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1. Introduction

Pioneering work of Doob, Kac, and Kakutani showed that there was a
beautiful and deep connection between certain problems in the study of
Brownian motion and those of classical potential theory. This work stimulated
much research on the theory of Markov processes. In spite of all this work,
however, there doesn't appear anywhere in the literature any reasonably
complete treatment of the connection between potential theory and Brownian
motion. In this paper and its companion "Logarithmic Potentials and Planar
Brownian Motion" which follows in this volume, we present this connection in
a way that is both elementary and essentially selfcontained. Our treatment here
is not complete and will be expanded upon in a forthcoming monograph.

This paper, being basically expository in nature, contains essentially nothing
new. Its novelty (if any) consists in the treatment given to the topics discussed.
In one place, however, we do seem to have a result that is new. This is in finding
all bounded solutions of the modified Dirichlet problem for any arbitrary open
set 0, and in giving a necessary and sufficient condition for there to be a unique
such solution.

In this paper, we consider a Brownian motion process X, in n _ 2 dimensional
Euclidean space R'. Let B be a Borel set and set

(1.1) VB = inf{t > 0: Xe B}, VB = o if X, B forall t > 0.

In Section 2, we present preliminary facts about Brownian motion that are
needed to develop classical potential theory from a probabilistic point of view.
A set B is called polar if PX(VB < co) 0. A point x is called regular for B if
PX(VB = 0) = 1. In Section 3, we prove that the set of points in B that are not
regular forB is a polar set. In this section, we also show that points are polar and
gather together a few more facts of a technical nature that are needed for work
in the later sections. The Dirichlet problem for an arbitrary open set G is
discussed in Section 4.

Starting with Section 5 and throughout the remainder of this paper, we assume
that we are dealing with Brownian motion in n _ 3 dimensions. (The planar
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case is discussed in the companion paper.) In Section 5, we introduce Newtonian
potentials and show how they are related to the Brownian motion process. We
also prove that IXi -- oc with probability one as t -x cc and prove the extended
maximum principle for potentials.
The remaining two sections are devoted to developing the notion of capacitary

measure and potentials from a probabilistic view point.

2. Preliminaries

A Brownian motion process in n _ 2 dimensional Euclidean space R' is a
stochastic process Xr, 0 . t < cc. having the following properties: (i) for each
t > 0 and h . 0. X1±h - Xh has the normal density p(t, x) = (27tt)-/2 exp
{-1x12/2t}: and (ii) for () < t, < t2 < < tn < x, X1 - XO, X12 -X11
*X, X,_-n, are independent random variables. It is well known that a

version of this process can be selected so that the sample functions t X, are
continuous with probability one. Henceforth, we will always assume that our
process has this continuity property.
The distribution of X, depends on the distribution of X,. We let P,(.) denote

the probability of* given XO = x and we let E& denote expectation relative to Px.
Let B be any Borel set. The first hitting time VB of B is defined by VB =

inf {t > 0: X, E B} if X, E B for some t > 0. If X, j B for all t > 0, we define
VB = cc. When VB < oo, the first hitting place in B is the random variable XvB.
In the sequel, we will need to know some continuity properties of P"( VB _ t).

These are given by: - . '.
PROPOSITION 2.1. The function P.( VB _ t) is a continuous function in t for

t > 0 for fixed x and a lower semicontinuous function in x for fixed t > 0.
PROOF. Suppose for some t > 0, PX(V = t) > 0. Then for anyh,0 < h < t,

(2.1) 0 < PX(VB = t) < p(h. y-x)Py(VB = t -h) dy,

so

(2.2) { PY( VB = t - h) dy > 0

for all h. (1 < h < t. But this is impossible because for any r > 0,

(2.3) f PY(JB < t) dy . dy < cc.

Thus the measure

(2.4) PY,(VB e dt) dy

can have only countably many atoms.
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To establish the lower semicontinuity in x for fixed t > 0 note that

(2.5) fp(h. y - x)PY(VB < t - h) dy = PX(XS e B for somes e (h. t))

is a continuous function in x that increases to PX(VB < t) as hI0. Thus,
P.(VB < t) = PX(VB . t) is lower semicontinuous in x. This establishes the
proposition.
The next fact we prove tells us that the mean time to leave any bounded set B

is finite.
PROPOSITION 2.2. Let B be relatively compact. Then sup. EXVBC < 0D.
PROOF. If x e (B)C then PX(VBC = 0) = 1, so only points xeB need be

considered. Let t > 0. Then

(2.6) inf px(X, e Bc) = 3 > 0,
xeB

and thus for any x e B,

(2.7) PX(VBC < t) _ Px(XteBc) _ 3.

Hence, for x e B,

(2.8) PX( VBC > t) . 1 - .

But then

(2.9) PX(VBC > 2t) = PX(VBC > t. X e dz)PZ( VBc > t) . (1 - 3)2
fB

and by induction, for x e B.

(2.10) Px(VBC > nt) < (1 - 3).

Hence,

t
(2.11) sup ExVBC <-<

xeB 3

as desired.
Let A and B be any Borel sets. Then clearly

(2.12) Px(XeA) = PX(VB < t.XeA) + PX(VB > t XcA).

Now

(2.13) Px( VB _ t, X, e A)

= J' fPX(X, e AI VB = . XVB = z)PX( VB E ds. XVB e dz).
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Brownian motion, along with a large variety of Markov processes, possesses
the important property that for s < t,

(2.14) PX(X, eAI VB = s, X,. = z) = PZ(X,e A).
This property is a consequence of the strong Markov property. It is certainly
intuitively plausible that (2.14) should hold and a rigorous proof is not difficult
to supply. Since the proof would involve us in a more thorough discussion of the
measure theoretic structure ofa Brownian motion process than we care to go into
in this paper, we will omit the proof. (The interested reader should consult
Chapter I of [1] for a complete discussion of the strong Markov property.)

Using (2.14), we obtain from (2.12) that t y 1:

(2.15) P.(X, E A) - f_ f B E d,(VB e dz)P(X~ E A)

=PX(VB> tXe A).
The left side of (2.15) has

(2.16) p(t, y - x) - A JI PX(VB E ds, XvB e dz)p(t s, y - z)

as a density. Fatou's lemma shows that

(2.17) {o { PX( VB E ds, XvB e dz)p(t - s, y - z)

is a lower semicontinuous function in y. As the left side of (2.15) is absolutely
continuous, the measure P,( VB > t, X, e dy) is also absolutely continuous. Let
q(t, x, y) be any density of PX(VB > t, X, e dy). Then

(2.18) p(t, y - x) - J' f PX(VB e ds, XVB c dz)p(t - s, y - z)

^K t 1 r = q(t,x,y) a.e. y.

Consequently, the left side of (2.18) is _,0 a.e. y and being upper semicontinuous,
it is .0 for all y. We may therefore use the left side of (2.18) to define a density
for Px( VB > t, X, e dy) for all y. Denote this density by qB(t, x, y). Then for all y,

(2.19) p(t, y - x) PfJP( VB e ds, XVB e dz)p(t - s, y - z) = qB(t, x y)
0o- Bi-,y-z =q~lX )

Henceforth in this paper, qB will always denote this density.
The densities p(t, x) have the semigroup property:

(2.20) p(t + s, y - x) = {. p(tz - x)p(s, y - z)dz.

Define P' on the bounded or nonnegative measurable functions by

(2.21) Pf (x) = { p(t, y - x)f (y) dy = Exf (X,).
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Then

(2.22) Pf+sf = p,(pSf)
Since Brownian motion is a Markov process,

(2.23) PX(VB > t +S± X,+, c A)

f~P.(VB > t, X, c- dz)P.(VB > s, X, c A),

and thus for almost all y

(2.24) qB(t + s, x, y) = fj qB(t, x, z)qB(s, z, y) dz.

We will now show that (2.24) holds for all y c R'. To do this note first that by
using (2.20) and (2.19), it is easily verified that

(2.25) lim qB(t - 8, x, z)p(8, y - z) dz = qg(t, x, y).
E40 R.

Using this and the fact that (2.24) holds for a.e. y, we see that (2.24) holds for
all y.

Let A > 0. (Henceforth, 2 will always denote a positive real number.) Define

( )g (x) = f p (t, x) e dt,
(2.26)

gB(X, Y) = !; qB(t, X, y) e dt,

and

(2.27) fl (x, dz) = --e-PX(VB e dt, XV edc)

The quantities corresponding to these for A = 0 are denoted by the same symbol
without the A (for example, fl.' for 2 = 0 is HB). For future reference, we note
that [l.(x, dz) is supported on B and

(2.28) 1HA (x, dz)f (x) = E,(exp {-AVB}f (XvB)).

Also,

(2.29) gi (x, y)f(y) dy = E, f(Xt) e ` d t.

Observe that gA (0) = oo, but otherwise gA(x) is a continuous function that
vanishes as x -o cc. Since p(t, y - x) _ qB(t, x, y), we see that g"(y - x) _
gA(x, y). It follows from (2.19) that

(2.30) gi(y - x) = { HA (x, dz)g (y - z) + g`(x, y).(2.30) 9,' (Y X) BB
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This equation will play a major role in our development.
Now gA(x) = g'(-x). so gA(y - x) = gA(x - y). It can be shown that

g'(x, y) is a synmmetric function in x and y. A proof of this fact can be obtained
by a fairly simple probabilistic argument. We will not prove this fact here but
refer the reader to Chapter VX of' [1] for a complete discussion.

Using (2.30), we see that the symmetry of g' implies that

(2.31) EHB (x. dz)gA(y - z) = I HB (y. dz)gA(x - z).fRB f B

This relation, as well as the symmetry of g . will be of constant use in OuI
development of potential theory.

Let r be an orthogonal transformation. Then p(t. TX) = p(t, x). It follows
from this fact that if -r is a rotation about a point a and S is a sphere of eenter a.
then PU(Xv, eA) = Pa(XVs e zA)foranyBorelsubsetA c S.HenceP,(Xvedy)
must be the uniform distribution on S. Let ar(a. dy) denote the uniform distri-
bution on the sphere of center a and radius r. Then Pa(Xvs e dy) = or(a. dy)
when S is the sphere of center a and radius r. Using this fact, we will now prove
a fact that will be used several times in the sequel.

PROPOSITION 2.3. Let f be a bounded function such that f = Pffor all t > 0.
Then f is a constant.
PROOF. Since f = Ptf for all t > 0, we see that f is continuous and that

f(x) = A lo gA(y - x)f(y) dy. Let S be the complement of the ball of center a
and radius r. Using (2.30), we see that

(2.32) f(x) = i g`(x, y)f(y) dy + llf(x).
Now

(2.33) {' gs(x. y) f(y) dy . I|fI0 f e-rPx( Vs > t) dt.

Since S' is bounded, E& Vs < cc, so

(2.34) limf e-'Px((V, > t) dt = P.(SP> t) dt = EVs < 3°-

Letting A i, 0 in (2.32), we see thatf(x) = Is f(x). In particular, for x = a, we see
that

(2.35) f(a) = Eaf(Xvj) = tSf(y)ar(a. dy).

Thus,f is its average over every sphere. Hence,f is harmonic, and as it is bounded
it must be a constant. This establishes the proposition.
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3. Regular points

Let B be a Borel set. It can be shown by a simple measure theoretic argument
that PX(1VB = 0) is either 0 or 1. (See Chapter 1 of' [1].) A point x is called
regular for B if this probability is 1. Otherwise x is said to be irregular for B. Let
B' denote the set of regular points for B. Clearly, B c B' c B. A simple
sufficient condition for regularity is the following.
PROPOSITION 3.1 (Poincare's test). Let k be a truncated cone of vertex 0,

radius ro and angle opening a. Then x e B' if x + k c( B.
PROOF. Clearly,

(3. 1) PX( VB . t) . P.(X, c B) P.(X, e k + x) = PO(X, E k)

= (2rt) n2 exp {- lx1 dx = a(2it)-,/2 f exp {-2} r`1 dr

_ 6 > 0

for all 1 _ t > 0. Thus, P,(V = 0) > 0 and hence PX(V,' = 0) = 1, as desired.
Using (2.19), we see that if x e B', then gj(x. y) = 0 for all y. By symmetry,

gA(x, y) = 0 for y e Br.
A simple but important device will be employed in many proofs. Let B be a

closed set and let B_ n > 1, be a family of closed sets such that B1, B1i

B2 - , nnBn = nnn = B.
PROPOSITION 3.2. Let B and B, be as described above. Then P.((BIB B) = 1

for x e BCu B'.
PROOF. Clearly, the VB. are nondecreasing, and thus VB T V . VB. If

V = x. then VB = oo. On the other hand if V < cc, then XVB, XV E
n,,B = B. Thus, V _ VB whenever V > 0. Clearly. PX.(V > 0) = 1 when
x E BC. If x eBr then Px(V = VB = 0) = 1. This establishes the proposition.
For our later work, we will need the following simple corollary of Propositions

3.1 and 3.2.
COROLLARY 3.1. Let G be a nonempty open set. Then there is an increasing

sequence G,, of open sets with compact closures contained in G such that
G1 c G1 a G2 a.. U,, G,, = G and such that each point of 2G,, is regular
for G'. The times VOG,, n > 1, are such that PX(V1GIT VIG = 1 for all x E G.

PROOF. Let k,, be compact sets such that kc1 c k2 c and U,, k,, = G. Cover
k1 by a finite number of open balls whose union D is such that D is contained
in G. By increasing the radii of some balls if necessary, we can conclude from
Poincare's test that each point of ED is regular for DC. Let 01 = D. Thus, each
point of 2G1 is regular for G' and G1 c G. Apply the same procedure to
G1 uck2. and so forth. Clearly, G1 c- G2 C * Un Gn = G. SO G'i )W
*,and n,, G = GC. Using Proposition 3.2, P.,(VI VG') = 1 for all x e G.
But PX((VeG = VGC) = 1, x E G and PX(VeG = VG) = 1 for xe G, so Px( VOGI
V0G) = 1, X E G, as desired.
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A set B is called polar if PX(VB < X0) 0_ . Clearly, such sets are negligible
since no Brownian motion process can ever hit such a set in positive time. Later
when we introduce the notion of capacity as given in classical potential theory
we will see that a polar set and a set of capacity 0 are equivalent.

Let B be a Borel set. If x E A then x is a regular point of B, while x E (B)C is
irregular for B. Thus, only points on 2B are in question. An important fact is
that the points in B that are irregular for B constitute a polar set, that is,
(Br)Crn B is a polar set. We will prove this fact here for B a closed set. To carry
out the proof of this fact we will need some preliminary facts, some of which are
of interest in their own right.
We first show that (B')C n B is a Borel set having measure 0.
LEMMA 3.1. Let B be a Borel set. Then Br is a G6 set and D = (B')C n B has

measure 0.
PROOF. A point x is regular if and only if PX(VB = 0) = 1. Thus,

(3.2) B = {x: PX(VB = 0) = 1} n {X: Px(B - > 1 -

By Proposition 2.1, PX(VB _ I/n) is a lower semicontinuous function so
{x: PX(VB < 1/n) > 1 - I/n} is open. To see that D has measure 0, we can
proceed as follows. Let A c D be relatively compact and note that

(3.3) P.(X, E A) _ PX( VA < t) _ PX( VB < t),

so for x e A,

(3.4) lim sup P.(XeA) _ limPX(VB _ t) = 0.
t4o tjo

Thus,

(3.5) lim P.P,(X, E A) dx = 0.

The function

(3.6) f(x) = JR lA(Z + X)'A(z) dz

is a continuous function and

(3.7) Px(Xt e A) dx = EOf(X,).

Hence,

(3.8) f (0) = lim Exf (X,) = lim Px (X, e A) = 0.
t40 tJO A
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But f(0) = A I, so |Al = 0.
Our next result shows that E,(exp {-A VB}) is the "A potential" of the measure

M' defined by
(3.9) (A) = fR (X A) dx.

LEMMA 3.2. Let B be any Borel set. Then

(3.10) E,(exp {AVB}) = JRf9(y - x)M(dy).

PROOF. Integrating both sides of (2.30) on x over R', we see that

(3.11) 1 =f p(dz)gA(y - z) + f g(x, y) dx.'aB fR"
But by the symmetry of g., we see that

(3.12) g(x, y) dx = g(y, x) dx = [1 - E,(exp {-AVB})]f1A
This establishes the lemma.
REMARK. Since g'(x) is bounded away-from 0 on compacts, it follows from

(3.10) that 14(a) < so whenever B is compact.
LEMMA 3.3. Let B be a compact set and let B, n > 1, be compacts such that

B1 A,1 2 B2 * * , nfl A, = nflB. = B. Then the total mass CA(Bi) of the
measure ABnconverges to the total mass CA(B) of u4 as n -+ oo.

PROOF. By Proposition 3.2, for x e B' u BC,

(3.13) E,(exp {- AVBJ}),jEX(exp {A VB}).

By Lemma 3.1, (Br)C n B = (B' u BC)C has measure 0, so (3.13) holds for a.e. x.
Thus, by monotone convergence and (3.10),

'(3.14) C.'B) = Af E. (exp A{-VBJ}) dx Af E.(exp {-2VB})dx = CA(B).

This establishes the lemma.
LEMMA 3.4. Suppose k is a compact set such that SUpxeRf E.(exp {-)Vk}) =

j < 1. Then k is polar.
PROOF. Let kn be compacts containing k such that k1 D1 D k2

nf. k. = nf. kn = k. Then each point in k is a regular point of kn for all n. On
the one hand (3.10) shows that

(3.15) j { 9 (y - x)Ll(dy)pkn(dx)

fRflx( {-iVk})pI' (dx) < fiCA(k.).
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On the other hand.

(3.16) JR.'y - x)tt((dy)p14 (dx)

f E.(exp { i-k})pk dy)((d(k)

Thus. ('i(k) . f3C'(kj). By Lemma 3.3. CA(kn).ICj(k). and thus (CA(k) _
fl(' (k). Hence. (,(k) = 0. But using (3.10), we then see that Ex(exp {-2Vk})
0. and thus k is polar, as desired.

Let p be a finite measure having compact support k. Let G)ip (x) = Jk gj'(y - x)
/l(dy). Our next lemma shows that GAP satisfies a maximum principle.
LEMMA 3.5. Let pi be a finite measure having compact support k and let

M = SUpXek G'Mp(x). Then GaM(x) . M for all x e R'.
PROOF. If M = c there is nothing to prove so assume M < so. Let c > 0

be given and let A = {x: GAM (x) < M + £}. Each point of A must be a regular
point of A. To see this, suppose xO e A and xO is irregular for A. Then
PXO(VA = 0) = 0, and thus

(3.17) lim P, (X, E A) _ lim. P,0(V t) = 0.
ttO t40

However.

(3.18) G(p(x0) _ eA P G/4(xo) . e' fp(t y - x0)G /(y) dy

_ (M + £) e AtPxo(X E A4C).

By (3.17). 1im, l 0 PXO(Xt e A') e - At = 1, and thus GiM (xo) > M + £, a contra-
diction. Hence, A c Ar. Since k c A c Ar and g'(x, y) = 0 for all y E Ar, we
see that fk gA(X. y)li(dy) = 0. By (2.30), we then see that

(3.19) GAP(x) = [I (x. dz)G up(z). x E R'.

The function G'M(z) is lower semicontinuous in z (since it is the limit of the
increasing sequence e- InPlInG). l(Z), n _ 1, of continuous functions). Conse-
quently, {z: GAp(z) . M +±} is a closed set. Clearly A c {z: Gip(z) . M +
4}, and thus by (3.19), G)p(x) . Ml + c for all x E R'. As £ is arbitrary,
GAp(x) _ M for all x. This establishes the lemma.
COROLLARY 3.2. Let A be a closed set such that A' = 0. Then A is polar.
PROOF. It suffices to consider the case when A is compact. The function

E,(exp {-AVA}) is lower semicontinuous. Indeed, PX(VA . t) is lower semi-
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continuous in x and thus by Fatou's lemma,

(3.20) lim infEx(exp -AVA} = lim inf,A PX(VA . t) e-At dt
X-XO X- XO o

_ A lim inf Px (V . t ) e-At dt

ii T.P(VA _ t) e dt = ExO(exp {-2A}).
Let

(3.21) Ex={x E(exp {-A"A}) l - }nA.

Then An ' A is compact and by Lemma 3.2, for x E A,

(3.22) G'24n(x) = Ex(exp {-AVA}) . Ex(exp {-V'A}) . 1 -n

By Lemmas 3.2 and 3.5. we then see that Ex(exp {-2VAJ}) < 1 - 1/n for all
x e Rn. and thus by Lemma 3.4. An is polar. Since A = Un An, A is polar.
We may now prove the following basic theorem.
THEOREM 3.1. Let B be any closed set. Then (B )C rn B is polar.
PROOF. It suffices to consider B compact. Let

(3.23) D= {x: Ex(exP {-AB}) . 1 -

and let B, = B n Dn. Then

(3.24) (Br)Cn B = U Bn.
n= I

Since Bn C B, Ex(exp {-A VBJ}) _ Ex (exp { -i 'B}). If x is irregular for B then

Ex(exp {-XV>B}) < 1 SO x is irregular for Bn. Suppose x is regular for B. Then
xE D', and as Dn is closed, x is irregular for Dn and hence also for Bn. Thus.
B= 0. Corollary 3.2 then implies that each B, is polar. and thus (Br)crnB
is polar. This establishes the theorem.
We conclude this section by pointing out a simple corollary of Lemma 3.2.

Though its proof is trivial it is important enough to be stated as

THEOREM 3.2. A one point set is a polar set.
PROOF. Using (3.10) for the set B = {a}. we see that

(3.25) Ex(exp -AV{a}}) = gA(a -x) LIA (a).

Since Ea(exp {-AV(,,}) _ 1 and gA(0) = oc. it must be that fll1(a) = 0. But
then Ex(exp {-) Via}}) 0so Px(VI{a} < °) 0.
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4. Dirichlet problem

Let G be an open set. The classical Dirichlet problem for G with boundary
function (p is as follows. Given p on EG findf harmonic in G and continuous on
G such thatf = p on EG. In general, even when (p is restricted to be a bounded
continuous function at each point of aG, this problem may have no solution.
If solutions do exist, then unless G is bounded, they may not be unique. The
modified Dirichlet problem eases the continuity requirements on G by allowing
the function f (which must still be harmonic in G) to be discontinuous at an
exceptional set of points on aG. One of the nicest connections between Brownian
motion and potential theory is the elegant and simple treatment it allows for the
modified Dirichlet problem.

DEFINITION 4.1. Let G be an open set. A point xo e aG is said to be non-
singular if limXEG,,X-X0H1G (P(x) = 9(x0)for all bounded functions that are con-

tinuous on 8G. Otherwise a point xo e 2G is called singular.
THEOREM 4.1. Let 9 be a bounded measurable function defined on EG. Then

fl G(P(X) is harmonic in G. Moreover, if xo e EG is a point of continuity of 9 and
is also a regular point of GC, then limXeG,x Hxa",9G(X) = p(x0).

PROOF. It is easily seen that Pt'lG 9 (x) is continuous in x for all t > 0
and that limnl0 Pt leG 9(x) = HaG 9(x) uniformly on compact subsets of G.
We conclude that [HaG 9(x), x E G, is continuous. Let x e G and let Sr be a
ball of center x and radius r such that 8, c G. Then clearly the process starting
from x must first hit AS, in positive time before it can hit 8G. Thus,

(4.1) HaG (P(x) = fe HlS,, (x, dz) Ha0G (P(Z).

But as argued in Section 2, H8,s, (x, dz) = a,(x, dz). Thus,

(4.2) l8G 9(X) = f allaG (p(z)r,(x, dz),

so H'aG P is indeed harmonic at x.
Suppose now that x0 E EG is both a point of continuity of (p and a regu-

lar point of GC. Given 6 > 0 and E > 0, we can find a to such that P(supt.to
IX,-X .1_ 2) > 1 -E. Let N be any neighborhood of x0, and let D(6) be a

closed ball of center x0 and radius c N. Let B = GC. Then for x E D(U),

(4.3) PX(VB _ to, Xv. 0 N)
_ P(X,- X0| > U for some t < to) . £.

Thus, for xe D('6),

(4.4) PX(VB - to, XVBE N) = PX(VB _ t0) - PX(VB _ to, Xv,f N)

_ PX( VB < t0) - E.
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Since xo is regular for B and P.( VB < t) is a lower semicontinuous function in x,
we see that
(4.5) 1 = PXO(VB . to) _ lim inf PX(VB . to) . 1

x-.xo

Thus, by (4.4), 1 . lim inf-.,0 P,(VB - to, XVB EN) _ 1 -£ and as 6 iS
arbitrary we see that

(4.6) lim PX(VB _ to, X4 e N) = 1.
X-*XO

But

(4.7) 1 _ rIB (x, N) > PX(VB _ to, XB EN)

so for any neighborhood N of xo

(4.8) lim "B (x, NC) = 0.
X -4XO

Moreover, as PX(VB _ to) . PX(VB < xo), equation (4.4) shows that

(4.9) lim PX(VB < co) = 1.

Now as p is continuous at xo, we can choose a neighborhood N of xo such that
1|?(x) - p(xo) < 6, XE N. But

(4.10) | H1B 9(X) - p(Xo) < fN IB (x, dz)|q,(z) - 9(xo)|

+ f r'B (x, dz) ,p(z) - p(xo)I + p(xo)PX(VB =c)

< 6 + 211p11 rB (X, NC) + P(XO)PX(VB = °°).
Using (4.8) and (4.9), we see that

(4.11) lim HIB(P(X) = (P(X0).
X-xo

Finally, ifx E 0, then PX(VG = VB) = 1. Thus (4.11) shows that

(4.12) lim HrG (p(x) = 9(xO),
X-Xo,xeG

as desired. This establishes the theorem.
COROLLARY 4.1. A point xo E aG is nonsingular if and only if it is a regular

point for GC. The set of singular points of OG is thus a polar F' set.
PROOF. If x0 e (GC)r rnaG, then Theorem 4.1 shows that x0 is a nonsingular

point. Suppose now that xO is a nonsingular point. Then rIOG (x, dy) converges
weakly to the unit mass ex.(dy) at xo. Thus, given any E > 0 and any neighbor-
hood N of xo, we can find a closed ball S of center xo c N such that
PX(Xv0G E N) > 1 - 6, x e S n G. But

(4.13) PXO(XvGE ) =PXO(Xvhe N; VOG . Ves) + PXO(XvOGc N; VOG > Vas).
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Since S c N, PXO(XVOG e NI VOG < VOS) = 1,SO

(4.14) Pxo(XVOG e N; VeG < VOS) = PX(V0G - VOS).
Also,

(4.15) Pxo(XVG fe NI V > Vas) = faSPXO(V0G > Ves; Xv edz)P-(XvG c-N)
. (1 - E)PxO(VeG > VS).

Thus, PXo(X V0G e N) _ 1 -

Hence, nOG (x0, dy) is the unit mass at xO so P,, (XvaG = X0) = 1. But Theorem
3.2 shows that {xo} is a polar set. Thus, PXO{XvOG = xO} = 1 can only be true
if PXo(V0G = 0) = 1, so xO is a regular point of 2G. Since 2G GC, xO is then
also a regular point for GC. This establishes the theorem.
Theorem 4.1 and its corollary show at once that for (p a bounded continuous

function on 2G, the function HaG (p is a solution to the Dirichlet problem for G
with boundary function (p provided each point of EG is nonsingular.
From Theorem 3.1 and Corollary 4. 1, we know that the set of singular points

of 2G is a polar set. Let N be any polar set that contains all singular points of 2G.
Let (T be a bounded function on @G that is continuous at each point of Nc nrG.
The modified Dirichlet problem consists in finding a function f harmonic on G
and continuous on G u (OG n NC) such thatf = (p on WG. We know that HOG 9
is a solution to the modified problem. If we choose (p 1, we see that
Px(V0G < oo) is a solution. Thus, PX(VOG = oA) = 1 -Px(VG < Cc) is a solu-
tion to the modified problem with boundary function 0. Our principal goal in the
remainder of this section is to show that 1'aG (P(x) + aLX(VOG = oc) are the
only bounded solutions to the modified problem.
We will start our investigation with a bounded G.
THEOREM 4.2. Let G be a bounded open set and let N be a polar set that

contains the singular points of OG. Suppose 9 is a bounded function on aG that is
continuous on 2G n NC. Then HaG 9 is the unique bounded solution to the
modified Dirichlet problem for G with boundary function (p.

PROOF. Suppose first that all points on EG are nonsingular and that the
exceptional set N is empty. Then the modified problem becomes just the classical
Dirichlet problem. Suppose f is any solution. Then f - HaG 9 = h vanishes on
aG, is harmonic on G, and continuous on G. The maximum principle then tells
us that h vanishes on G so f = naG 9 on G.

Consider now an arbitrary bounded open set G and allow an exceptional
polar set N containing the singular points of 2G. By Corollaries 3.1 and 4.1, we
can exhaust G by an increasing sequence of open sets G, c G, c G2 ' ,

U,, G,, = G, such that all points of AG,, are nonsingular, and such that
PX(VIGIT VOG) = 1 for all x E G. Let f be a bounded solution to the modified
problem on G. Then f is continuous on G,, and harmonic on G, so it is a
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solution to the classical Dirichlet problem on G, with boundary function f on
FGS. By what was proved above. ",G, f is the unique solution to this problem, so

(4.16) f(x) = 1leGf(X). xE G.

Now as a is compact, Proposition 2.2 shows that E., VGC < 00, so certainly
PX(VGC < oc) = 1. But for any x E G. PX(. = 1. SO PX(.eG < C) = 1
for all x e G. Since (Jn c G. it must also be that PW([KGn < so) = 1 for all
xea. Fix x e G. Then

(4.17) llG f(X) = Ex[f(XvG)]-.

Now Px(VeGIT VeG) = 1 and as PX(VSG < x) = 1. we see that P (lim ,
XVCG = Xv8,;) = 1. But PX(XVCG e N) = 0 and f is continuous on (aG) rn NC so

(4.18) P(lim f(XVaG) = 9(XvCG)) 1
n-00

Since f is bounded,

(4.19) lim EXf(XVIGn) = E,[lim f(XVGA)] = EX(p(XVCG).
nlci n-cx

Using (4.16) and (4.19), we see that for any x e G.f(x) = 11G (p(x) as desired.
COROLLARY 4.2. Let G be a bounded open set. The classical Dirichlet problem

has a solution for all continuous boundary functions (p if and only if E3G has no
singular points. In that case H1OG (p is the unique solution with boundary function (P.

PROOF. Since G is compact, a solution f of the classical Dirichlet problem
for G for p continuous on aG is automatically a bounded solution for the
modified problem with N being the set of all singular points of MG. But then
f(X) = OG (P(x), X CG. Asf is a classical solution, lim.,, llIG(I x) = 9(x0).
Since this is true for all 9 continuous on EG, we see that all points in 2G are
nonsingular. This establishes the corollary.
To handle the case when G is unbounded, we will require some preliminary

information on the process X, stopped when it hits GC (for typographical
simplicity we shall put GC = F). Let Y. = X,AVF and set FPtf(X) = Ef (Y.), and

(4.20) Q'f(x) = E.[f(X,), VF > t] = qF(t. x, y)f(y) dy.
Note that for x E G, PX(V1G = VF) = 1, so that for x E G.

(4.21) FP f(X) = Q'f(x) + Ex[f (XvcG); VeG - t]

We say that a function defined on G is invariant for FP' on G if

(4.22) FPtf(X) = J(X), X E G.

Similarly. a function f defined on G is Q' invariant if f(x) = Q' f(x), x e G(.
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LEMMA 4.1. For any bounded function p on DG, HOG p(x) + XPx(VOG = °°)
is a bounded p invariant function on G. Conversely, every bounded FP invariant
function on 0 is of this form.

PROOF. Let (p be bounded on aG and let x E G. Then by (4.21),

(4.23) FP HOG qP(X) = QF HOG p(X) + Ex[rIIG P(XVcG); VOG - t].

By Theorem 3.1, PX(XVOG E (8G)r) = 1. Since HOG (x, dy) is the unit mass at x
if x E (aG)r, we see that rIOG q (XvOGr) = (XvOG ) with probability one, and thus
the second term on the right in (4.23) is just Ex[p(XVOG): VOG . t]. The first
term is just

(4.24) QF H8OG (P(X) = EX[(P(XVOG); t < VOG < °°].

Hence, the right side of (4.23) is just HOG (p(x). Thus, for any P, HlOG 9 is FPt
invariant. In particular, for q _ 1, we see that P.(VOG < co) is FP' invariant,
and thus as 1 is clearly FP' invariant so is 1 - PX(VOG < 00) = PX(VOG = °°).
This shows that rlG (p + MP,(VOG = o0) is FP' invariant. It is clearly bounded
if 9 is bounded.
Suppose now thatf is any bounded FP invariant function on G. Since constants

are FP' invariant, we can assume that f _ 0. Then

(4.25) Ex[f(Xv6G); VOG_ t]TOGf(x), t -- cc.
By (4.21), we then see that Q' f is decreasing as t --+ o. Let h denote its limit.
Then for x EcG, f(x) = h(x) + HOG f(x).
By dominated convergence and the semigroup property of Q', we see that

for x E G

(4.26) Q'h(x) = Q'[lim Q'f] (x) = lim Q'[Q'f] (x)

- lim Q`+Sf(X) = (X),

so h is Q' invariant. Note that Q'h(x) = 0 for a.e. x E F. Thus, if we define
h(x) to be 0 in GC(F), we see that

(4.27) Pt~5h(x) = Pt(Psh)(x) > Pt(Q'h)(x) = Pth(x),
so Pth(x) is increasing in t. As Pth(x) _ sup. h(x), lim,_OO P'h(x) = hl(x)
exists. The monotone convergence theorem then shows that Pth1(x) = h1(x)
for all x E R' and all t > 0. Thus, h1 must be a constant. (See Proposition 2.3.)
Denote this constant by X.

Now

(4.28) P'h(x) = Qth(x) + E&[h(X,); VF _ t]
= h(x) + E.[h(Xt); VF < t],
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so taking the limit as t -+ oo we see that

(4.29) a- h(x) = lim E.[h(X,); VF < t] = h2(x).
t-. O

Now h2 (x) _ [sup_ h(x)]P,(VF < °°), so

(4.30) QFh2(X) - [sup h(x)]Px(s < VF < oo).

Thus, lim., QUh2(X) = 0. But then, as Q'a = oxP(VF > s), we see from
(4.29) that

(4.31) aPx(VF > s) = h(x) + QUh2(X).

Letting s -. oo, we see that aPx(VF = oo) = h(x). Since for x E G,
PX(VF = °°) = PX(VOG = co) the lemma is proved.
We can now establish the following theorem.
THEOREM 4.3. Let G be any open set and let N be a polar set that contains

the singularpoints of ea. Suppose pis bounded on ea and continuous on (a0) n NC.
Then the only bounded solutions f to the modified Dirichlet problem for G with
boundary function p are

(4.32) f(x) = H50G (x) + apXP(V0G = cc),

for a an arbitrary constant. Conversely, every such function is a solution of the
modified problem.

PROOF. By Theorem 4.1 and Corollary 4.1, we already know that HrG qP +
apx ( V0G = oo) is a bounded solution. Suppose f is any other bounded solution.
Let 8,. be the open ball of center 0 and radius r and let C, = G n 8. Consider
the modified Dirichlet problem on G, with boundary function f. Then clearlyf
as a function on G, is a solution. Since G, is bounded, Theorem 4.2 tells us that

(4.33) f (x) = rCOG, f (X), xE a.

By Lemma 4.1, 1OG,. f is a bounded FrPt invariant function on G,, where we use
(C)c = F, for typographical reasons. Then for any t > 0 and x E C,,

(4.34) f(x) = HOG,f(X) = QF, OGrf(X) + Ex[sGrf(xvGr); V G, _ t]

= Xfr PX(VF, > t, X, E dy)f(y) + Ex[f(XVaG,); VOG, _ t].

Now Ves T co with probability one, and thus for x E G

(4.35) P.(VOG, = VOG for all sufficiently large r whenever VOG < cc) = 1.
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If V0G = x then VGT xc. Hence, in every case when x E G. P,("iM, V G, = [G)
= 1. Then (4.21) and (4.34) show that as r -x cc, for x e G,

(4.36) f (x) = f P.( VF > t, X, e dy)f(y) + Ex[f(XveG): V;G _ ]

= FPf(x).

Thus, f is FP' invariant on G. Lemma 4.1 then shows that f(x) = neGf +

OCPX(VOG = cc), xe G. Since f is defined to be p on EG, we see that f(x) =
HOG ?(X) + OtPx(VB = cc) as desired. This establishes the theorem.
As a simple application of this theorem we prove the following extension

property of harmonic functions relative to polar sets.
COROLLARY 4.3. Let G be an open set. Suppose f is locally bounded and

harmonic on G except perhaps on a relatively closed polar subset N. Thenf extends
uniquely to a harmonic function on G.

PROOF. Let S be an open ball such that S c G and let G1 = S n NC. Then
each point on 2G1 not in N is regular for G' and f is continuous at each point
of 0G, not in N. Thus, as f is bounded on G1 it is the unique bounded solution
to the modified Dirichlet problem for a 1 with boundary function f. But 11sf
is harmonic on S and assumes boundary value f(xo) at each point of aS not
in N. Thus, it too is a bounded solution to the modified Dirichlet problem for G1.
Therefore, f(x) = Hes f(x), x e G1. This shows that f can be extended to be a
harmonic function on S and thus lim-.,0 f(x) = f(xo) must exist for each
xO E S. Since S can be any open ball c G.. f extends everywhere in G as a
harmonic function. Define f*(x) to bef(x) for x E G n NC and define f*(xo) =

lim-.,0f(x) for xO E N. Then f*(x) is harmonic on G and agrees with f on
G r NC. Since N has measure 0, f* is the unique such function.

5. Newtonian potentials

Throughout the remainder of this paper we will consider Brownian motion
in R" n > 3 The planar case will be treated in our companion paper in this
volumr-
An easy computation shows that when n _ 3,

(5.1) lim gA(x) = | p(t, x) dt
o4 Jo

Rn~~~~~

= ~(2lrttn/exp{ t}dt = ,/ 1l

where the convergence is uniform in compacts not containing 0. For a function

(5.2) Gf(X) = gg(y - x)f(y) dy,
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and

(5.3) Gm(x) = I g(y - x)4g(dy),
respectively. Gf is called the potential off and Gm the potential of P. One easily
checks that Of is a continuous function vanishing at oo wheneverf is a bounded
measurablefunctionwith compact support andthat Gp (x) is lowersemicontinuous
and superharmonic whenever p is a finite measure. It is useful to know that the
potential of p determines p whenever G/u is sufficiently finite.

THEOREM 5.1. If p is a measure such that Gp < oo a.e. then Gji determines pu.
PROOF. Suppose p and v are two measures such that GM and Gv < oo a.e.

and GM = Gv a.e. Then PYGp = PYGv, and for any point x for which GM < o0
we have

(5.4) G(x) - P'Gt(x) = J' Ps'(x) ds, j

where PSM(x) = JRnp(s' y -x)p(dy). Thus, if x is such that Gp(x) < oo and
Gv(x) < oo, then

(5.5) IJ'Ps (x)ds = fo Psv(x)ds,

so (5.5) holds for a.e. x. Let h be a bounded, nonnegative function having
compact support such that 0 < fRn Gp(x)h(x) dx < co and set g = Gh. Then
g is a bounded strictly positive continuous function and

(5.6) fg(x)p(dx) = I GM (x)h(x) dx = Gv(x)h(x) dx

= fR g(x)v(dx) < oo.

Let f be any continuous function, 0 _ f _ 1. Observe that

(5.7) f(x)g(x)Ps1(x) dx = Jm (dx)Ps(fg)(x)

and

(5.8) {f(x)g(x)Psv(x) dx = f v(dx)Ps(fg)(x).

Using (5.5), we then see that

(5.9) JM (dx) Ps(fg)(x) ds = T| v(dx) { Ps(fg)(x) ds.

Sincefg is a bounded continuous function, PSfg -- fg as s l0, and Psfg <PSg =
PSGh . Gh = g, and by (5.6) g is both p and v integrable. Hence, using (5.9) and
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dominated convergence, we see upon letting t 10 in (5.9) that

(5.10) J /i(dx)g(x)f(x) = v(dx)g(x)f (x).

Sincef can be any bounded continuous function, (5.10) shows that it(dx)g(x) =
v(dx)g(x) and as g > 0 for all x it must be that pu(dx) = v(dx). This establishes
the theorem.
A useful fact about Brownian motion in R', n _ 3, is the following

proposition.

PROPOSITION 5.1. Let B be any bounded set. Then

(5.11) lim P.(X, eBfor some s > t) = 0,
t-OD

or equivalently, P,(lim,_ IXdi = °°) = 1.

PROOF. Let k be a compact set of positive measure such that

(5.12) inf infP,(Xek) = 6 > 0.O<S1 zei
By integrating from 0 to t + 1 on both sides of (2.15) and then integrating by
parts, it follows that

rt+l t+l
(5.13) PJ . S.XVB E dz)Pz(X,+ c-.Ek) ds

> 6P. ( VB - t).

Letting tT oo, we see that jk 9(Y- x) dy _ 6PX(VB < oo). But

(5.14) P,(X, eB for some s > t) = fp(t, z - x)Pz(VB < oo) dz

< 6-1 T~l z - x)[j) 9(y z) dy] dz

= 6- P"lk(x) ds,

where 1k is the indicator function of k. Since

rO
(5.15) limJ Pslk(X) = 0,

Proposition 5.1 holds.
Using (2.30) and monotone convergence, we see that for any Borel set B,

(5.16) g(y - x) = J nB (x, dz)g(y - z) + 9B(X, Y).



POTENTIALS AND BROWNIAN MOTION 163

It is quite easy to prove the following theorem.
THEOREM 5.2. The function gB has the following properties:

(i) gB > 0:

(ii) g(x, Y) = 9B(Y, x);
(iii) gB(X, y) < 00 for x + y and gB(X, x) = cc for xe (B)';
(iv) forfixed x, gB(x, ) is upper semicontinuous and subharmonic on R-n {X};
(v) for fixed x, gfB(x, y) is harmonic in y e (B)C _ {x};
(vi) for fixed x, gB(x, y) - g(y - x) is harmonic in yE (B)C;
(vii) lim, ,yo YB(X, y) = gB(X, yO) = 0 ifyo e Br.
PROOF. Properties (i) and (ii) follow from the fact that they are true for

gBtgB, .40. Properties (iii) to (vi) follow at once from (5.16) and the fact that

(5.17) {BHBx, dz)g(y - z),

as a function of y is lower semicontinuous, superharmonic on R', and harmonic
on (B)c. Finally, to see that (vii) is true note that if yo cB-. then g'(x. Yo) =
gB(yO, x) 0, SO gB(x, YO) = 0. But by (iv)

(5.18) 0 . lim sup gB(x, y) _ gB(x, yO) = 0.
Y- yo

Let G be an open set. The Green function g* of G is the smallest nonnegative
junction h defined on G x G such that h(x, y) - g(y - x) is harmonic in y.

An important connection between potential theory and Brownian motion is
that gGc as a function on G x G is the Green function.
THEOREM 5.3. The Green function of the open set G is the function gG

restrihted to G x G.
PROOF. The proof of Theorem 5.2 tells us that gGc has the required properties

so it is only necessary to show that gGc restricted to G x G is the smallest such
function. Suppose g* is another function having the required properties.
Consider first the case when every point of 80 is regular for GC and G is
bounded. Then for any yo e 8G we see by Theorem 5.2 (vii) that

(5.19) lim inf [g*(x, y) - g c(x, y)] = lim infg*(x, y) > 0.
Y-Yo Y-Yo

Since g* (x, y) -g~c(x, y) is harmonic in G, the minimum principle tells us that

(5.20) g* (x, y) - g c(x, y) > 0 for all y e G.

Suppose now that 0 is any open set. By Corollary 3.1, we can find open sets
Gn c G. G1 = Gt c G2 Un Gn = G. such that each point of 8Gn is
regular for G' and such that PX(VOG. T VOG) = 1 for all x e G. The function g*
viewed as a function on Gn x G,, has the required properties, and thus by what
has just been proven

(5.21) g (x. y) _ gG (x. Y). x. y C,Gn.
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Now the functions gGS, n > 1, are increasing for x, y E G. Indeed, since each
point of G' is regular for G', 0 = gGg (x, y) _ gn.1(x, y). if either x E G' or
y e G'. On the other hand if x and y are both in Gn, then as G,+ 1(x, y) has the
required properties on G,,+1 -G, it does so on Gn. Thus, by what was proved
above, 9G (X, y) < 9GC+-(X, y), X, y E Gn. We will finish the proof by showing
that the limit, limn g1,c, agrees with 9GC on G x G. If x = y, then gGS (x, x) = oc
for all sufficiently large n and so does 9GC(X, x) so the desired result holds in this
case. Suppose x + y. Then (5.16) shows that

(5.22) gGg(X, Y) = g(y - x) - J'GiHG (x, dz)g(y - z).

Ifx and y e G, then x and y E G, for all n > no for some no. Assume x, ye G,.
Then

(5.23) "1G, (x, dz)g(y - z) = Exg(y - XvGC) = Eg(y - XV6)
- E.[g(y - XV.G,); VOG < Xc]

+ E.[g(y - XVGc); VOG = °°].

Since g(y -x) is a bounded continuous function in x on G' for y E G,, and

PX(XVOG-,, XVOGI VOG < 0)= 1, we see that

(5.24) lim E[<[g(y Xv XVG); VG < ]
n -o

= E.[g(y - XVG;c); VGc < °°]

= {GI HGC (x, dz)g(y - z).

Moreover, by Proposition 5.1, P (limt-IXtI= x)= 1. Since PX(VOGToo
JVOG = o) = 1 and limliix g(y - x) = 0, it follows by dominated con-
vergence that

(5.25) lim EJ[g(y - XVOGn); VOG CC] = 0.
n-.

Thus, from (5.22) and (5.23), we see that for any x, y E G.

(5.26) lim gc(x, y) = g(y - x) J HGC (x, dz)g(y - z).

But by (5.16) the right side of (5.26) is just g1c(x, y) as desired. This completes
the proof.
THEOREM 5.4. Let g be a finite measure having support B. Let N be a subset

of B such that g1(N) = 0. If Gp (x) _ M < cc for all xeBraNc, then

sup. Gli(x) < M.
PROOF. Choose £ > 0 and let

(5.27) A = {x: GM (x) < M + c}.



POTENTIALS AND BROWNIAN MOTION 165

Suppose for some x0 e A, x0 is irregular for A. Then PXO(VA = 0) = 0, and thus

(5.28) imr PXO(X, e A) _ lim PO( VA _ t) = 0.
t-0O t-0O

Observe that

(5.29) Gp(x0) > PtG(x0) >- p(Y- x)Gpu(y)dy _ (M + e)Px0(XteAC).

Thus, Gpu(x0) _ M + E, a contradiction. Therefore, each point of A is regular
for A. Using (5.16), we see that

(5.30) GO(x) = "A (x, dz)G u(z) + fBgA(x, y)p(dy).

Now as j(N) = 0,

(5.31)
B
{gA(X. y)p(dy) = BNI A(X, y)p(dy).

But B rn NC c A, and each point of A is regular for A. so g, (x, y) = 0 for all
y e B n NC. Thus, we see that

(5.32) G0s(x) = I [A (x, dz)Gu(z).

Now Gp(x) is a lower semicontinuous function, and thus {x: GM(x) _ M + E}
isclosed.Hence,A c {x: Gp (x) _ M + s},andthus(5.32)showsthatGM(x) _
M + E. As E is arbitrary, GMu(x) _ M as desired.

6. Equilibrium measure

Let Sr be the closed ball of center 0 and radius r and let G = S'. The hitting
distribution ISr (x, dy) of S, is easily found. Indeed, for x E Sr, nSr (x, dy) is
just the unit mass at x while for x e G, nSr (x, dy) = [IaG(x, dy). Since Sr is
compact

(6.1) lim PX(VS = cc) = lim PX(VEG = °°) = 1
1xl-00 W-.0~~~~~x

Thus, for any continuous function qp on aG, n11G P is the unique bounded
solution to the Dirichlet problem for G with boundary function (P that vanishes
at oc. It is easily checked that

(6.2) h(x) = f9 1-2|ll - r2lic - Xl-n(p(:)ar(dt),
is a bounded harmonic function on G taking values (p on aG and vanishes at cc.
Thus, for x e G.
(6.3) [s, (x, d4) = r`2 1X12 - r2|I; - x - dar(r)
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It follows at once from (6.3) that IHs, (x, d4)g(x)- converges strongly as
jxj - oo to k-1rn-2a," where k = r((n/2) - I)/2nn/2.

Let B be any relatively compact set and let Sr be a closed ball of center 0 and
radius r that contains B in its interior. Then for jxi > r

(6.4) SIB (x, A) = aS, Hs (x, d4) HB (4, A),

and thus for any Borel set A,

(6.5) lim
B (x )= k- ',(d4) rB (h, A).1xI-'o g(X) JS,

We have thus established the following important theorem.
THEOREM 6.1. Let B be any relatively compact set. Then the measure

(6.6) IB(dY) = lim
1 SB (x, dy)

IxI-c0 g(X)

exists in the sense of strong convergence of measures. For any ball S. of center 0
and radius r containing B in its interior

(6.7) lB(dy) = f SrB ( dy)k-1a,(d4).

DEFINITION 6.1. The measure nB is called the equilibrium measure of B and
its total mass C(B) is called the capacity of B.

Since HB(X, N) 0_ whenever N is a polar set, we see that AB(N) = 0 for any
polar set. It is also clear that AB is concentrated in the outer boundary of B.
By use of probability theory, we have directly defined an equilibrium measure

and capacity for any relatively compact Borel set. We must now show that this
is consistent with the definitions usually given in potential theory. The equi-
librium measure (also called the capacitory measure) is usually defined only for
compact sets and in the following manner.

Let A (B) denote all nonzero bounded measures having compact support
contained in B whose potentials are bounded above by 1. When B is compact
it is then shown that there is a unique measure YB supported on B such that
GYB = SUPpeA(B) G1A. The measure YB is what is usually called the capacitory
measure ofB and its total mass the capacity. We will now show that YB = l1B.
(In the classical theory of potentials capacitory measures are only defined for
compact sets B.)
As a first step towards this goal we will show the following important theorem.
THEOREM 6.2. LetB be a relatively compact set. Then PX(VB < 00) = GMB (X).
PROOF. By (5.16),

(6.8) g(y - x) = [IB (x, dz)g(y - z) + gB(X, y).
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Since g(y - x)/g(y) - 1 as IyI -0 0 uniformly on compacts, it follows from
(6.8) that limbs -O gB(x, y)g(y)'1 = PX(VB = ce), the convergence being uni-
form on compacts. By symmetry,

(6.9) lim ( ) = PY(VB =°),
IxI-cx g(x)

uniformly in y on compacts. Let f be any nonnegative bounded measurable
function having compact support. Then Gf(z) is a bounded function. From
(6.9), we see that

(6.10) limco (X,(Y) f(y) =d PY(VB = ox)f(y) dy,
IxI-co J R g(x)j

while by Theorem 6.1,

(6.11) lir F rB (x, dz)Gf (z) = | IB(dz)Gf (Z).

Thus, using (6.8), we see that

(6.12) iLB(dz)Gf (z) = fY <cP)f(y)dy
Asf is an arbitrary bounded function having compact support, it follows from
(6.12) that for a.e. y,

(6.13) GAB(Y) = PY(VB < (0)
Let 9B(Y) = PY(VB < oo). Then PtB(Y) = P,(X eB for some s > t) increases
to qPB(Y) as tIO. Also

(6.14) P GPB = GB - Jf P"MB ds

increases to Ggq as to0. From (6.13), we see that PtGMB = P'pB, and thus
letting o10, we see that (6.13) holds for all y. This establishes the theorem.

It follows from Theorem 6.2 that C(B) = 0 if and only if B is a polar set. We
can now easily show that YB = IB-
THEOREM 6.3. LetB be a compact set. Then PX(VB < 00) = suppeA(B) GO (X).
PROOF. Since B is compact, we can find compact sets B, such that B c B,

for all n and B, DA, D B2 *D *, flB, = nn, = B. By Proposition 3.2,
Px(VB.TVB) = 1 for xeBC'uBr. Thus, for xeBcu Br and f a continuous
function

(6.15) lim HBn f(X)
n

= limEx[f(XvBn); VB < ao] + limEx[f(XvBn); VB. < oo, VB = °°]
=n n

=1[Bf(X).
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In particular, by takingf continuous with compact support and equal to 1 on B1,
we see that PX(VB. < oo)4PX(VB < (o) for xEBruBC. Since (BCuB')C has
measure 0, PX(VB. < °° ) 1 P,(V < 00 ) a.e. Let p E X#(B). Then as each point
of B is a regular point of B. (since B c Bn), B 9gn(X, y)p(dy) = 0, and thus
by (6.8),

(6.16) Gp(x) = { B. (x, dz)GM(z) _ rlB& (x, B.) = Px(VBn < oo).

Thus, for each x e Bc u B' we see upon letting n --- oo that

(6.17) GL(x) _ PX(VB < °°) = (PB(X),

so that (6.17) is valid for a.e. x. Hence, for all x, P'Gpu(x) _ P'(PB(x), and thus
letting t 1 0 we see that (6.17) holds for all x. Using this and the fact that
MB E #1(B), we see that Theorem 6.3 holds.
Theorems 6.2 and 6.3 and our uniqueness theorem (Theorem 5.1) show that

YB = /1B when B is compact.
An immediate consequence ofTheorems 6.2 and 6.3 is the following corollary.
COROLLARY 6.1. Let B be relatively compact. Then for any It E--(B),

pL(R") < C(B).
PROOF. By Theorems 6.2 and 6.3, we know that

(6.18) C g(y - X)
pn(d g(y - B(dy)

j~g(x) gg(X)

Since g(y -x)g(x) --+ 1 as lxi -- oc uniformly on compacts, we see by
letting lxi -o that M(R") = P(B) < pB(B) = C(B), as desired.

Let U be any open set. We can then find compact sets kn c U such that
k c k2 c * * , U, kn = U. Since X, e U if and only if X, e kn for all sufficiently
large n, PX(Vkj1 Vu) = 1 for all x, so PX (Vk. < °O) TP,(Vu < °°). By Theorem
6.2, Px(Vkn < oo) = Gpk (x). Thus, Gtk.(X)TPX(VU < (x). But as 9kn e .(U),

(6.19) P.(Vu < cc) < sup GM(x).
peA(U)

On the other hand if g E .(U) has compact support k, then Theorems 6.2
and 6.3 show that

(6.20) Gm(x) 5 Gmk(X) = PX(Vk < °°) _ PX(VU < °°).

Thus, P,(Vu < oo) is the smallest majorant of potentials of measures in .(U).
This characterization of P,(Vu < cc) together with the one given for compact
sets by Theorem 6.3 shows that P. (VB < cm) for B an open set or a compact
set is the electrostatic potential of B for such sets.
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The capacity function C( ) defined for all relatively compact sets has the
following properties.
THEOREM 6.4. Let A and B be relatively compact. Then:

(i) C(A) . C(B). ifA c B:
(ii) C(AuB) < C(A) + C(B) - C(An B);
(iii) C(A + a) = C((A);
(iv) C(-A) = C(A);
(v) C(rA) = r'-2((A);
(vi) ifB is open and B compact C0(B) = sup {C(k): k c B. k compact};
(vii) if B is compact. C(B) = inf {C(U): U D B. U open, U compact}.
PROOF. Using Theorem 6.2 and the fact that g(y - x)/g(x) -- 1 uniformly on

compacts as lxi x,. we see that for any relatively compact set B

(6.21) 0(B) lim P(VB < X) - F P4(VB < cc)k or(dC).
Ixl-Hc g(x) es

for any ball of center 0 and radius r containing B in its interior. Thus, to
establish (i) to (v), it is only necessary to establish the appropriate inequalities
for PX(VB < cX). Hence, (i) to (v) follow from:

(a) PX(VA < o) _ PX(VB < °°), A ' B;
(b) PX(VAB < cc°) - PX(VA < 00, VB < cc) = PX(VA < cc) + PX(VB < cc) -

PX(VAUB < °°);
(c) PX(VA < °°) = Px+a(VA+a < °°);
(d) PX(VA < cc) = PX(VA < CC);
(e) PX(VA < ) = Prx(VrA < cc).

To prove (vi), let kn be compact sets cB such that k1 c k2c and U, kn B.
Then P,(Vkn < oo)tP (VB < cc). Let D be an open relatively compact set
containing B. Then

(6.22) C (k.)

= R
P .(D < cc)pk,(dx)

={ Gikn (X)P D(dx) TfJ PX(B < °°)PD(dx)

_LGD(X)PlB(dx) = f PX(VD < xc)IIB(dX) = C(B3).
To establish (vii). let U, be open, relatively compact, and such that U1 D U2 )

U2 D * ---n Un = nl Uc. = B. Choose Sr to be an open ball of center 0 and
radius r that contains U1 in its interior. Then for 4e asr, P: (Vu. < cc)
PT (VB < oc), and thus

(6.23) C(U.) = f'S P4(Vu. < oc)k-'r(dc) IfeS P4(VB < cc)k-'ag(d4) = C(B).
This establishes the theorem.
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Let C*(B) = 0(B) ifB is a compact set. For any open set U define C*(U) as
sup {C(k): k c U, k compact}. We say that a set B is capacitable if sup
{C*(k): k c.B, k compact} = inf {C*(U): U v B, U open}. For a capacitable
set define C* (B) as sup {C(k): k c B, k compact}. Property (vi) shows that if
U is relatively compact then C*(U) = C(U). This fact, together with (i) and (ii)
shows that C(.) is a Choquet capacity (see, for example, [1]) on the compact
sets. By Choquet's capacity theorem, C* is its unique extension to the Borel sets
and every Borel set is capacitable.
Now for a relatively compact set B, we have already defined its capacity by

C(B). To see that C*(B) = C(B) note that if k c B, k compact then C(k) . C(B),
and thus

(6.24) C*(B) = sup {C(k): k c B. k compact} . C(B).

Also if U is open and relatively compact then C(B) _ C(U), and thus

(6.25) C*(B) = inf {C(U); U D B, U open} _ C(B).

Thus, C*(B) = C(B).
Now that we have the capacity defined for all Borel sets, let us point out that

B has capacity 0 if and only if every compact subset of B has capacity 0. (We
could have used this property to define sets of capacity 0 directly.) Our next
two results charactize polar sets.
THEOREM 6.5. Let B be any Borel set. Then
(i) B is polar if and only if every compact subset of B is polar;
(ii) B is polar if and only if C*(B) = 0.
PROOF. Clearly, if B is polar, then so is every compact subset of B. On the

other hand, if every compact subset of B is polar. then for any relatively
compact A c B. C(A) = sup {C(k): k c A, k compact} = 0, so A is polar.
Thus, B must be polar. Therefore (i) holds. Similarly, if B is polar, then every
compact subset is polar so C*(B) = sup {C(k): k c B, k compact} = 0. Con-
versely, if C*(B) = 0. then C(k) = 0 for all compact sets k c B, and thus by (i)
B is polar. This establishes the theorem.
COROLLARY 6.2. Let B be any Borel set. Then B is polar if and only if

, (B) = 0. Equivalently, B is polar if and only if sup, GM(x) = cc for any
bounded nonzero measure having compact support c B.

PROOF. Suppose there is a nonzero measure pi having compact support
k cc B such that sup. Gpu(x) _ M < ac. The measure M/M then belongs to
Jf'(k) cc #(B) and clearly

(6.26) P.(VB < 00) _ PX(Vk < cc) _ Gu(x).

Since puisnonzero, GM(x) > Oforsomex, andthusPX(VB < xc) > Oforsomex.
Hence. B is not polar. On the other hand if B is not polar then some compact
subset k ofB must also be nonpolar. Hence, P.,( Vk < cc) > 0 for some x. Since
1k e -#(k), J/(k) # 0, and Gmk(x) < 1. This establishes the corollary.
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7. Equilibrium sets

So far we have discussed equilibrium measures only for relatively compact
sets. In this section, we will examine to what extent these notions go over to
unbounded sets. We start our discussion with the following theorem.
THEOREM 7.1. LetB be a Borel set. Then either PX (VB < cc) 1 or P. (X, eB

for some s > t) -- 0 as t -x oo.

PROOF. Let qo(x) = PX(VB < oo). Then P'p is a decreasing function in t as
t cc. Let r(x) = lim1 oo Pt (x) and set h = - r. Clearly, Pth(x)IO as
t cc. Using dominated convergence and the semigroup property of pt, it
easily follows that r = Ptr for all t > 0. Thus, r(x) = for some constant oc
(see Proposition 2.3). Hence, p = ac + h. Now

(7.1) P.(t < VB < CC) = JX qB(t, X, y)(P(y) dy _ CP.X(VB > t).

Letting tt x, we see that cpX(VB = xc) . 0. Thus, either oc = 0 or PX(VB =
cc) _ 0. In the first case (p = h and in the second case PX(VB < Xc) 1 as
desired.

DEFINITION 7.1. A Borel set B is called recurrent if PX(VB < Xc) 1_; it is
called transient if PX(XS E B for some s > t) 10.
By Theorem 7. 1, we know that every Borel set is either transient or recurrent.
Our next result extends Theorem 6.2 from relatively compact sets to transient

sets.
THEOREM 7.2. Let B be a transient set. Then there is a unique Radon measure

1AB such that PX(VB < cc) = GMB(X). The measure PB is concentrated on @B.
Moreover, if Bi, m > 1, is any sequence of relatively compact sets such that
B1 c B2 C**a U. B. = B, then GMB- T GP1B as n -GO c and the measures PB
converge vaguely to PB.

PROOF. Let Bm m > 1, be as in the statement of the theorem. Then
U [VB < cc] = [VB < cc], and thus P. (VIB < Xc)TPX (VB < oc). By
Theorem 6.2,

(7.2) GMB-(X) = PX(VB < cc) < PX(VB < cc) = (PB(X).

Let k be any compact set. Since infek g(y - x) = 3(x) > 0, it follows from
(7.2) that

(7.3) 5(X)PB-(k) Sk g(Y - X)PB_(dy) _ GPB_(x) . 9B(X).

Thus, sup. PB-(k) < c. Consequently, there is a subsequence. PB;, of the
measures PB- that converge vaguely to some measure PB.
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Let f _ 0 be continuous with compact support, and let 8, be the closed ball
of center 0 and radius r. Then, as gsF(x, y) _ 0 for each x e S., we see that

(7.4) LsFI,;8(dX)Gf(x) = JSF B,,(dx) nSF Gf(x)

- 'R- gBT (dX) H1SF Gf(x).

By letting A 10 in (2.31), we see that

(7.5) SRN Is (x, dz)g(y z) = HRnSF (y, dz)g(x - z).

Using this fact, we compute

(7.6) j'R psm,(dx) nsH Gf(x) =RnJR' r MBj(dx) HsF (x, dz)g(y - z)f(y) dy

fRP JR fRn puB(dx)f(y) dy nsF(y, dz)g(x - z)

iSRn nsF GMB;,(y)f(y) dy.

Using (7.2), (7.4), and (7.6), we see that

(7.7) Jb5 Gf(x)%;gn(dx) ,- fR. nsg TB(y)f(y) dy-

Now for any t > 0.

(7.8) nsf TB(Y) = Ej[%(XVsF)] PY(VSF <- t) + PIt(P(Y)-

Since B is a transient set, PTqp 10 as tt oo. In addition, P,(VSF < t)10 as rT oo
because P,(lim,,, VSF = °°) = 1. It follows from these two facts that

(7.9) lim IlsF PB(Y) = 0.
,-0

Hence, by (7.7) and (7.9), we see that given any e > 0 there is an ro < oo such
that for r _ ro,

(7.10) sup M,;s(dx)Gf(x) < a.
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Using the fact that Gf is a bounded continuous function, we see that

(7.11) lim [lim| Gf(x)LBi(dx)l = r f| f(x)8B(dx)
r--Xm-° Sr J r- JSo

= T|M Gf(X)MB(dx)

= T|n HGB(X)f(X) dx.

Moreover, monotone convergence shows that

(7.12) lim OfGf(x)pBi(dx) = "fM GMB'a (x)f(x) dX = R B(X)f(X) dx.

It follows easily from (7.10) through (7.12) that

(7.13) GJL9B(X)f(X) dX = JR (PB(X)f(X) dX.

Since f can be any nonnegative continuous function with compact support,
(7.13) implies that for a.e. x,

(7.14) GPB(X) = (PB(X).

From (7.14), we see that P'GMB(x) = P'9pB(x) for all x. Since P'GAB I GliB and
P'08 T 9B as t 1 0, it follows that (7.14) holds for all x.
Suppose lB;m is another subsequence of the measures ABm that converge

vaguely to a measure p/B. The same argument as used above will again show
that 0li'B = (PB* By Theorem 5.1, it must then be that M' = MB. Thus, the
measures ABm converge vaguely to /1B. Theorem 5.1 tells us that sB is the unique
measure whose potential is PB. To see that PIB is concentrated on aB, we can
proceed as follows. Let S. be the closed ball of center 0 and radius m, and let
Bm = B n S,,. Then B1 c B2 c- * , and U. Bm = B. Thus, the measures PB
converge vaguely to fLB. Since PBsm is concentrated on aBm and each interior point
ofB is an interior point of B. for m sufficiently large, sB must be concentrated
on aB. This completes the proof.
We will now show that the total mass of the measure MB in Theorem 7.2 is

C*(B). To do this, we will need the following
PROPOSITION 7.1. Let B be a transient set. Suppose A c B. Then PA(R')

PB(R" ).
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PROOF. Let Dm be a family of relatively compact sets that increase to R'.
Using Theorem 7.2, we then see that

(7.15) J'R n(dX)m1D- (X) = ARnm(dX)0A = fR mD-(dX)P.A < ao)

RJ.R" IiDm(dX)PX(VB < a:) = fRI 11D (dX) 0IB(X)

=JR.U (dX) 01AD- (x) .
Since

(7.16) GILD (x) = P.(VD- < ) T
as m Too, it follows from (7.15) (by monotone convergence) that MA (R') <

PzB(R'), as desired.
THEOREM 7.3. Let B be a transient set. Then MB(Rn) = C*(B). Moreover,

if B__ m > 1, is a sequence of relatively compact subsets of B such that
B,iB2 c *.*, UmBm = B, then C(Bm)tC* (B).

PROOF. Let B_ m > 1, be as in the statement of the theorem. Then by
Proposition 7. 1,

(7.17) C(B1) _ C(B2) . ... _ PB(Rn).
On the other hand, let f, r > 1, be continuous functions with compact support
such that 0 _ f, _ 1 and such that f,T 1 as rT co . Then

(7.18) C(Bm) > fJ fr(X)/LBm(dX),

and thus by Theorem 7.2,

(7.19) lim inf C(B.) _ Pb«B(dX)L,(X).

Letting r T oo, we see that

(7.20) lim inf C(Bm) > ILB(R').

Hence, C(Bm)TLB (R").
From our results in Section 6, we know that

(7.21) C(Bm) = sup {C(k): k c Bm, k compact}.

Suppose ,uB(R") = oo. Given any N > 0, we can then find an m such that
C(Bm) _ 2N. From (7.21), we see that we can find a compact set k c Bm such
that C(k) _ C(Bm) - N. Thus, C(k) _ N. Hence, sup {C(k): k c B, k com-

pact} = C*(B) = 0o. Suppose now that FB(R') < oo, and let e > 0 be given.
We can then choose m such that C(Bm) _ l(R') - e. From (7.21), we see that
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there is a compact set k c Bm such that C(k) _ C(Bm) -, and thus C(k) _
M(R') - 2e. Hence,

(7.22) C*(B) = sup {C(k): k c B. k compact} = P1B(Rn).
This establishes the theorem.

Let B be a closed set. As usual, let 1A(B) denote all nonzero bounded
measures having compact support c B whose potentials are bounded above
by 1.
An important link between probability theory and potential theory is the

following
THEOREM 7.4. Let B be a closed set. Then

(7.23) sup {Gp(x): p e #(B)} = PX(VB < °c).

PROOF. Since B is closed, we can find compact sets B, c B, B, c B2,
UBn = B. Then clearly, PX(VBn < oo)IPX(VB < cc). n -- cc. If pc-/A(B)
has compact support k c B, then by Theorems 6.2 and 6.3,

(7.24) GP (x) S GM& (X) _ PX(VsB < °°) _ PX(VB < ac),
and thus

(7.25) sup {GM (x): p e A (B)} _ P, (VB < °c).

But GMB,(x) = Px( VB& < cc)T PX(VB < oc), so

(7.26) sup {Gp(x):pe.(B)} = PX(VB < °x).

This establishes the theorem.
COROLLARY 7.1. A closed set B is transient if and only if there is a Radon

measure MB supported on aB such that

(7.27) Gl1B(X) = sup {Gti(x): p e #(B)}.
PROOF. This follows at once from Theorems 7.2 and 7.4.
If B is a transient set the measure MB is called the equilibrium measure of B

and its potential is called the equilibrium potential, just as in the case of a compact
set. The total mass of MB is the capacity of B. Theorem 7.3 shows this is con-
sistent with the extension of C( ) from the relatively compact sets.
We are now in a position to state our results on the Dirichlet problem for G

in analytical terms. Note that for x e G, Px(VeG = oc) = PX(VGC = Xc). We
want to know when Px(VaG = cc) = 0 for all x e G. Suppose this is the case.
Then GC must be a recurrent set. For suppose PX(VG. < xc) = 1 for all x e G.
It is always true that PX(VGC < Xc) = 1 for all x e GC except perhaps at the
points in GC that are irregular. But these exceptional points form a set of measure
0, and thus PX(VGC < co) = 1 a.e. Since P'(PG~CTG as 41 ,0, we then see that
PX( VG, < cc) = 1 for all x, so G' is recurrent. Conversely, if GC is recurrent then
PX(VG. < Xc) 1, SO PX(VWG = CC) = 0 for all x e G. Thus we have the
following.
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THEOREM 7.5. Let G be an open set. The modified Dirichlet problem for EG
with boundary function up has HOG p as its unique bounded solution if and only if
Gsis a recurrent set. If GC is a transient set then a constant multiple of Px( VGc = °°)
can be added to the solution nOG p. These constitute the only bounded solutions to
the problem.
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