q(u)

This behavior of the extinction rate contrasts with the cases p > 1, where the
process becomes extinct with probability less than one [17], and with the case
p < 1, where the process becomes extinct with probability one at an exponential
rate [16].

Goldstein [7] has also obtained this result, but by using upper and lower
bounds for Pi(t) based on the corresponding multitype Galton-Watson result in
discrete time [11].
Using (5.9), one can then, by moment methods similar to the one dimensiona

case, and a Frobenius decomposition used by Mode [13], obtain Theorem 5.2.
THEOREM 5.2 [21]. Let Zi(t) be the vector of the number of cells alive at time t,

i = 1, 2, - , m, starting with one new cell of type i in a critical multitype branching
process satisfying all the assumptions stated. Then for all r = (r,, * *, rm), ri 2 0,
i =1, * **,m,

>rIZ~(t) > = e~
E U /jA rkl(5.10) lim p [Z(t) >r,jZi( ol>0] = exp 1 ) max -t->e t Q(u) 1:kSmVkAkJ
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A special case of these results has been obtained by Nair [15] (see also
Mode [14]).

6. Related work

Goldstein's heavy use of imbedded Galton-Watson process results to obtain
similar results for the corresponding age dependent cases suggests that this
method perhaps can be used to obtain further results on other extensions of the
Bellman-Harris process from corresponding discrete time results.
We briefly indicate some recent critical case Galton-Watson discrete time

results which may be so used. Foster [6] has obtained limiting conditional dis-
tributions for a Galton-Watson process subject to immigration, as has Heathcote
[9]. Fearn [4] has shown that a Galton-Watson process with generation depend-
ent offspring distributions hn(s) = generating function of the number of offspring
born to a cell in the nth generation has the following property. If m = h?'(1) --+1
sufficiently fast, Z. denotes the number of cells alive at time n starting with one

cell in generation 0, then if Var (Zn/EZn) -° 0,

(6.1) P[Zn> 0] 2Var(Zz/EZ)
generalizing the discrete time result of Kolmogorov and Yaglom (see [7],
Chapter 5).
Another generalization concerns sequences of Bellman-Harris processes. Let

Z,(t) denote the number of cells alive at t in an ordinary Bellman-Harris process
starting with n new born cells alive at t = 0, and lifetime distribution G(t).
Assume also that the daughter cell generating function for each parent in this

"nthprocess" ish(8),wherehT(1) = = 1 + a/n + o(1/n), and h.(1) 2(3
as n X- o, and W) n(1) < C alln.

Then Jagers [10] has shown that
1 L

(6.2) n Z.(nt) -X(t)

where X(t) is a diffusion process of a simple kind. If tightness conditions [2] can

be established under reasonable conditions, then perhaps study of X(t) can lead
to boundary crossing results about the underlying Bellman-Harris processes.
Work is proceeding along these lines.
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