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Let fo(x), 6 € Q, be a one parameter family of probability densities with re-
spect to some o-finite measure p on the Borel sets of the line. Denote by P, the
probability measure under which random variables z, x5, - - - are independent
with the common probablhty density fo(z). Let 6 be an arbitrary fixed element
of © and ¢ any constant between 0 and 1. We are mterested in finding stopping

rules N for the sequence i, s, * - such that

(6] ‘ PN <®) < for every 6 < 6,,
and

2 PN < o) =1 for every 6 > 00

Among such rules, we wish to ﬁnd those which in some sense minimize Eo(N )
for all 8 > 6,.

A method of constructing rules whleh satlsfy (1) a,nd (2) by using mixtures
of likelihood ratios was given in [3]. Here we sketch an alternative method.

Let Ont1 = Oppa(21, -+ ,20) for m = 0,1,2, ---, be any sequence of Borel
measurable functions of ‘the indicated variables such that :
3 Ons1 = 6o
In particular, 6, is some constant 2 6. Define ‘ e

o ffodz),
4) . . - =12 ...
( ) Lo Zn : i f%(x') n ’ ’

and for any constant b >IO let

~y . [first m = 1 such that 2z, = b
(5) ’ - W= o if no such n occurs.
We shall show that under a certain very general assumption on the structure ‘of.
the family fo(z), the inequality (1) holds at least for all b = 1/e.

AssuMpPTION. For every triple a S v < 8 n Q,
(6) /fa.(;c)(fﬁ)(x) d (x) S 1
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We remark without proof that this holds for the general one parameter Koop-
man-Darmois-Pitman exponential family and many others.

Denote by F, the Borel field generated by 21, - - - , 2. Then for each fixed 8 < 6,
{2n, Fu, Po;n 2 1} is a nonnegative supermartingale sequence. For, given any

n=1,
@ Eiensie) = 2.F (12220 5,)
/f’(x)f0n+l(x) d (x) é Zny

Jou(Tni1)
Jo(x)
since by hypothesis 6 < 6 < 6,,1. We can therefore apply the following.

. LEMMA. Let {z., Fn, P;n = 1} be any nonnegative supermartingale. Then for
any constant b > 0,

®) Plnzbjorsomenz1) SP@zb) + ) oy adP < 2a),
- J (21 <b
" Proor. Defining N by (5), we have '
9) P(z, 2 bforsomen 2 1) = P(zIZb)+P(1<N<°°)
Since z, is a nonnegative supermartingale,
W0) [y, 2adPz [, adP=[  zndP+ won P E
23 [y mdP+ [, 7 dP 2 bP(1 <N<n)+0
=2

because z; = b on (N =14)and z, = 0. Smce n is arbitrary,.
(11) PA<N<w) s -,-,f @dP,
and hence from (9) '

(12) Pz, = bforsomen = 1) £ P(z; = b) + %/ 2 dP
(2, <b)

1 ‘ 1 E(z)
=z = dP = ==,
—bj;:nab)zldp—*-b.[(n{b)h s b .
which proves (8).

Applying this lemma to 4) and (6), we see that for each fixed 6 =< 6,

(13) : Pa(N <) < Pz 2z b) + [ 2,dP,

and hence, as claimed above, (1) holds at least for b = 1/e.
As an example, suppose that under P the z are N(6, 1), so that fy(z) =
¢(z — 0), where ¢(z) is the standard normal density, and that 6, = 0. It is easily
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seen that if 6; > 0 then

n 2
= I exp {Om - %}’ Eo(z1) = exp {661},

(14) |
: log b/61+61/2 ©
(15) ) ﬁ <b) 2,dPy = / / zz<p(x2 had 0)«:(1:1 - 0) dz» d:c1
. . 21 - - =

<exp{001}¢1>(l£%9—%— )‘,

where &(z) = f_ o(t) dt. Hence, (13) glves for any 8 < 0, the inequality -
(16) P (I:I exp {0.11:.‘ - 5’} 2 b for some n'= 1)

é@( —loaib 01)+ exp{001}<1>( gb—%l—o)
1

= %exp {66:}.
The middle term of (16) is inereasing in 8, so

n 2
(17) P, (l;[ exp {MJ; — %‘} = b for some n = 1)

_logd 6 logb_ﬁ) 1
éq)( 0 - )+ (1)(01 2 b

A

for every 6 < 0.
We shall now suppose that in addition to the requirement that Oppr =
Opng1(1, <« , Tn) = O, the sequence 6, converges to 6 with probability 1 under Py for
each 6 > 0. For example, both

0, s,
(18) » Oy = %&L)
and v
w R vyt
where 8, = 71 4 -+ + ., have this desired property (equation (19) is the pos-

terior expected value of 6 given z, + -+ , &, when the prior distribution of 8 is
flat for 8 > 0). Thus, for large n, . S

=1 L { ) { _n_f”}_
(20) z, = I'llexp {o.:c, Z}NI;I exp 4 0x; 2} = exp os,,‘ 5 [ = 2.(0),
say. Now it has been remarked elsewhere [2], and a proof based on [1], pp. 107-

108, is easily glven, that for any ﬁxed 6>0,

first n 2 1 such that z,(6) = b

(21 Nop = o if no such n occurs,
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is optimal in the sense that if T is any stopping rule of z;, 23, - - - such that
(22) Py(T < ©) £ Py(Npp < ),

then Ey(Ny,) < » and E¢(T) = Ee(Ns,p). Thus, the N using (18) or (19) may
be expected to be ‘“almost optimal”’ simultaneously for all values 8 > 0. Monte
Carlo methods will be needed to get accurate estimates of Py(N < =) and Ey(N)
for 8 > 0. We have, however, been able to find the asymptotic nature of Eo(N)
a8 §— 0 or b — « in the normal and other cases for various choices of the 4,
sequence, and the results will be published elsewhere. For example, using (18),
we can show that, for 6 > 0,

23) Eo(N) ~ Po(N = ) (log -lé / oz) 850 —0,
and
(24) Ey(N) = glt)_gl)e_-i-_lgg_z_b + o(logs b) asb— oo,
By putting
S g + + n)]#
25) PR if 8, = [n(2logd n + 3 logs n)]*%,
0 otherwise,

where log: » = log (log n), and so on, equation (23) is replaced by

(26) Ey(N) ~ 2Py(N = =) log, § / 62 as6—0,

which is optimal for 6 — 0.

In evaluating Po(N < ) for § < 0 with an arbitrary sequence 6.1 =
Onr(21, -+ ,2,) 20,2 =0,1,2,---, and b > 1, we see that this probability
is equal to

@7

n 2 o 2
Py (II exp {0.-3:.— b = bfor somen = l) = 3 exp {osn — ZL—G—} dP,.
1 2 (N=n) 2

n=1

For any fixed x and n the function f(6) = exp {#z — n8?/2} is increasing for
—o < f < z/n. Hence if the condition
(28) 8, > 0 whenever N = n, n=12-..,
is satisfied, then Py(N < ») will be an increasing function of § < 0 (as is the
middle term of (16)). Recalling that

n 2
first n = 1 such that Y (B,a:; - 02—‘> = logb,

1
« if no such n occurs,

(29) N = {

we see that if N = 1, then 6z; = logb + 63/2 so 8, = 1 > 0, while if N =
n > 1, then ;
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n—1 n—1
Z 0;:::,- < logb +% ; 0{2,
21:0,-:1:; = logb + 521:0?,

80 6,2, > 0, and hence 6, > 0 and z, > 0. In cases (18) and (25), it follows that
$n-1 = 0, and hence s, = s,y + 2, > 0. Thus, P¢(N < =) is an increasing func-
tion of 8 < 0 in these cases. Whether this is true for the choice (19) we do not
know. Likewise, we do not know whether P¢(N < n) is an increasing function of
6 for each fixedn = 1,2, .- - , even for (18) or (25). For 6 > 0, Py(N < ©) =1
and Es(N) < « in all three cases.

In the case of a general parametric family fs(x), we can try to make Eo(N)
small for 8§ > 6, by choosing 6, to converge properly to 6 under Py for 8 > 06y,
but a comparison with the methods of [3] remains to be made. The present
method of sequentially estimating the true value of 6 when it is >0, appears
somewhat more natural in statistical problems.

If we do not wish to take advantage of the property (6), we can use, instead
of (4),

&) 4 = 11422,

1 n
where b, = ha(z1, +++ , Tn) = Supsse {II1 fo(x:)}. The use of (31) has been inde-
pendently suggested by Edward Paulson. For 6 = 6, we then have

(32) Pylz, = bforsomen = 1) < Py (ﬁ’ﬁ2 = b for some n = 1) =< 1,
1 fo(z:) b

by the lemma above. It would seem, however, that (31) should be less efficient

than (4) when the assumption (6) holds.
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