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Let fo(x), 0 C Q, be a one parameter family of probability densities with re-
spect to some cr-finite measure u on the Borel sets of the line. Denote by Pe the
probability measure under which random variables xI, X2, * are independent
with the common probability density fe(x). Let 00 be an arbitrary fixed element
of Q and A any constant between 0 and 1. We are interested in. finding stopping
rules N for the sequence xl, X2, * such that
(1) Pe(N < e forevery0S 0 ,
and
(2) Pe(N < co) = 1 for every 0 > 00.
Among such rules, we wish to find those which in some sense minimize Ee(N)
for all 0 > 0o.
A method of constructing rules which satisfy (1) and (2) by using mixtures

of likelihood ratios was given in [3]. Here we sketch an alternative method.
Let 0,+i = 0.+1(x1, - * * , x") forn - 0, 1, 2, * , be any sequence of Borel

measurable functions of the indicated variables such that

(3) 0,n+, _ 0o.
In particular, 01 is some constant 2 Oo. Define

n~fe,(xi)(4) Z f n 1, 2,1 foo(xi)
and for any constant b > 0, let

ffirstn _1 such that Zn b,
(X if no such n occurs.

We shall show that under a certain very general assumption on-the structure .of
the family fe(x), the inequality (1)- holds at least for all b 2 1/e.
ASSUMPTION. For every triple a _ zy . j in Q,

(6) d(()d(x) 1.
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We remark without proof that this holds for the general one parameter Koop-
man-Darmois-Pitman exponential family and many others.
Denote by 5. the Borel field generated by xi, * - * , xn. Thenfor eachfixed 0 5 Oo,

{z., ffn, Pe; n 2 1} is a nonnegative supermartingale sequence. For, given any
n1

(7) Ee(z.+1jjff) = zn.(Esf.|(xi+;)If).
-= (fex)wfe.8+(x) dlA(x) <- Z.

since by hypothesis 0 . 00 O,n+i. We can therefore apply the following.
LmA. Let {zn, ff., P; n 2 1} be any nonnegative supermartingale. Then for

any constant b > 0,

(8) P(zn t bfor some n 2 1) _ P(zi b) + Z2dP b
bJ(z<b)b

PROOF. Defining N by (5), we have
(9) P(z _ b forsome n . 1) = P(z1 _ b) + P(1 < N <oo).
Since zn is a nonnegative supermartingale,

(10) fN>I) zl dP - (N>1)Z2 dP (N=2) Z2dP+ f(N>2)Z2dP-
n r I.

-sE2 (=zi dP + Z(N>)sndP 2 bP(1 < N _ n) + 0,

because zi 2 b. on (N = i) and zn > 0. Since n is arbitrary,.

(:11) P(l <,N < 0.) -| Z2dP ,, ::

and hence from (9)

(12) P(z,, 2 b for somenn 1) _ P(zi 2 b) zfZ2dPb ,<b)

< j z,dP + -I z,dP=-bb(2b) bj<b) b

which proves (8).
Applying this lemma to (4) and (5), we see that for each fixed 0 S 0o,

(13) Pe(N <c) Pe(zi 2 b) + zf 2 dP,

< = b)= |ff(x)f&(x) du(x)-< 1

and hence, as claimed above, (1) holds at least for 4 _ 1/E
As an example, suppose that under P. the. x are N(0, 1), so that f,(x) =
-0(x-), where p(x) is the standard normal density, and that 0o = 0. It is easily
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seen that if 01 > 0 then
2

Zn= II exp s - 3 Ee(zi) = exp {001},
(14) ' log b 1

(15) f z2dPe = f 2P(X2-0)P(xl-a0 dx2dxl
(<b)-

_ exp {oo1} b (log b _ 08 -
<ep2

where c1(x) = I ,(t) dt. Hence, (13) gives for any 0 < 0, the inequality

(16) PO (IIexp{OiXi - } _ b for some n 2 1)

___ 01 exp {ooi} (logb 01 o\\( log b 1) + b e1 2 J

2 exp {0oo}.

The middle term of (16) is increasing in 0, so

(17) Pe(P exp{Otx - 2 b for some n _ 1)

<_ (__log_+(bO2)logb
for every 0 _ 0.
We shall now suppose that in addition to the requirement that 0 +=

On+(Xl **...* Xn) 2 0, the sequence 0n converges to 0 with probability 1 under Po for
each 0 > 0. For example, both
(18) =8 max (0, s.)

and

(19) n+1= + V (sn/Vn)
where Sn = xl + * + x", have this desired property (equation (19) is the pos-
terior expected value of 0 given xi, * , xn when the prior distribution of 0 is
flat for 0 > 0). Thus, for large n,

(20) Zn =IIexp -ir 2 exp i = exp -2 =Zn(O)

say. Now it has been remarked elsewhere [2], and a proof based on [1], pp. 107-
108, is easily given, that for any fixed 0 > 0,
(21) N rfirst n _ 1 such that z,,(0) _ b,

Lo if no such n occurs,



40 SIXTH BERKELEY SYMPOSIUM: ROBBINS AND SIEGMUND

is optimal in the sense that if T is any stopping rule of xi, X2, * * * such that

(22) Po(T < a) _ Po(Ne,b < -),
then Eo(Ne,b) < oo and Ee(T) > Eo(Ne,b). Thus, the N using (18) or (19) may
be expected to be "almost optimal" simultaneously for all values 0 > 0. Monte
Carlo methods will be needed to get accurate estimates of Po(N < oo) and Ee(N)
for 0 > 0. We have, however, been able to find the asymptotic nature of Eo(N)
as 0 -O0 or b -X o in the normal and other cases for various choices of the 0E
sequence, and the results will be published elsewhere. For example, using (18),
we can show that, for 0 > 0,

(23) Eo(N) - Po(N = xo) (log 0/O2) as 0-0,

and

(24) E (N)=2lob+ +o2b+0(10g2 b) as b -* oo.

By putting

5= if s >_ [n(2 lo2 n + 3 logi n)]%,(25) =.+ n
0 otherwise,

where log2 n = log (log n), and so on, equation (23) is replaced by

(26) Eo(N) - 2Po(N = X)log121/02 as 0-0,
which is optimal for 0 -- 0.

In evaluating Po(N < oo) for 0 _ 0 with an arbitrary sequence 0n+1 =
.+1(XI, * - - X Xn) 2 0, n = 0, 1, 2, * , and b > 1, we see that this probability

is equal to
(27)

PO (II exptx _ -}> b forsome n > = f exp {0 -

n
dPo.

For any fixed x and n the function f(0) = exp {Ox - n02/2} is increasing for
-oo < 0 < x/n. Hence if the condition

(28) s,, > 0 whenever N = n, n = 1, 2, *

is satisfied, then Po(N < oo) will be an increasing function of 0 < 0 (as is the
middle term of (16)). Recalling that

(29) N = {first n 2 1 such that E (Oix.- ) log b,
[X if no such n occurs,

we see that if N = 1, then 01x1 _ log b + 02O/2 so si = x1> 0, while if N =
n > 1, then
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n-I 1 n-I
O ixi < log b +

n n
e1Ax,<logb+::E

(30) ~~~~~21Oixi >_ log b + f,2
1 2 l

so 0,,x,, > 0, and hence On > 0 and xn> 0. In cases (18) and (25), it follows that
sn-i 2 0, and hence Sn = s8_- + Xn> 0. Thus, Pe(N <00) is an increasing func-
tion of 0 _ 0 in these cases. Whether this is true for the choice (19) we do not
know. Likewise, we do not know whether Pe(N . n) is an increasing function of
Ofor each fixed n = 1, 2, * * *, even for (18) or (25). ForO > 0, Pe(N <00) = 1
and Ee(N) < X in all three cases.

In the case of a general parametric family fe(x), we can try to make Ee(N)
small for 0 > Oo by choosing An to converge properly to 0 under P6 for 0 > Oo,
but a comparison with the methods of [3] remains to be made. The present
method of sequentially estimating the true value of 0 when it is >Oo appears
somewhat more natural in statistical problems.

If we do not wish to take advantage of the property (6), we can use, instead
of (4),

(31) z'= II
I hn,

where hn = hn(XI, * , xn) = supe ge. {]ll fe(x.)}. The use of (31) has been inde-
pendently suggested by Edward Paulson. For 0 _ 0o, we then have

(32) Pe(z' _ b for some n _ 1) . Pe II f x b for some n 2 1)b

by the lemma above. It would seem, however, that (31) should be less efficient
than (4) when the assumption (6) holds.
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