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1. Introduction

While efforts at mathematizing the medical diagnostic process continue [10]
the current state of the art appears to be characterized by two observations:

(1) in applications where the “correct” diagnosis can be established (for ex-
ample, by surgery or autopsy) the accuracy of diagnostic algorithms is com-
parable but not superior to the performance of experts [14], [16];

(2) different analytical techniques give similar results [6], [7], [9].

One is thus tempted to argue that if experts can effectively compete with
Bayes’ theorem (at least, with that version which assumes the independence of .
symptom variables [16]) or if experts can weigh the evidence as effectively as a
discriminant function, a good case for the exploration of relatively simple decision
schemes can be made. This would seem to apply, in particular, to medical areas
in which no confirmation of physicians’ diagnoses is routinely available and
where the major purpose of “automated’” diagnosis is to maximize agreement-
with “routine clinical diagnosis’ rather than agreement with “ultimate author-
ity.” The so-called multiphasic screening [3] as practiced in the Kaiser Founda~
tion Medical Care Program, provides a typical example; here responses to a
battery of several hundred medical questions are recorded in addition to meas-
urements from a standard series of laboratory tests. At the conclusion of such
an examination, the patient sees a clinician who reviews the findings and records
diagnostic impressions on a check list containing some two hundred diagnoses.
This setting is thus quite different from the typical application area of “‘computer
diagnosis” mentioned above where a relatively small set of variables are con-:
sidered for a small set of mutually exclusive diagnoses as they can be defined
in narrow specialty fields. The magnitude of the task inherent in multiphasic
screening would seem to make computational simplicity a feature of extreme
virtue.

For these reasons, we continue to be interested in diagnostic schemes involving
a limited number of dichotomized variables (YES-NO Questions and/or Tests)
such as the likelihood ratio method of Neyman [5], [12], [13] and the simple
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scoring procedure developed in conjunction with the Cornell Medical Index
questionnaire by van Woerkom and Brodman [1], [2], [15]. We shall compare
the performance of these two methods on an example of considerable medical
interest, the diagnosis of coronary heart disease in multiphasic screening, and
discuss the utility aspects of various decision alternatives in this context.

2. Material and methods

For some 26,000 persons who took the multiphasic screening examination
within one year, we have records on “variables” (about 700 questions and some
50 “objective” tests ranging from X-ray films to chemical body fluid determina-~
tions) and ‘“diagnoses,” the latter recorded by the “followup” physician. The
average number of diagnoses per person is close to two, about half the value
recorded in medical settings that deal with the typical “office patient” [2] rather
than with persons seeking a health checkup. We envision a computerized diag-
nostic system that will, for the sth diagnosis or at least for the sth set (if related
diagnoses have to be combined) examine a predetermined “relevant variable set”
V. and on the basis of a critical region R; make a decision concerning that diag-
nosis. Consequently, a “healthy” person will be one whose response pattern is
such that he falls within all negative regions..

- Selection of the relevant variable sets is accomplished on a “learning sample;”
consisting of half the number of cases with diagnosis D; and a group of 1000
noncases. The remaining cases and another group of 1000 noncases are retained
as 8 “validation sample.” With the aid of the learning sample, we select the
“hest’” relevant variable set V,; from an ‘“‘initial variable list”’ L; prepared by
clinieal judgment. The choice is made on the basis of the likelihood ratio
(cases/noncases) for each item on the list L;, by taking, for practical reasons, the
eight “best”’: variablesonly. Since tests (7)) are much more expensive than ques-
tions (Q) a limited number of combinations of “‘best” @ and T are also made up,
such as “best 6Q + best-2T,”” and so forth.

In the following, we shall concentrate on a particular D., the condition coro-
nary heart disease (chd). For this group (made up of the three diagnoses angina
pectoris, ischemic heart disease, and myocardial infarction) the initial variable
list contained some fifty questions and six tests. On the basis of the learning
sample (336 cases and 1000 noncases) the eight best questions are those on chest
pain and shortness of breath with likelihood ratios between 5 and 3 and the best
two tests appear to be EKG (most abnormalities) and serum cholesterol (upper
five percentile) with likelihood ratios of 3.4 and 3. Two analytical methods, the
likelihood ratio method 6 and the scoring method 8 are now applied to the learn-
ing sample.

2.1. Likelihood ratio method 8. Briefly, the method [5], [13] orders the ob-
served response patterns of the eight dichotomized variables by the pattern
likelihood ratio 6 and investigates the two types of classification errors at various
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cutting levels of this array. Following medical custom, we plot sensitivity 1 — «
and specificity 1 — g for each level to obtain a performance curve such as Figure
1. Amongst the 256 possible patterns only some 90 occur in our learning sample.
When the validation sample (316 cases and 1000 noncases) is classified atcording
t0 a given positive region derived from the learning sample, some of theiremain-
ing patterns appear; these “unknown’” patterns are allocated, under"eutrent
practice, to the positive region. With sample sizes of the magnitude indicated,
the performance curve from the validation sample is noticeably, but not exces-
sively, worse than the curve derived from the learning sample.

2.2. Scoring method 8. The method uses the same learning and validation
samples and considers the same variables. While, with 8, there is no need, for
practical reasons, to be restrictive on the number of variables, we ha{ke found:
that no improvement results from inclusion of seven variables in addition to the
eight used with the 6 method and for this reason we present results that are
identical as to type and number of variables considered.

Each positive response is scored by the relative likelihood deviation

. P,
2.1 g = B¢
@1) VP;
where p; is the observed frequency of positive response to the 7th variable
amongst cases and P; is the observed frequency in the general patient population.
The quantity is summed over all positive responses giving the total scare

& pi— P
2.2) g = .~§1 VP,
YES

for a person having « positive (YES) responses. From an empirical distribution
of 3 amongst cases of the learning sample a number of critical 8 values are taken
and a person in the validation sample is diagnosed as CHD if his 8 value is
larger than the critical value under consideration.

The scoring procedure is similar to, but not identical with, that of van Woer-
kom and Brodman [15), who sum over all positive responses within the whole set
of variables (150 questions), while we restrict ourselves to the relevant set V.

Since, approximately,

(2.3) s = Vpi(Vo: — V1/6),

where 6; is the likelihood ratio (cases/noncases) for the 7th variable and further-
more since the term in brackets is roughly equal to log 6 (in the 8 range from one
to ten), one would expect that a score

(2.4) s =Vpilogh, A=Xs,

would give results similar to those obtained with 8. It also remains to be seen if
inclusion of negative responses in 8 or A would improve the performance.
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Ficure 1

Performance of automated diagnosis of coronary heart disease on a
validation sample (316 cases and 1000 noncases).
Comparison of two analytical techniques: likelihood ratio method (o, @)
versus scoring method (A, A).
Comparison of two variable sets: “8 Questions” (o, A) versus “6 Questions plus
2 Tests” [EKG and cholesterol] (e, 4).
Upper straight line is the cost indifference line for “6 Questions plus 2 Tests”;
lower straight line is the cost indifference line for ““8 Questions.”
Note that the methods have essentially the same performance and that, for the
cost matrix assumed, only the “8 Questions” procedure would be cost advan-
tageous (against “‘no screening’’) and only at a sensitivity of less than 0.5 where
the corresponding curve crosses its indifference line.
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3. Results

From Figure 1, it appears that 8 and 8 have similar performance and corre-
sponding plots for a number of different disease categories give no indication of
consistent differences. Furthermore, the two techniques are comparable as to
speed.

Differences between “questions alone” and “questions plus tests’” are clearcut,
the tests helping to improve specificity at sensitivity levels between 0.5 and 0.9.
Even so, the performance is modest in comparison with other diagnostic achieve-
ments; for instance, for X-ray diagnosis of tuberculosis [10], a 94 per cent
specificity can be achieved at a sensitivity level of 80 per cent. This may merely be
an indication that diagnosis of tuberculosis is a relatively easy task. However,
we believe that the performance curve for chd can be improved by reviewing
the total medical record. The physician’s diagnosis, as currently used, comes from
a check list employed by him at the time of the followup examination and some-
times is at variance with the medical record. Such a review by an independent
observer is time consuming. At least for the case of diabetes, where it has been

carried out on a sampling basis, improvement of the automated diagnostic
scheme was clearcut.

4, Decision theory

That the screening problem must be east into the mold of decision theory has
been clearly recognized for some time. Flagle [8] has reviewed this aspect of
screening in a preceding Symposium and articles on utility and diagnosis are
beginning to appear in the medical literature [11]. As Flagle [8] has pointed out,
the utilities to be estimated for use in the decision process are ad hoe. That is to
say, they do not only depend on the obvious factors such as the severity of the
disease in question, but on the particular setting in which the subsequent thera-
peutic effort takes place. For this reason, we have decided to consider a cost
matrix slightly more elaborate than that underlying the ‘“regret” analysis of
Flagle; the matrix in Table I contains the cost for each cell with its three com-
ponents, the sereening cost's, the “workup” or “referral” costs w (that is, costs
of additional tests and physician time devoted to a patient declared positive by
the screen), and the therapeutic oosts T'y, for the true positive and T's, for the
false negative, both of which have to be carried, at least in part, by a “prepaid”’
medical care system such as ours.

For the three strategies:

Si: “do nothing,”
Sa: “refer all,”’
S3: “refer those screened positive,’’.

we then have the respective costs
(4.1) C1 = P(ca — c2),
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4.2) Cy = P(eu — ¢a) + (1 — P)w,
4.3). Cs = P(en — me) + (1 — P)(cre — mow),

where P is the prevalence of the condition, m the sensitivity, and = the
specificity, the remaining symbols being cost items defined in Table 1.

TABLE 1

AssuMEDp Cost MATRIX FOR CORONARY HEART
Disease
T: treatment costs for true positive (tp), false
positive (fp), false negative (fn), and true negative
(tn); w: “workup’’ or referral cost; s: screening
cost.
Note that ¢ = ¢ — en = T — Ty, “pure treat-
ment differential’’ and w = ¢z — ¢22; T values of
$100 and 200 are conjectural as is w = 10; s = 1
apphes to the cost of EKG, Collen, Kidd, Feldman,
and Cutler [4).

Physician’s
diagnosis
+ —_
Ty = 100 Tp= 0
+ w = 10 w =10
g = 1 s =1
Cy = 111 Gy = 11
Screen

Tt =.200 Tw= 0
- w =10 w = 0
s = 1 s =1

e =211 ez = 1

: Equatmg 4.1) and (4.3) and solvmg for w2, we obtain

1i _ € P
wl—P wl—pP™

the line of mdlﬁ'erence between ,S; and Ss.

Equatmg (4.2) and (4.3) and solving for m;, we obtain

~~~,eP«sl e P

G& = oT—PTwi—P wi-P™
the line of indifference between S; and S;. Equations (4.4) and (4.5) are thus
parallel lines, the slope of which is determined by the prevalence P and the
ratio e/w. The two intercepts differ by the first term only and a plot of (4.5)
quickly eliminates S, as a competitive strategy.

In Figure 1, two lines of cost indifference (S, versus S;, equation (4.4) have
been drawn, the upper one for a screening strategy involving only the cost of
EKG with s = 1 (see Table I) and the lower one for s = 0, assuming that cost

@Q ' C om=14
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of questions is negligible. Since the performance curve rises only above the ques-
tion line, but not above the EKG line, one would conclude that screening by
questions is cost advantageous while screening by questions and EKG is not.
The weak link in this argument is, of course, the uncertainty as to the magnitude
of the value of ¢, the excess treatment cost due to delayed disease recognition.

b. Optimum screening level

Setting the derivative of (4.3) with respect to m; equal to zero, one obtams
the relation
- 4_ e P ,
(5.1) ==t ts
where fj is the derivative of the performance curve, the empirical function
72 = f(m), at the minimal cost.

Since (5.1) is identical to the slope of (4.4), one may locate the optlmum
screening level as the point at which the tangent of the performance curve is
parallel to the indifference line. For Figure 1, this optimum is sen31t1v1ty ™
between 0.2 and 0.3.

The expression (5.1) ecan be used to bring out the value system implied in the
choice of particular screening levels [11]. For instance, for the case of X-ray
screening for tuberculosis, Lusted [11] shows a preference for the point m =
0.8 and 7, = 0.94. At this point, his performance curve has a slope of —0.2.
With a prevalence P = 5 X 10~¢ from (5.1) we have e/w = 400.

It is interesting to note how much divergence can be produced on casual ap-
proach to this question. Rubin, Collen, and Goldman [13], discussing the opti-
mal choice of a sereening level, consider the function U = am + b, and locate
the pair , 7, which maximizes this function. The coefficients a and b are not
defined, but from (4.3) it is clear that @ = Pe and b = (1 — P)w. Thus, maxi-
mization of U indeed minimizes the cost of the screening strategy. The writers
remark that for “conditions such as tuberculosis a would probably be set several
magnitudes higher than b.” However, P values of the order of 5 X 10~ still
apply with population estimates of annual incidence rates of newly reported cases
standing at 3 X 10~4 Therefore, if we would take w = 10, and thus, e = 4000,
thena = 2 and b = 10, indicating that divergence of oplmon can be of the order
of several magnitudes. : :

6. Discussion

The cost matrix postulated in Table I can be criticized for understating the
benefits of screening. For instance, one may postulate that in the absence of
screening facilities, a certain fraction ¢ of healthy persons would come for a ““con-
ventional”’ checkup, perhaps involving the cost w. Under these condltxons, S,
the ““do nothing” strategy, would imply the cost

6.1) Cy = P(ca — ) + ¢(1 — P)w,
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giving the indifference line (S, versus S;)

1 e P

1-P ® " wi-p™

With ¢ values of the order of 0.1, the two indifference lines of Figure 1 would
have to be displaced downwards by 0.1. As a consequence of this, screening with
6Q + 2T could now be justified on a cost basis for sensitivity levels below 0.5
and screening with 8Q for sensitivity levels below 0.65. The optimal screening
level would remain at m; = 0.3 at which =, is the same for these two alternatives
(see Figure 1). In this case, as can be seen from equation (4.3), the “cheap” screen
(8Q) is still saving the amount s in relation to the “expensive” screen (6Q + 2T).
Once again, we wish to stress the speculative nature of these impressions, in the
face of uncertainty about e/w and current reliance on diagnostic entries, as men-
tioned in Section 3. In general, we feel, however, that decision theoretical formal-
isms such as those presented, are useful in the way they point towards crucial
items of information that are extremely difficult to acquire.

(6.2) ﬁ=1+5

7. Summary

Multiphasic screening, the application of a large battery of questions and
laboratory tests to large numbers of persons, has reached an advanced stage of
automation, and rapid classification techniques that provide diagnostic categori-
zation are of considerable interest in this field. With the example of automated
diagnosis of coronary heart disease, we find the performance of two methods
(likelihood ratio and scoring technique) in terms of characteristic curves to be
comparable. Notions of test selection strategy are discussed in relation to the
same disease although the precise nature of the cost matrix is speculative.
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