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1. Introduction

Pioneering work of Doob, Kae, and Kakutani showed that there was a
beautiful and deep connection between certain problems in the study of
Brownian motion and those of classical potential theory. This work stimulated
much research on the theory of Markov processes. In spite of all this work,
however, there doesn’t appear anywhere in the literature any reasonably
complete treatment of the connection between potential theory and Brownian
motion. In this paper and its companion ‘‘Logarithmic Potentials and Planar
Brownian Motion’’ which follows in this volume, we present this connection in
a way that is both elementary and essentially selfcontained. Our treatment here
is not complete and will be expanded upon in a forthcoming monograph.

This paper, being basically expository in nature, contains essentially nothing
new. Its novelty (if any) consists in the treatment given to the topics discussed.
In one place, however, we do seem to have a result that is new. This is in finding
all bounded solutions of the modified Dirichlet problem for any arbitrary open
set G, and in giving a necessary and sufficient condition for there to be a unique
such solution.

In this paper, we consider a Brownian motion process X,in» = 2 dimensional
Euclidean space R". Let B be a Borel set and set

(1.1) Vg = inf {¢ > 0: X, € B}, Vg = wif X,¢ Bforallt > 0.

In Section 2, we present preliminary facts about Brownian motion that are
needed to develop classical potential theory from a probabilistic point of view.
A set B is called polar if P,(Vz < o) = 0. A point x is called regular for B if
P (Vg = 0) = 1. In Section 3, we prove that the set of points in B that are not
regular for B is a polar set. In this section, we also show that points are polar and
gather together a few more facts of a technical nature that are needed for work
in the later sections. The Dirichlet problem for an arbitrary open set @ is
discussed in Section 4.

Starting with Section 5 and throughout the remainder of this paper, we assume
that we are dealing with Brownian motion in » = 3 dimensions. (The planar
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case is discussed in the companion paper.) In Section 5, we introduce Newtonian
potentials and show how they are related to the Brownian motion process. We
also prove that |X,| - oo with probability one as ¢ > oo and prove the extended
maximum principle for potentials.

The remaining two sections are devoted to developing the notion of capacitary
measure and potentials from a probabilistic view point.

2. Preliminaries

A Brownian motion process in » = 2 dimensional Euclidean space R" is a
stochastic process X,, 0 < t < o0, having the following properties: (i) for each
t >0 and k > 0. X,,, — X, has the normal density p(t, x) = (2nt) "2 exp

|x|2/2t} and (ii) for 0 < t; <, < <t, < o, X,, — Xo, X,, — X,,,
— X,,_, are independent random varlables It is well known that a
version of this process can be selected so that the sample functions ¢ —» X, are
continuous with probability one. Henceforth, we will always assume that our
process has this continuity property.

The distribution of X, depends on the distribution of X,. We let P (- ) denote
the probability of - given X, = x and we let £, denote expectation relative to P,.

Let B be any Borel set. The first hitting time V of B is defined by V; =
inf {t > 0: X, e B} if X, € B for some ¢ > 0. If X, ¢ B for all ¢t > 0, we define
Vg = oo. When Vy < co. the first hitting place in B is the random variable X, .

In the sequel, we will need to know some contmmty propertles of P (VB < t).
These are given by: AR !

ProrposiTiON 2.1.  The functzon Px(VB < t) is a continuous functwn in t for
t > 0 for fixed x and a lower semicontinuous function in x for fixed t > 0.

Proor. Supposeforsomet > 0, P (Vg = t) > 0. Thenforany?,0 < h < ¢,

tn

@.1) 0<P(Vs=15 [ plhy—aP(Vs=1t—hdy.
RVI
SO

(2.2) P(Vg=1t—hydy >0
R'l
forall h. 0 < h < ¢. But this is impossible because for any r > 0,

2.3) JH P(Vy < t)dy < fu dy < ©.
ylsr ylsr

Thus the measure
(2.4) fl L BUaedndy
yl=r

can have only countably many atoms.
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To establish the lower semicontinuity in x for fixed ¢ > 0 note that
(2.5) f plh.y — x)P(Vg < t — h)dy = P(X, € B for some s € (h. t))
R"

is a continuous function in x that increases to P (Vy < ) as h|0. Thus,
P (Vg <ty = P(Vg < t) is lower semicontinuous in x. This establishes the
proposition.

The next fact we prove tells us that the mean time to leave any bounded set B
is finite.

ProposrTioN 2.2. Let B be relatively compact. Then sup, E Vg < 0.

Proor. If x e (B)° then P (Vg = 0) = 1, so only points z € B need be
considered. Let ¢ > 0. Then

(2.6) inf P,(X,eB) =6 > 0,

xeB

and thus for any x € B,

(2.7) P (Vge = t) 2 P(X,€B) 2 96.
Hence, for x € B,

2.8) P(Vge>1) <1 — 0.

But then

29)  P(Vg > 20) = f PV > . X, edz)P.(Vge > 1) < (I — 8)%
B
and by induction, for x € B,

(2.10) P (Vg > nt) < (1 — &)

Hence,

2.11) sup B, Vg < & < o0,
xeB o

as desired.

Let 4 and B be any Borel sets. Then clearly

2.12) P(X,ed) =P, (Vs < t.X,eAd) + P,(Vg > t. X, € A).
Now
2.13)  P.(Vs <t X, ed)

- f' f P.(X, € A|Vy = s, Xy, = 2)Pu(Vy € ds. Xy, € dz).
- B



O
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Brownian motion, along with a large variety of Markov processes, possesses
the important property that for s < ¢,

(2.14) P (X, eA|Vy = s Xy, =2) = P(X,_, € 4).

This property is a consequence of the strong Markov property. It is certainly
intuitively plausible that (2.14) should hold and a rigorous proof is not difficult
to supply. Since the proof would involve us in a more thorough discussion of the
measure theoretic structure of a Brownian motion process than we care to go into
in this paper, we will omit the proof. (The interested reader should consult
Chapter I of [1] for a complete discussion of the strong Markov proper“cy )
Usmg (2.14), we obtain from (2.12) that . C Y cro

«r.

- N s .
2.15)  P.(X, € 4) f fo(PBeds Xy, €dz)P,(X,_, € 4)

=P (Vg > t, X, e A).
The left side of (2.15) has

t
(2.16) plt,y — x) — fo— J;_} P (Vgeds, Xy, edz)p(t — s,y — z)

as a density. Fatou’s lemma shows that

2.17) f’ f P.(Vyeds, Xy, eda)p(t — s,y — 2)
— JB

is a lower semicontinuous function in y. As the left side of (2.15) is absolutely
continuous, the measure P, (Vg > ¢, X, € dy) is also absolutely continuous. Let
q(t, x, y) be any density of P (Vg > ¢, X, € dy). Then

@18)  pty—x) — [ | P(Vseds Xy, edalpt — 5.y = 2)
- JB

PO vt =q( x,y) a.e. .

Consequently, the left side of (2.18)is >0a.e. y and being upper semicontinuous,
it is =0 for all y. We may therefore use the left side of (2.18) to define a density
for P (Vy > t, X, € dy) for all y. Denote this density by g(t, x, y). Then forall y,

(219) P(ts?/ - .’Z‘) - J:_ fﬁpx(VBedsa ngedz)p(t - S8y — Z) = qB(t9x9 ?/)

Henceforth in this paper, g will always denote this density.
The densities p(t, ) have the semigroup property:

(2.20) pt + s,y —x) = fRnp(t, z — x)p(s.y — z)dz.

Define P! on the bounded or nonnegative measurable functions by

2.21) Pf@) = [ pty - )f(9) dy = BS(X)).
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Then
(2.22) Prsf = PYPS).
Since Brownian motion is a Markov process,

223) PV >t + s X,,,€d)
- f P(Vy > t, X, edz)P,(Vy > s, X, € A),
BC

and thus for almost all y

(224) QB(t + $, x, y) = ch qB(t7 x, Z)QB(S’ z, y) dz.

We will now show that (2.24) holds for all y € R". To do this note first that by
using (2.20) and (2.19), it is easily verified that
RS
IR
(2.25) lim qp(t — &, 2, 2)p(e, y — 2)dz = qg(t, x,y).
£10 JR®
Using this and the fact that (2.24) holds for a.e. y, we see that (2.24) holds for
all y.

Let 2 > 0. (Henceforth, 4 will always denote a positive real number.) Define

gz(x) = J‘wp(t’x)e_”dt, I .
0

(2.26)
gg(x’ Z/) = fo qB(tr Z, ?/) e_it dta t
and Yo s
(2.27) M (@, dz) = [ e P (Vpedt. Xy, € d2). |
0 o

. . o T S
The quantities corresponding to these for 4 = 0 are denoted by the same symbol
without the A (for example, T1} for A = 0 is I1,). For future reference, we note

that T1%(x, dz) is supported on B and

(2.28) fs 3 (x, dz) f(x) = E.(exp {— AV} f(Xy,)).
Also,
(2.29) fR" 95, y)f(y) dy = Ex fovaf(xt) e”dt.

Observe that g*(0) = oo, but otherwise g*(x) is a continuous function that
vanishes as  — c0. Since p(t, ¥y — x) = qp(t, x, y), we see that g*(y — x) =
g5(x, ). It follows from (2.19) that

(2.30) gy — @) = [ T @ da)g'ly — 2) + ghla. y).
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This equation will play a major role in our development.

Now g*(x) = g*(—x), so g*(y — x) = g*(x — y). It can be shown that
gh(x. y) is a symmetric function in x and y. A proof of this fact can be obtained
by a fairly simple probabilistic argument. We will not prove this fact here but
refer the reader to Chapter VI of [1] for a complete discussion.

Using (2.30). we see that the symmetry of g} implies that

(2.31) [ M@ aagy -2 = | 1@ dagie - 2.

This relation, as well as the symmetry of g;. will be of constant use in our
development of potential theory.

Let T be an orthogonal transformation. Then p(¢, @) = p(¢, x). It follows
from this fact that if 7 is a rotation about a point a and S is a sphere of center a.
then P,(Xy, € A) = P,(Xy, € td)forany Borel subset 4 = S.Hence, P,(X, edy)
must be the uniform distribution on 8. Let o,(a. dy) denote the uniform distri-
bution on the sphere of center a and radius . Then P, (X, € dy) = o,(a. dy)
when § is the sphere of center ¢ and radius r. Using this fact. we will now prove
a fact that will be used several times in the sequel.

ProposiTioON 2.3.  Let f be a bounded function such that f = P'f for all t > 0.
Then f is a constant.

Proor. Since f = P'f for all ¢ > 0, we see that f is continuous and that
fl@) = A3 g*(y — x)f(y) dy. Let S be the complement of the ball of center a
and radius r. Using (2.30), we see that

(2:32) fla) = 2 [ giw s dy + 1 f@)
Now
@3 [T ol wldy S Il e ns > o

Since S¢ is bounded, £,V < oo, so

2.34) lim( e MP (Vs> t)dt = f“’ PVs > t)dt = E,Vs < 0.
0

21040

Letting A | 0 in (2.32), we see that f(x) = Ilg f(x). In particular, forx = a, we see
that

(2.35) f@ = Ef(Xy) = [ _fo,(a dy).

Thus, fis its average over every sphere. Hence, fis harmonic, and as it is bounded
it must be a constant. This establishes the proposition.
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3. Regular points

Let B be a Borel set. It can be shown by a simple measure theoretic argument
that P, (Vy = 0) is either 0 or 1. (See Chapter I of [1].) A point x is called
regular for B if this probability is 1. Otherwise x is said to be irregular for B. Let
B" denote the set of regular points for B. Clearly, BcB cB. A simple
sufficient condition for regularity is the following.

ProrosiTioN 3.1 (Poincaré’s test). Let k be a truncated cone of vertex 0,
radius ry and angle opening o. Then x € B" if x + k < B.

Proor. Clearly,

(3.1) PuVy 1) 2 PX,eB) 2 PuX, ek + ) = Po(X, € k)

|2 ro 2
= (Znt)_"/ZJ exp{-——'% }dac = a(2nt)_"/2j exp{——i} Ly

20>0

foralll = ¢ > 0. Thus, P.(Vz = 0) > 0 and hence P, (V3 = 0) = 1, as desired.

Using (2.19), we see that if x € B', then gj(x. y) = 0 for all y. By symmetry,
gk(x,y) = 0 fory e B

A simple but important device will be employed in many proofs. Let B be a
closed set and let B,, n = 1, be a family of closed sets such that B, o> B, o
B,>--,N,B,=N,B, =B.

ProrosiTiON 3.2.  Let B and B, be as described above. Then P (Vg TVg) = 1
forxe B°UB".

Proor. Clearly, the V; are nondecreasing, and thus Vy TV < V. If

= o0, then Vg = c0. On the other hand if V < oo, then X, — X, €
N, B, = B. Thus, V = Vg whenever V' > 0. Clearly, P (V > 0) =1 when
x e B If x € B" then P,(V = Vz = 0) = 1. This establishes the proposition.

For our later work, we will need the following simple corollary of Propositions
3.1 and 3.2.

CoroLLARY 3.1. Let G be a nonempty open set. Then there is an increasing
sequence G, of open sets with compact closures contained in G such that
G,cG cG,c -, U, G, =G and such that each point of 0G, is regular
for G, The times Vg ,n = 1, are such that P (Vo6 1 Vo = 1 forall x € G.

Proor. Let k, be compact sets such that bk, < k, < and U, &k, = G. Cover
k, by a finite number of open balls whose union D is such that D is contained
in G. By increasing the radii of some balls if necessary, we can conclude from
Poincaré’s test that each point of 0D is regular for D°. Let ¢, = D. Thus, each
point of 0G, is regular for G and G, = G. Apply the same procedure to
G, Uk,. and so forth. Clearly, G, =« G, =+, U, G, = G, so G > (G5) >

,and N, G5 = G°. Using Proposition 3.2, P, (V. T Vse) = 1 for all x € G.
But P (Vs = Vge) = Lo e Gand P (Vyg, = Vi) = 1 forx e G,. so P (Vyg, 1
Vig) = 1, x € G, as desired.
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A set B is called polar if P (Vg < o) = 0. Clearly, such sets are negligible
since no Brownian motion process can ever hit such a set in positive time. Later
when we introduce the notion of capacity as given in classical potential theory
we will see that a polar set and a set of capacity 0 are equivalent.

Let B be a Borel set. If 2 € B then z is a regular point of B, while = € (B)® is
irregular for B. Thus, only points on dB are in question. An important fact is
that the points in B that are irregular for B constitute a polar set, that is,
(B")* N B is a polar set. We will prove this fact here for B a closed set. To carry
out the proof of this fact we will need some preliminary facts, some of which are
of interest in their own right.

We first show that (B")° N B is a Borel set having measure 0.

LEmMA 3.1. Let B be a Borel set. Then B" is a G5 set and D = (B")° N B has
measure (.

Proor. A point x is regular if and only if P (Vy = 0) = 1. Thus,

32) B ={x:P(Vg=0)=1} = ﬁl {x:Px<VB < %) >1 - l}

n

n=

By Proposition 2.1, P, (Vg < 1/a) is a lower semicontinuous function so
{: P, (Vg < 1/n) > 1 — 1/n} is open. To see that D has measure 0, we can
proceed as follows. Let 4 = D be relatively compact and note that

(3.3) P(X,ed) S PV, <) S P(Vy 1),

soforxe A,

(3.4) lim sup P, (X,€d) < lim P (Vp = t) = 0.
10 t]0
Thus,
(3.5) lim | P.(X,ed)dx = 0.
t]0 JA4

The function

(3.6) flz) = fRn L(z + 2)1,(2) dz

is a continuous function and

3.7) fA P.X,eA)dx = Bof(X,).

Hence,

(3.8) £10) = lim B f(X,) = lim [ P.(X,e4) = 0.
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But f(0) = |4], so0 |4| = 0.
Our next result shows that B, (exp { — AV;})is the ““A potential” of the measure
u} defined by

(3.9) = ,1f 1% (x, 4) d.
LeMMa 3.2. Let B be any Borel set. Then

(3.10) Eylexp {~1V5}) = [ g*w - @)ubldy).

Proor. Integrating both sides of (2.30) on x over R", we see that

(3.11) 1= [ wdagiy —2) + 2 [ ghe.y)de

But by the symmetry of g5, we see that

(3.12) fxn ghx, y)dx = fR" gs(y, x)dx = [1 — E (exp {—AVs})]A~ "

This establishes the lemma.

REMARK. Since g*(x) is bounded away-from 0 on compacts, it follows from
(3.10) that ui(B) < oo whenever B is compact.

Lemma 3.3. Let B be a compact set and let B,, n = 1, be compacts such that
B> B, >B,>:--,N,B, =N,B, = B. Then the total mass C*B,) of the
measure llﬁ,. converges to the total mass C*(B) of u} asn — oo.

Proor. By Proposition 3.2, for x € B" U B°,

(3.13) E.(exp {—AVy,}) LE (exp { —AV3}).

By Lemma 3.1, (B"Y n B = (B" U B°)° has measure 0, so (3.13) holds for a.e. x.
Thus, by monotone convergence and (3.10),

(3.14) C*(B,) = Af (exp {— AV} dxuf exp {—AV3}) da = C*(B).

This establishes the lemma.

LemMa 34. Suppose k is a compact set such that sup, g E (exp {—AV,}) =
B < 1. Then k is polar.

Proor. Let k, be compacts containing k& such that k; o i;: Dkyo:--,
N, k, =N, loc = k. Then each point in & is a regular point of k, for all n. On
the one hand (3.10) shows that

315 [ [ gy — )by, de)

= [ Bulexp (= V)i, (d2) S BCH,
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On the other hand.

(3.16) f o 99— Dy (d)
- fRn E\(exp { =2V, i (dy) = (k).

Thus., (*(k) < BC*(k,). By Lemma 3.3. C*(k,)} C*(k). and thus (*(k)
BC*(k). Hence. ("*(k) = 0. But using (3.10). we then see that £ (exp { — 1V, })
0. and thus k is polar, as desired.

Let u be a finite measure having compact support k. Let G*u(x) = jk gty — x
u(dy). Our next lemma shows that G*u satisfies a maximum principle.

LEmmA 3.5. Let u be a finite measure having compact support k and let
M = sup,y G*u(x). Then G*u(x) < M for all x € R".

Proor. If M = oo there is nothing to prove so assume M < oo. Lete > 0
be given and let A = {x: G*p(x) < M + &}. Each point of A must be a regular
point of 4. To see this, suppose o€ 4 and x, is irregular for 4. Then
P, (V, = 0) =0, and thus

it IA

~—~—

(3.17) limP, (X,ed) £limP, (V, ¢ =0.
(o ° 1o 0

However.

(3.18)  G*u(xo) Z e HP'G*p(xy)

v

e ch(t, y — xo) G u(y) dy

2 (M + &) e "P (X, € A).

By (3.17). lim, o P, (X, € A°) e™* = 1, and thus G*u(xe) = M + &, a contra-
diction. Hence, 4 < A". Since k = A = A" and g%(x, y) = 0 for all y € 4", we
see that {, g4 (x. y)u(dy) = 0. By (2.30), we then see that

(3.19) G u(x) = f; % (x. dz) G*u(z). xe R

The function G*u(z) is lower semicontinuous in z (since it is the limit of the
increasing sequence e~ *"P'"G*pu(z), n = 1, of continuous functions). Conse-
quently, {z: G*u(z) £ M + ¢} is a closed set. Clearly 4 < {z: G*u(z) < M +
¢}, and thus by (3.19), G*u(x) £ M + ¢ for all xe R". As ¢ is arbitrary.
G*u(x) £ M for all x. This establishes the lemma.

CoROLLARY 3.2. Let A be a closed set such that A" = . Then A is polar.

Proor. It suffices to consider the case when 4 is compact. The function
E (exp {—AV,}) is lower semicontinuous. Indeed, P (V, < t) is lower semi-
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continuous in x and thus by Fatou’s lemma,

(3.20) liminfE, (exp {—AV,} = lim inf f P e M dt
= if liminf P (V, < t)e *dt

22 [T P(Va S 0 e dt = B yfexp (=2V,))

Let

(3.21) A, = {x: E(exp {—=AV,}) <1 — l}r\A.

n

Then 4, < 4 is compact and by Lemma 3.2, forx € 4,,.
(3.22)  GM (@) = Byfexp (—AVy)) < Bufexp {—AV)) < 1 — 1.
n

By Lemmas 3.2 and 3.5, we then see that £, (exp {—4V, }) < 1 — 1/n forall
x € R", and thus by Lemma 3.4, A, is polar. Since A = U, 4,, 4 is polar.

We may now prove the following basic theorem.

THEOREM 3.1. Let B be any closed set. Then (B")° N B is polar.

Proor. It suffices to consider B compact. Let

(3.23) D, = {x:Ex(exp {=AV}) =1 — 1},
n

and let B, = Bn D,. Then

(3.24) (B)YnB =) B,

Since B, = B, E (exp { — 4V, }) < E (exp {—AV}). If x is irregular for B then
E (exp {—AVj,}) < I so x is irregular for B,. Suppose x is regular for B. Then
x € DS, and as D, is closed, x is irregular for D, and hence also for B,. Thus,
= J. Corollary 3.2 then implies that each B, is polar. and thus (B")' n B

is polar. This establishes the theorem.

We conclude this section by pointing out a simple corollary of Lemma 3.2.
Though its proof is trivial it is important enough to be stated as

THEOREM 3.2. A one point set is a polar set.

Proor. Using (3.10) for the set B = {a}. we see that

(3.25) E.(exp {—AViy}) = g*(a — x) 11, (a).

Since E,(exp {—AV,,}) £ 1 and g*(0) = 0. it must be that 11{,(a) = 0. But
then B, (exp {—AV,,}) = 0so P (V,,, < ) = 0.
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4. Dirichlet problem

Let G be an open set. The classical Dirichlet problem for G with boundary
function ¢ is as follows. Given ¢ on 0@ find f harmonic in G and continuous on
G such that f = @ on 0G. In general, even when ¢ is restricted to be a bounded
continuous function at each point of 0@, this problem may have no solution.
If solutions do exist, then unless @ is bounded, they may not be unique. The
modified Dirichlet problem eases the continuity requirements on G by allowing
the function f (which must still be harmonic in @) to be discontinuous at an
exceptional set of points on 0G. One of the nicest connections between Brownian
motion and potential theory is the elegant and simple treatment it allows for the
modified Dirichlet problem.

DEFINITION 4.1. Let G be an open set. A point x4 € 0G is said to be non-
singular if lim, g ., o6 @ (@) = @(xy) for all bounded functions that are con-
tinuous on 0G. Otherwise a point x, € 0G is called singular.

THEOREM 4.1. Let ¢ be a bounded measurable function defined on 0G. Then
H,6¢ (x) is harmonic in G. Moreover, if xy € 0G is a point of continuity of ¢ and
is also a regular point of G°, then lim ¢ ... Moo (x) = @(x0)-

Proor. It is easily seen that P'Il,; ¢ (x) is continuous in x for all ¢ > 0
and that lim,_ o P'Tl,; @(x) = [,g @(x) uniformly on compact subsets of G.
We conclude that I,; @(x), x € G, is continuous. Let x € ¢ and let S, be a
ball of center & and radius r such that S, = @. Then clearly the process starting
from x must first hit S, in positive time before it can hit dG. Thus,

(@.1) o 9(x) = [ oy, (@.d2) Tlog 0(2).
But as argued in Section 2, Il;5, (x, dz) = o,(x, dz). Thus,
(42) Mo 0(@) = [ Tog (2o (. d).

so 6 ¢ is indeed harmonic at x.

Suppose now that x, € G is both a point of continuity of ¢ and a regu-
lar point of G°. Given 6 > 0 and ¢ > 0, we can find a ¢, such that P(sup, <4,
|X, — Xo| £ 36) > 1 — & Let N be any neighborhood of x,, and let D(é) be a
closed ball of center x, and radius d = N. Let B = G°. Then forx € D(16),

4.3)  P(Vp = to, Xy, ¢éN)
< P(|X, — X,| > 36 forsome t < ¢o) < e
Thus, for x € D(38),
(44) P(Vp =Sty Xy,eN) =PV S ty) — Pr(Vg = to. Xy, ¢ N)
Z P.(Vg £ &) — &
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Since x is regular for B and P, (Vy < t)is a lower semicontinuous function in x,
we see that

(4.5) 1 =P, (Vg S tp) Sliminf P(Vy S t) £ 1.
Thus, by (44), 1 2 liminf,,, P (Vg < t5,Xy,eN) 21 —¢ and as ¢ is
arbitrary we see that

(4.6) lim P (Vg < ty, Xy, e N) = 1.

But e

(4.7) 12 My (@, N) 2 P(V5 < to, Xy, € N),

so for any neighborhood N of z,

(4.8) 31_.1?0 Mg (x, N°) = 0.

Moreover, as P (Vg < ty) < P.(Vg < o), equation (4.4) shows that
4.9) :}1—»120 P (Vg < 0) =1

Now as ¢ is continuous at x,, we can choose a neighborhood N of x, such that
lo@) — @(xo)| < &, x€ N.But

(4.10) [Hpe(x) — @(xo)| = fN g (x, d2)|@(2) — @(xo)|

+ [ s @ d0le@) — oo + @@LV = o)

< e+ 2|o| Mg (=, N°) + @(x0)Pe(Vp = ).
Using (4.8) and (4.9), we see that
(4.11) lim Mp@(x) = @(x).

X—=Xx0
Finally, if x € G, then P, (V,¢ = V3) = 1. Thus (4.11) shows that
(4.12) lim 1l @(x) = @(xo),

x—=x0,x€G

as desired. This establishes the theorem.

CoroLLARY 4.1. A point xy € 0G is nonsingular if and only if it is a regular
point for G°. The set of singular points of 0G is thus a polar F° set.

Proor. Ifz, € (G°) n 0@, then Theorem 4.1 shows that x4 is a nonsingular
point. Suppose now that x, is a nonsingular point. Then Il (2, dy) converges
weakly to the unit mass ¢, (dy) at x,. Thus, given any ¢ > 0 and any neighbor-
hood N of x,, we can find a closed ball 8 of center x, = N such that
P(Xy,,eN)21—¢xeSnG. But

(4.13) P (Xy,c€N) = P, (Xy,c € N; Vo < Vas) + Pry(Xy,g € N; Vo > Vos).
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Since 8 = N, P, (Xy,, € N|V,6 < Vi) = 1,50

(4.14) P (Xy,; € N; Vog £ Vis) = Pry(Vag £ Vis)-
Also, '

(415)  Po(Xyoo € N|Vog > Vis) = [ PeylVag > Vesi Xy, € d2)P.(Xy g € V)
2 (1 = )P (Vag > Vas).
Thus, P, (Xy,., e N) =21 — .

Hence, Il (x4, dy) is the unit mass at x, so P, (Xy,, = x) = 1. But Theorem
3.2 shows that {x,} is a polar set. Thus, P, {X,,. = x,} = 1 can only be true
it P, (Vo = 0) = 1, s0 x4 is a regular point of 0G. Since 8G < G, x, is then
also a regular point for G*. This establishes the theorem.

Theorem 4.1 and its corollary show at once that for ¢ a bounded continuous
function on 0@, the function I1,; @ is a solution to the Dirichlet problem for G
with boundary function ¢ provided each point of 0G is nonsingular.

From Theorem 3.1 and Corollary 4.1, we know that the set of singular points
of 0G is a polar set. Let N be any polar set that contains all singular points of 0G.
Let ¢ be a bounded function on 0@ that is continuous at each point of N° N 0G.
The modified Dirichlet problem consists in finding a function f harmonic on @
and continuous on G L (0G N N¢) such that f = ¢ on dG. We know that I1,5 @
is a solution to the modified problem. If we choose ¢ = 1, we see that
P (Vg6 < o) is a solution. Thus, P (V,g = ) =1 — P, (V¢ < o) is a solu-
tion to the modified problem with boundary function 0. Our principal goal in the
remainder of this section is to show that I;; @ (x) + oP (Ve = o0) are the
only bounded solutions to the modified problem.

We will start our investigation with a bounded G.

THEOREM 4.2. Let G be a bounded open set and let N be a polar set that
contains the singular points of 6G. Suppose @ is a bounded function on 0G that is
continuous on 0G N N¢. Then T, @ is the unique bounded solution to the
modified Dirichlet problem for G with boundary function ¢.

Proor. Suppose first that all points on 0G are nonsingular and that the
exceptional set N is empty. Then the modified problem becomes just the classical
Dirichlet problem. Suppose f is any solution. Then f —~ Il,; ¢ = k vanishes on
0G, is harmonic on @, and continuous on @. The maximum principle then tells
us that A vanishes on G so f = Il,; ¢ on G.

Consider now an arbitrary bounded open set ¢ and allow an exceptional
polar set N containing the singular points of 0G. By Corollaries 3.1 and 4.1, we
can exhaust G by an increasing sequence of open sets G, c G, c G, = - - -,
U, G, = G, such that all points of 0@, are nonsingular, and such that
P, (V6,1 Vag) = 1 for all x € G. Let f be a bounded solution to the modified
problem on G. Then f is continuous on G, and harmonic on G, so it is a



POTENTIALS AND BROWNIAN MOTION 157

solution to the classical Dirichlet problem on (7, with boundary function f on
¢@,. By what was proved above, [1;5_fisthe unique solution to this problem, so

(4.16) flx) = g, flx). x €@,

Now as G is compact, Proposition 2.2 shows that E }5. < o0, so certainly
P.(Vge < ) =1.But foranyx e G, P.(Vge = Vo) = 1. 50 P (V6 < 00) =1
for all x € G. Since G, = (. it must also be that P (V,5, < o) =1 for all
x € @,. Fix x € G. Then

(4.17) Hog, f(@) = B[ f(Xy,e,)]

Now P (Vo6 1Vos) =1 and as P (Ve < ) = 1. we see that P (lim,
Xv,, = Xv,e) = L. But P (X, € N) = 0 and f is continuous on (0G) N N¢so

(4.18) [’x(lim fXy,e) = 0(Xy,,) = 1.
Since f is bounded,
@19) i B (X, ) = Buflim [(Xy,e,)] = B (Xy,).

Using (4.16) and (4.19), we see that for any x € G, f(x) = I,z @(x) as desired.

CoroLLARY 4.2. Let G be a bounded open set. The classical Dirichlet problem
has a solution for all continuous boundary functions ¢ if and only if G has no
singular points. In that case 11,¢ @ is the unique solution with boundary function @.

Proor. Since @ is compact, a solution f of the classical Dirichlet problem
for G for ¢ continuous on 0@ is automatically a bounded solution for the
modified problem with N being the set of all singular points of 6G. But then
fx) = My @(x), x € G. As fis a classical solution, lim, ., 1156 @ (o) = @(xg).
Since this is true for all ¢ continuous on JG, we see that all points in 0G are
nonsingular. This establishes the corollary.

To handle the case when @ is unbounded, we will require some preliminary
information on the process X, stopped when it hits G° (for typographical
simplicity we shall put G° = F). Let Y, = X, ,,_andset (P f(x) = E f(Y,), and

(4200 Qif(@) = BLAX) Ve > 1] = [ arlt.z o) () dy.
Note that for x € @, P, (Vo = V) = 1, so that for x € G.
(4.21) Pif) = Qf(x) + E.[f(Xy,0): Vec = 1.

We say that a function defined on G is invariant for pP' on ¢ if
(4.22) L) = fz), xed.

Similarly. a function f defined on @ is Q% invariant if f(x) = Qpf(x), x € (7.
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Lemma 4.1.  For any bounded function @ on 0G, Myq @(x) + aP (Vg = )
18 a bounded P invariant function on G. Conversely, every bounded pP' invariant
Sfunction on @ is of this form.

Proor. Let ¢ be bounded on 0@ and let x € @. Then by (4.21),

(4.23) P Ty @(x) = QF My @(x) + E [T, O (Xy,.); Vo = £].

By Theorem 3.1, P,(Xy,. € (0G)) = 1. Since I, (x, dy) is the unit mass at x
if x € (0Q), we see that I, ¢ (Xy,.) = ¢(Xy,,) with probability one, and thus
the second term on the right in (4.23) is just E,[@(Xy,;): Vo6 < t]. The first
term is just

(4.24) QF Ny @(x) = E,[0(Xy,,); t < Vo < 0]

Hence, the right side of (4.23) is just IT,; @(x). Thus, for any ¢, I,z @ is P*
invariant. In particular, for ¢ = 1, we see that P (V,; < o) is P invariant,
and thus as 1 is clearly pP* invariant so is 1 — P, (Vg < ) = P (Vyg = ).
This shows that [I,; @ + aP (V,g = o0) is pP' invariant. It is clearly bounded
if ¢ is bounded.

Suppose now that fis any bounded pP* invariant function on G. Since constants
are pP' invariant, we can assume that f = 0. Then

(4.25) E.[fXvys); Vo < t]1 o6 f(2), t - 00.

By (4.21), we then see that Q% f is decreasing as ¢t — c0. Let h denote its limit.
Then for x € G, f(x) = h(x) + ;6 f(x).

By dominated convergence and the semigroup property of Q%, we see that
forx e @

(4.26) Qrh(x)

Qr[lim Q5 f](x) = lim QF[Q7/](@)
= lim Qi"’f(x) = h(x),

80 kb is Q} invariant. Note that Qth(x) = O for a.e. x € F. Thus, if we define
h(z) to be 0 in G*(F), we see that

(4.27) P'**h(x) = P'(P°h)(x) 2 P'(Q%h)(x) = P'hix),

so P'h(x) is increasing in ¢. As P'h(zx) < sup, h(x), lim,,, P'h(x) = h(x)
exists. The monotone convergence theorem then shows that P'h(x) = hy(x)
for all x € R" and all £ > 0. Thus, 2, must be a constant. (See Proposition 2.3.)
Denote this constant by a.

Now
(4.28) P'hx) = Qphx) + E,[h(X,); Vg < {]
= h(x) + Ex[h(Xt); VF < t],
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so taking the limit as £ —» o0 we see that

(4.29) o — h(x) = lim E,[h(X,); Vs < €] = hy(2).
Now h,(x) < [sup, h(x)]P(Vr < 0), 80
(4.30) Q¥ha(x) < [sup h(x)]Py(s < Vp < 0).

Thus, lim,,, @zh,(x) = 0. But then, as Q3o = aP.(Vy > s), we see from
(4.29) that

{4.31) aP (Ve > 8) = h(x) + Q%h,(x).

Letting s - o0, we see that aP (Vy = o©) = h(x). Since for x e G,
P (Ve = ©0) = P, (Vo6 = o0) the lemma is proved.

We can now establish the following theorem.

THEOREM 4.3. Let G be any open set and let N be a polar set that contains
the singular points of 0G. Suppose @ is bounded on 0G and continuous on (0G) N N°.
Then the only bounded solutions f to the modified Dirichlet problem for G with
boundary function ¢ are

(4.32) fx) = e @(x) + aP (Vg = ),

Jor o an arbitrary constant. Conversely, every such function is a solution of the
modified problem.

Proor. By Theorem 4.1 and Corollary 4.1, we already know that IT,; ¢ +
oP, (Vs = o0) is a bounded solution. Suppose f is any other bounded solution.
Let S, be the open ball of center 0 and radius r and let G, = G N S,. Consider
the modified Dirichlet problem on @, with boundary function f. Then clearly f
as a function on G, is a solution. Since G, is bounded, Theorem 4.2 tells us that

(4.33) f@) = g, f(x), zeG,.

By Lemma 4.1, Il,_fis a bounded g P invariant function on G,, where we use
(G, = F, for typographical reasons. Then for any ¢ > 0 and x € G,,

(4.34) fx) = g, f(@) = @, Tag, f(x) + E[Mo6, f@v,e,); Vag, = t]

[, PV, > t. X, e dy)f@) + Bl (Xye,): Vo, S 1]

Now Vs, 1 oo with probability one, and thus for x € @

(4.35) P (Vy6, = Vyc for all sufficiently large » whenever V, < o) = 1.
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If V;¢ = oo then Vg, T oo. Hence, in every case when x € G, P (lim, V6 = V;6)
= 1. Then (4.21) and (4.34) show that as » - o0, for x € @,

Il

@36)  f@) = [ PVr > L X, dpf() + Bl f(Xypg): Vio S 1]

= FPtf(x)-

Thus, f is pP' invariant on G. Lemma 4.1 then shows that f(x) = M6 f +
oaP, (Vg = ), x € G. Since f is defined to be ¢ on 0G, we see that f(x) =
I, ¢(x) + aP (Vg = o0) as desired. This establishes the theorem.

As a simple application of this theorem we prove the following extension
property of harmonic functions relative to polar sets.

CoRrROLLARY 4.3. Let G be an open set. Suppose f is locally bounded and
harmonic on G except perhaps on a relatively closed polar subset N. Then f extends
uniquely to a harmonic function on G.

ProoF. Let S be an open ball such that § = ¢ and let G, = S " N°. Then
each point on 3G, not in N is regular for G{ and f is continuous at each point
of dG, not in N. Thus, as f is bounded on @, it is the unique bounded solution
to the modified Dirichlet problem for dG, with boundary function f. But Il,g f
is harmonic on S and assumes boundary value f(x,) at each point of 68 not
in N. Thus, it too is a bounded solution to the modified Dirichlet problem for G, .
Therefore, f(x) = [l 5 f(x), « € G;. This shows that f can be extended to be a
harmonic function on 8 and thus lim,_  f(x) = f(x,) must exist for each
Zo € 8. Since 8 can be any open ball < @, f extends everywhere in ¢ as a
harmonic function. Define f*(x) to be f(x) for x € G N N° and define f*(x,) =
lim,_, . f(x) for o€ N. Then f*(x) is harmonic on G' and agrees with f on
G n N¢. Since N has measure 0, f* is the unique such function.

5. Newtonian potentials

Throughout the remainder of this paper we will consider Brownian motion
in R" n = 3..The planar case will be treated in our companion paper in this
volun&r- -

An easy computation shows that when n = 3,

2]

(5.1) lim g*(x) = J p(t, x) dt
210 o

n
: ey, TG
= I (2me) "2 exp{ 2] }dt __\2 |2

n/2
0 2t 2n

where the convergence is uniform in compacts not containing 0. For a function
f or measure p define Gf and Gu by

(5.2) Gf@ = [ gty - »)fw dy.
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and
53) o) = [ gy - =may)

respectively. Gf is called the potential of f and Gu the potential of y. One easily
checks that G'f is a continuous function vanishing at co whenever f is a bounded
measurablefunction with compactsupportand that Gu(x)islowersemicontinuous
and superharmonic whenever  is a finite measure. It is useful to know that the
potential of u determines p whenever Gu is sufficiently finite.

THEOREM 5.1. If pis a measure such that Gu < oo a.e. then Gu determines p.

ProoF. Suppose u and v are two measures such that Gy and Gv < o a.e.
and Gu = Gv a.e. Then P'Gu = P'Gv, and for any point x for which Gu <
we have

(5.4) Gux) — P'Gux) = f;P‘u(x) ds, woe ;"‘* vrTE J

where Pu(x) = 5R,.p(s, y — x)u(dy). Thus, if x is such that Gu(x) < o and
Gv(x) < o0, then

(5.5) - ft Pou(x)ds = ft Psy(x) ds,
0 0
so (5.5) holds for a.e. x. Let & be a bounded, nonnegative function having

compact support such that 0 < SR,. Gu(x)h(x) dr < oo and set g = Gh. Then
g is a bounded strictly positive continuous function and

(5.6) Lng(x)u(dx) - fm Gu)h(x) dx = fm v(@)h(z) dx

= fR" glx)v(dx) < 0.

Let f be any continuous function, 0 < f < 1. Observe that

(5.7) [ S@g@Pu@ e = [ w@Pfy) @)
and
(5.8) J@g@Py@) dz = [ vide)P(fg) (@)

Using (5.5), we then see that
1 ! 1 !
(5.9) ;j p(d) J P*(fg) (x) ds = ;J v(da) J P*(fg) (@) ds.
Rn 0 Rn 0

Since fg is a bounded continuous function, P’fg — fgas s |0, and P’fg £ P’g =
PGh £ Gh = g, and by (5.6) g is both y and v integrable. Hence, using (5.9) and
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dominated convergence, we see upon letting ¢ | 0 in (5.9) that
(5.10) [, amg@@ = [ vdnge)s@).

Since f can be any bounded continuous function, (5.10) shows that u(dx)g(x) =
v(dx)g(x) and as g > O for all x it must be that u(dx) = v(dx). This establishes
the theorem.

A useful fact about Brownian motion in R",n = 3, is the following
proposition.

ProrosiTiON 5.1. Let B be any bounded set. Then

(5.11) lim P (X, € B for some s > t) = 0,

t—=
or equivalently, P, (lim,, , |X,| = o) = 1.
Proor. Let k be a compact set of positive measure such that

(5.12) inf infP,(X,ek) =35> 0.

0Ss=1 zeB

By integrating from 0 to ¢ + 1 on both sides of (2.15) and then integrating by
parts, it follows that

(5.13) fo'“Px(Xsek) ds > f_ f'“Px(VB < 5, Xy, €d2)P,(X, s, -, € k) ds
B Jt
2 0P (Vy £ 1)
Letting t1 0, we see that [, g(y — x) dy 2 5P, (Vz < ). But

(5.14) P (X,eBforsomes > t) = j p(t,z — )P (Vg < w0)dz

Rn

< 6"] plt, z — x)U g9ly — 2) dy] dz
Rn k

=461 f P*1,(x) ds,
t
where 1, is the indicator function of k. Since

(5.15) lim | P*l(x) = 0,

ttoo Jt

Proposition 5.1 holds.
Using (2.30) and monotone convergence, we see that for any Borel set B,

(5.16) 9ty — @) = [, U (@, d2lgly — 2) + ga(x. )
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It is quite easy to prove the following theorem.

THEOREM 5.2. The function gg has the following properties:
(i) gg 2 0;

(i) gp(x, y) = gp(y, x); _

(iii) gg(x, y) < o forx # y and gg(x, x) = © for x € (B) ;

(iv) for fixed x, gg(x, - ) is upper semicontinuous and subharmonic on R" — {x};
(v) for fixed x, gg(x, y) is harmonic in y € (B)* — {x}:

(vi) for fixed x, gg(x, y) — gly — ) is harmonic in y € (B)";

(vii) limy_  gg(x, y) = gp(x, yo) = 0if yo € B".

Proor. Properties (i) and (ii) follow from the fact that they are true for

gh1gs. 210. Properties (iii) to (vi) follow at once from (5.16) and the fact that

(5.17) fﬁ N7, d2)gly — ),

as a function of y is lower semicontinuous, superharmonic on R", and harmonic
on (B)". Finally, to see that (vii) is true note that if y, € B". then g5, yo) =
g5(Yo. x) = 0, 50 gg(x, yo) = 0. But by (iv)

(5.18) 0 = lim sup gg(x, ¥) < gp(x, yo) = 0.
y=yo
~ Let @ be an open set. The Green function g§ of G is the smallest nonnegative
function % defined on G x @ such that h(x, y) — g(y — x) is harmonic in y.

An important connection between potential theory and Brownian motion is
that gg. as a function on G x @ is the Green function.

THEOREM 5.3. The Green function of the open set G is the function gg.
restricted to G x G.

Proor. The proofof Theorem 5.2 tells us that g has the required properties
so it is only necessary to show that gs. restricted to G x @ is the smallest such
function. Suppose g* is another function having the required properties.
Consider first the case when every point of 0G is regular for (¢ and @ is
bounded. Then for any y, € G we see by Theorem 5.2 (vii) that

(5.19) lim inf [g*(x, y) — gge(x, y)] = lim inf g*(x, y) = 0.
0

y=yo y=y

Since g*(x, ¥) — gge(x, y) is harmonic in G, the minimum principle tells us that
(5.20) g¥(x, y) — gge(x, y) = 0 forally € G.

Suppose now that G is any open set. By Corollary 3.1, we can find open sets
G,cG G cG cG,c---,U,G, = G, such that each point of 0G, is
regular for G¢ and such that P (V6,1 Vse) = 1 for all x € G. The function g*
viewed as a function on @, X G, has the required properties, and thus by what
has just been proven

(5.21) g*(x. y) Z ggglx. y). x.yel,.
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Now the functions gg., n = 1, are increasing for x, y € . Indeed, since each
point of G is regular for G5, 0 = gg:(x, y¥) < g, , (@, y). if either x € G}, or
y € G5. On the other hand if x and y are both in G,, then as gg. . , (x, y) has the
required properties on @,,.; o G, it does so on (,. Thus, by what was proved
above. g (2, ¥) < 9gq.,,(@, ¥), x, y € G,. We will finish the proof by showing
that the limit, lim, g, agrees with gg. on ¢ x G. If x = y, then gg,(x, x) = ©
for all sufficiently large n and so does gg.(x, x) so the desired result holds in this
case. Suppose x # y. Then (5.16) shows that

(5.22) gos(x, Y) = gly — x) — fca Mg, (x. dz)g(y — 2).

Ifx andy € G, then x and y € G, for all n = n, for some n,. Assume x, y € G,,.
Then

(5.23) fcc lgg (x. d2)g(y — 2) = E.gly — Xvg,) = Egly — Xv,q,)
=E. 9y — Xv,q,); Vo < ©]

+ E[9(y — Xv,q,); Vog = ©].

Since g(y — x) is a bounded continuous function in x on G for y € G, and
PX(XVOG,, hd XVBG‘ VOG < OO) = 1, we see that

(5.24)  lim B.[g(y ~ Xyyg,): Voo < 0] = Bulg(y = Xypo)s Voo < 0]
= E[g(y — Xvge): Ve < 0]

= ch Mg (x, dz)g(y — 2).

Moreover, by Proposition 5.1, P,(lim,..|X,| = o) = 1. Since P(Vss,T 0
[Vag = 0) =1 and lim ., gy — ) = 0, it follows by dominated con-
vergence that

(5.25) nlLrg Elg(y — Xv,s,): Vog = ] = 0.

Thus, from (5.22) and (5.23), we see that for any x, y € 7,

(526)  lim gg@.y) = gy — @) = | Mo (2. d2lgly — 2.

But by (5.16) the right side of (5.26) is just gg.(x. y) as desired. This completes
the proof.

THEOREM 5.4. Let u be a finite measure having support B. Let N be a subset
of B such that pu(N)=0. If Gux) £ M < o for all xeBn N, then
sup, Gu(x) = M.

Proor. Choose ¢ > 0 and let

(5.27) A= {x: Gux) < M + &}.
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Suppose for some x( € 4, x, is irregular for A. Then P, (V, = 0) = 0, and thus

(5.28) lim P,,(X, € 4) < lim P, (V, £ 1) = 0.
t— t—=0
Observe that
(5:29)  Gulwo) Z P'Gu(wo) 2 [ ply — )G(y)dy Z (M + &) Poy(X, € 4).

Thus, Gu(xy) = M + &, a contradiction. Therefore, each point of 4 is regular
for 4. Using (5.16), we see that

(5.30) Guiz) = [ T4 @ d2)6u) + [ gatw v)uy).

Now as u(N) = 0,

(5.31) [L9a@pmay) = [ gax puy).

But BN N° < A, and each point of 4 is regular for 4. so g,(x, y) = 0 for all
y € B N¢. Thus, we see that

(6.32) Gu(x) = L I, (x, dz)Gu(z).

Now GQu(x) is a lower semicontinuous function, and thus {x: Gu(x) £ M + &}
is closed. Hence, 4 = {x: Gu(x) £ M + &}, and thus (5.32) showsthat Gu(x) <
M + . As ¢ is arbitrary, Gu(x) < M as desired.

6. Equilibrium measure

Let S, be the closed ball of center 0 and radius r and let G = ;. The hitting
distribution Ig, (z, dy) of 8, is easily found. Indeed, for x € S,, Il (x, dy) is
just the unit mass at « while for x € G, I, (x, dy) = Il,6(x, dy). Since S, is
compact
(6.1) lim Px(VSr = OO) = lim Px(VaG = OO) = ]..

x|~ o0 |x| =00
Thus, for any continuous function ¢ on 0@, T, ¢ is the unique bounded
solution to the Dirichlet problem for G with boundary function ¢ that vanishes
at co. It is easily checked that

(6.2) hw) = j =22 = 2|l -« e (@), (dd).
aG

is a bounded harmonic function on @ taking values ¢ on 0G' and vanishes at co.
Thus, for x € G,

(6.3) I, (z. d€) = "~2||af* = 2||¢ — =] 7" do, ().
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It follows at once from (6.3) that IIg (x, d¢)g(x)”' converges strongly as
|| = oo to k~'r""20,, where k = I'((n/2) — 1)/2n"2.

Let B be any relatively compact set and let S, be a closed ball of center 0 and
radius r that contains B in its interior. Then for |x| > r

(6.4) My (@, 4) = [ Tas, (@,d8) Ty (€, 4),
and thus for any Borel set 4,
. g (x, 4) _
(6.5 hmB—:J’ k™ lo,(dE) Ty (&, A).
) @) . (d¢) Mg (¢, A)

We have thus established the following important theorem.
THEOREM 6.1. Let B be any relatively compact set. Then the measure

: HB (xi d?/)
(6.6) dy) = lim ——
Kg(dy) o g(@)
exists in the sense of strong convergence of measures. For any ball S, of center 0
and radius r containing B in its interior

(6.7) po(dy) = [ Ty (& dyk™0,(d0).

DEFINITION 6.1. The measure pg is called the equilibrium measure of B and
its total mass C(B) is called the capacity of B.

Since IMgz(x, N) = 0 whenever N is a polar set, we see that ug(N) = 0 for any
polar set. It is also clear that yy is concentrated in the outer boundary of B.

By use of probability theory, we have directly defined an equilibrium measure
and capacity for any relatively compact Borel set. We must now show that this
is consistent with the definitions usually given in potential theory. The equi-
librium measure (also called the capacitory measure) is usually defined only for
compact sets and in the following manner.

Let .#(B) denote all nonzero bounded measures having compact support
contained in B whose potentials are bounded above by 1. When B is compact
it is then shown that there is a unique measure y5 supported on B such that
Gyp = sup,. 4p Gu. The measure y, is what is usually called the capacitory
measure of B and its total mass the capacity. We will now show that y; = up.
(In the classical theory of potentials capacitory measures are only defined for
compact sets B.)

As a first step towards this goal we will show the following important theorem.

THEOREM 6.2. Let B bea relatively compact set. Then P (Vg < ) = Gug(x).

Proor. By (5.16),

(6.8) gy — 2) = [ 1y (@ dagly = 2) + ga(@. y).
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Since g(y — x)/g(y) — 1 as |y| » oo uniformly on compacts, it follows from
(6.8) that lim,,_ ., gg(x, ¥)g(y)~' = P,(Vz = ), the convergence being uni-
form on compacts. By symmetry,

. gp(®, ¥)
6.9 lim =———= = P, (V3 = ),
(6.9) Jim 225 = BV = o)
uniformly in y on compacts. Let f be any nonnegative bounded measurable
function having compact support. Then Gf(z) is a bounded function. From
(6.9), we see that

s gB(x5 y)
6.10 1 98v> ) v =1 Pv. = i
¢-10 |x|l£nmj, g YW L” y (Ve = 0)f () dy,
while by Theorem 6.1,
: My (x, dz)Gf (z) [
6.11 1 B\, @2)JRE) d2)GF (2.
- el _L g(x) _El‘a( 2)Gf (z)

Thus, using (6.8), we see that

(6.12) [, maa6re) = [ BV < w0)f(9) dy.

As f is an arbitrary bounded function having compact support, it follows from
(6.12) that for a.e. y,

(6.13) Gua(y) = P,(V < ).

Let @p(y) = Py(Vp < 00). Then P'gg(y) = P (X, € B for some s > ¢) increases
to @g(y) as t| 0. Also

(6.14) PGy = Gy — f " Pup ds
0

increases to Qug as t|0. From (6.13), we see that P'Gug = P'@g, and thus
letting ¢ | 0, we see that (6.13) holds for all y. This establishes the theorem.

It follows from Theorem 6.2 that C(B) = 0 if and only if B is a polar set. We
can now easily show that y; = pp.

THEOREM 6.3. Let B be a compact set. Then P,(Vz < 00) = sup, 4 Gu(ag

Proor. Since B is compact, we can find compact sets B, such that B < B,
for all n and B, oB, >B, >---,N,B, = N, B, = B. By Proposition 3.2,
P (Vg 1Vg) =1 for xe B°UB". Thus, for x € B°UB’" and f a continuous
function

(6.15)  lim My f(x)
= limEx[f(XVB,,); Vg < 0] + lim Ex[f(XVs,.)§ Vg, < 0, Vg = ]

= Mg f(x).
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In particular, by taking f continuous with compact support and equal to 1 on B,
we see that P (Vz < )] P, (Vy < o) for x € B"U B°. Since (B°UB")° has
measure 0, P (Vz < o0)| P, (V3 < ) a.e. Let ue .#(B). Then as each point
of B is a regular point of B, (since B < BY), {3 gp,(x, y)u(dy) = 0, and thus
by (6.8),

6.16) Gu@) = |[ M5, (@ d2)Gu(2) < Ty, @, B,) = PulVp, < o0).
Thus, for each x € B° U B" we see upon letting n — oo that
(6.17) Gu(x) £ P (Vg < ) = ¢@p(x),

so that (6.17) is valid for a.e. x. Hence, for all x, P‘Gu(x) < P'@p(x), and thus
letting ¢} 0 we see that (6.17) holds for all x. Using this and the fact that
ug € H(B), we see that Theorem 6.3 holds.

Theorems 6.2 and 6.3 and our uniqueness theorem (Theorem 5.1) show that
yg = Mg when B is compact.

An immediate consequence of Theorems 6.2 and 6.3 is the following corollary.

CorOLLARY 6.1. Let B be relatively compact. Then for any ue #(B),
u(R") = C(B).

Proor. By Theorems 6.2 and 6.3, we know that

gly — x) gly — x)
6.18 227 " udy) £ | 22— (dy).
(6.18) L 7@ MyL_L MMIMy)

Since g(y — x)g(x)"! > 1 as |x| — o0 uniformly on compacts, we see by
letting |x| — oo that u(R") = u(B) £ pg(B) = C(B), as desired.

Let U be any open set. We can then find compact sets k, = U such that
kickyc---,U,k, = U.Since X, € U if and only if X, € k, for all sufficiently
large n, P,(V,,| Vy) = 1 for all z, so P,(V,, < ©)1P(Vy < o0). By Theorem
6.2, P,(V,, < ©) = Gy (x). Thus, G ()T P (Vy < ). But as u, € A (U),

(6.19) P (Vy < ©0) £ sup Gu(x).
ueM(U)

On the other hand if y € #(U) has compact support k, then Theorems 6.2
and 6.3 show that

(6.20) Gux) £ Gu(x) = PV, < ) £ P(Vy < ).

Thus, P.(Vy < o) is the smallest majorant of potentials of measures in # (U).
This characterization of P (V, < o) together with the one given for compact
sets by Theorem 6.3 shows that P, (Vg < o0) for B an open set or a compact
set is the electrostatic potential of B for such sets.
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The capacity function ('(-) defined for all relatively compact sets has the
following properties.
THEOREM 6.4. Let A and B be relatively compact. Then :
(i) CA) = C(B)if4 < B:;
(iily CAuB) = C4) + C(B) — CAnB);
(iil) C(4 + a) = C(4);
(iv) C(=4) = C(4);
(v) C(rd) = r""2C(A);
(vi) if B is open and B compact, C(B) = sup {C'(k): k = B, k compact}
(vii) if B is compact. C(B) = inf {C(U): U > B. U open, U compact}.
Proovr. Using Theorem 6.2 and the fact that g(y — z)/g(x) = 1 uniformly on
compacts as |x| - o0, we see that for any relatively compact set B

©621)  oB) = lim Vs <) =J Py(Vy < )k~ 10,(d).
Ix| =~ o0 g(x) 2s

for any ball of center 0 and radius r containing B in its interior. Thus, to
establish (i) to (v), it is only necessary to establish the appropriate inequalities
for Px(VB < o0). Hence, (i) to (v) follow from:

(@) P(Vy < w0) £ P (Vg < w0),4 cB;

(b) Pi(Vyrp< )P (V,< 0, Vg< 0)=P(V, < ©0)+ P (Vg < ©)—
Px(VAuB < 0);

( ) (VA < w) = Px+a(VA+a < @);

(d) PuVy < 0) = P(V_y < o0);

(e) P, (VA < w) = Prx(VrA < OO)
To prove (vi), let k, be compact sets = Bsuchthatk, <« k, = ---and U, k, = B.
Then P, (V, < o0)1P. (Vg < o). Let D be an open relatively compact set
containing B. Then

6.22)  Ck,)
= f P.(Vp < o)y, (dx)
~ [ Gm@mpd [ Py < o)pplda)

= [ Gup@mstda) = [ PuVy < )ppld) = C(B).

To establish (vii), let U, be open, relatively compact, and such that U, > U, >
Uy,>---.N,U, =N, T, = B. Choose S, to be an open ball of center 0 and
radius 7 that contains {7, in its interior. Then for & e 88S,. P(Vy, < )]
P.(Vy < 00), and thus

6.23) C(U, f P(Vy, < o)k “‘a,(dé)lfas P(Vy < 0)k™ ' 0,(dE) = C(B).

This establishes the theorem.
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Let C*(B) = C(B)if B is a compact set. For any open set U define C*(U) as
sup {C(k): k = U, k compact}. We say that a set B is capacitable if sup
{C*(k): k = B, k compact} = inf {C*(U): U o B, U open}. For a capacitable
set define C*(B) as sup {C(k): k = B, k compact}. Property (vi) shows that if
U is relatively compact then C*(U) = C(U). This fact, together with (i) and (ii)
shows that C(-) is a Choquet capacity (see, for example, [1]) on the compact
sets. By Choquet’s capacity theorem, C'* is its unique extension to the Borel sets
and every Borel set is capacitable.

Now for a relatively compact set B, we have already defined its capacity by
C(B). Toseethat C*(B) = (C(B)notethatifk = B, k compactthen C(k) = C(B),
and thus

(6.24) C*(B) = sup {C(k): k = B. k compact} < C(B).
Also if U is open and relatively compact then C'(B) < C(U), and thus
(6.25) C*(B) = inf {C(U); U > B, U open} = C(B).

Thus, C*(B) = C(B).

Now that we have the capacity defined for all Borel sets, let us point out that
B has capacity 0 if and only if every compact subset of B has capacity 0. (We
could have used this property to define sets of capacity O directly.) Our next
two results charactize polar sets.

THEOREM 6.5. Let B be any Borel set. Then

(i) B is polar if and only if every compact subset of B is polar;

(ii) B is polar if and only if C*(B) = 0.

Proor. Clearly, if B is polar. then so is every compact subset of B. On the
other hand, if every compact subset of B is polar. then for any relatively
compact A = B, C(A) = sup {C(k): k = A. k compact} = 0, so 4 is polar.
Thus, B must be polar. Therefore (i) holds. Similarly, if B is polar, then every
compact subset is polar so C*(B) = sup {C'(k): k = B, k compact} = 0. Con-
versely, if C*(B) = 0, then C(k) = 0 for all compact sets k = B, and thus by (i)
B is polar. This establishes the theorem.

COROLLARY 6.2. Let B be any Borel set. Then B is polar if and only if
M (B) = . Equivalently, B is polar if and only if sup, Gu(x) = oo for any
bounded nonzero measure having compact support — B.

Proor. Suppose there is a nonzero measure yu having compact support
k < B such that sup, Gu(x) £ M < . The measure pu/M then belongs to
M (k) = M (B)and clearly

(6.26) P (Vg < ) 2 PV, < 0) 2 Gu(x).

Since y is nonzero, Gu(x) > 0 for some x, and thus P (Vg < o0) > 0forsomex.
Hence, B is not polar. On the other hand if B is not polar then some compact
subset & of B must also be nonpolar. Hence, P (}V, < ) > 0 for some x. Since
u € M(k), M (k) + &, and Gu,(x) < 1. This establishes the corollary.
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7. Equilibrium sets

So far we have discussed equilibrium measures only for relatively compact
sets. In this section, we will examine to what extent these notions go over to
unbounded sets. We start our discussion with the following theorem.

THEOREM 7.1. Let B be a Borel set. Then either P, (Vg < o) = 1or P (X,€B
forsomes > t) » Oast - .

Proor. Let ¢(x) = P (Vg < o). Then P is a decreasing function in ¢ as
t > co. Let r(x) = lim,,, P'o(x) and set h = ¢ — r. Clearly, P'h(x)]0 as
t - . Using dominated convergence and the semigroup property of P, it
easily follows that r = P'r for all ¢ > 0. Thus, r(x) = a for some constant «
(see Proposition 2.3). Hence, ¢ = a + h. Now

@) Bt <Vy<oo) = [ apt.@yew dy z aPuVy > 0).

Letting t1 0o, we see that aP (Vy = o) < 0. Thus, either « = 0 or P (V; =
o) = 0. In the first case ¢ = h and in the second case P (Vy < ) =1 as
desired.

DEFiNITION 7.1. A Borel set B is called recurrent if P (Vg < ) = 1; it is
called transient if P.(X; € B for some s > t)|0.

By Theorem 7.1, we know that every Borel set is either transient or recurrent.

Our next result extends Theorem 6.2 from relatively compact sets to transient
sets.

THEOREM 7.2. Let B be a transient set. Then there is a unique Radon measure
Ug such that P (Vy < ) = Gug(x). The measure pg is concentrated on OB.
Moreover, if B,,, m = 1, is any sequence of relatively compact sets such that
BBy, U,B, =B, then Gug 1Gug as m — oo and the measures pg
converge vaguely to pg.

Proor. Let B,,,m = 1, be as in the statement of the theorem. Then
U_[Vp, < ] = [V < o], and thus P(Vz < 0)1P(Vz < ). By
Theorem 6.2,

(7.2) Gug,, (x) = P(Vp, < ©0) = P (Vg < 0) = @p(x).

Let k& be any compact set. Since inf,,, g(y — x) = d(x) > 0, it follows from
(7.2) that

(13)  d@ug, (o) < [ gy — Ip, () < Cuy, @) < 95(a)

Thus, sup,, pp, (k) < . Consequently, there is a subsequence, up , of the
measures fp that converge vaguely to some measure .
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Let f = 0 be continuous with compact support, and let S, be the closed ball
of center 0 and radius r. Then, as gg(x, y) = 0 for each x € Sf, we see that

(7.4 [, rou(2)6f @) = [ nm () g, G
= fkn g, (dx) Tlg Gf ().

By letting A} 0 in (2.31), we see that

(1.5) [, s @ d2dgw - =) = [ Ty . degla — =)

Using this fact, we compute

(7.6) fm B, (dx) Mg, Gf(x) = fkn fm fm e (d2) T (, de)gly — 2)f(y) dy
= [ ][ ml@)f ) dy Nty d2)gee - 2

= [, N Gua, ) (0) dy.

Using (7.2), (7.4), and (7.6), we see that

(1.7) [ @z < [ s 0af) dy.

Now for any ¢t > 0.

(7.8) Mg 05(y) = E,[0a(Xvs,)] < Py(Vss < t) + Plos(y).

Since B is a transient set, P'¢5 |0 as t1 0. In addition, P,(Vs; < )0 as rf oo
bécause P, (lim,_, o, Vs; = 00) = 1. It follows from these two facts that

(7.9) rlfg Is @ply) = 0.

Hence, by (7.7) and (7.9), we see that given any ¢ > 0 there is an ry < o0 such
that for r = r,,

(7.10) sup fss Mg, (dx)Gf (x) = &
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Using the fact that Gf is a bounded continuous function, we see that

r=e | m— r

(7.11) lim[limf Gf(x)u,,h(dx)jl limj Gf (x) pg(dx)
© Js, ~w Js,

L Gf (@) pp(dex)
= Lﬂ Gup(x)f(x) da.

Moreover, monotone convergence shows that
(112) lim [ Gf@ug, @) = lm [ Gup@)f@) dz = | op@)f(@) da.

It follows easily from (7.10) through (7.12) that

(7.13) [, oms@f@ e = [ opia)f@) da.

Since f can be any nonnegative continuous function with compact support,
(7.13) implies that for a.e. x,

(7.14) Gup(z) = Pp(a).

From (7.14), we see that P'Gug(x) = P'eg(x) for all x. Since P*GuyT Guy and
PogTogast]O0,it follows that (7.14) holds for all x.

Suppose up; is another subsequence of the measures ug that converge
vaguely to a measure up. The same argument as used above will again show
that G’y = @p. By Theorem 5.1, it must then be that upy = pgz. Thus, the
measures up converge vaguely to uy. Theorem 5.1 tells us that uy is the unique
measure whose potential is @z. To see that pg is concentrated on 0B, we can
proceed as follows. Let 8, be the closed ball of center 0 and radius m, and let
B, =BnS,. Then By cB,<::-, and U, B, = B. Thus, the measures ug_
converge vaguely to up. Since up is concentrated on 0B,, and each interior point
of B is an interior point of B,, for m sufficiently large, ugz must be concentrated
on 0B. This completes the proof.

We will now show that the total mass of the measure gz in Theorem 7.2 is
C*(B). To do this, we will need the following

ProrosiTiON 7.1. Let B be a transient set. Suppose A = B. Then u,(R") <
up(R").



174 SIXTH BERKELEY SYMPOSIUM: PORT AND STONE

Proor. Let D, be a family of relatively compact sets that increase to R".
Using Theorem 7.2, we then see that

@15) [ na(de)Gup, @) = [ o, () Om@) = [ o, (dw) PV < )
< [ B (de)P(Vy < ) = [ ip, (d2)Gupla)

= | balde) Gup, (@).
Since
(7.16) Gpp,, @) = P(Vp, < ©)11
as m1 o0, it follows from (7.15) (by monotone convergence) that p,(R") <
ug(R"), as desired. _

THEOREM 7.3. Let B be a transient set. Then ug(R") = C*(B). Moreover,
if B,,m =1, is a sequence of relatively compact subsets of B such that
B,cB,c---,U,B, = B, then C(B,,)| C*(B).

Proor. Let B,,m = 1, be as in the statement of the theorem. Then by
Proposition 7.1,

(7.17) C(B,) < C(By) < -+ = pp(R").

On the other hand, let f,, » = 1, be continuous functions with compact support
such that 0 £ f, £ 1 and such that f,11 as 71 c0. Then

(718) C(Ba) 2 [, fr(@)in, (@)

and thus by Theorem 7.2,

(7.19) lim inf C(B,,) = Ln pp () . ().

Letting 71 00, we see that
(7.20) lim inf C(B,,) = up(R").

Hence, C(B,,) T ug(R").
From our results in Section 6, we know that

(7.21) C(B,,) = sup {C(k): k = B,,, k compact}.

Suppose pgz(R") = 00. Given any N > 0, we can then find an m such that
C(B,,) = 2N. From (7.21), we see that we can find a compact set k = B,, such
that C(k) = C(B,,) — N. Thus, C(k) = N. Hence, sup {C(k): k = B, k com-
pact} = C*(B) = oo. Suppose now that ug(R") < o0, and let ¢ > 0 be given.
We can then choose m such that C(B,,) = u(R") — ¢. From (7.21), we see that
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there is a compact set k < B,, such that C(k) = C(B,,) — ¢, and thus C'(k) =
U(R") — 2¢. Hence,

(7.22) C*B) = sup {C(k): k = B, k compact} = ug(R").

This establishes the theorem.

Let B be a closed set. As usual, let .#(B) denote all nonzero bounded
measures having compact support — B whose potentials are bounded above
by 1

An important link between probability theory and potential theory is the

following
THEOREM 7.4. Let B be a closed set. Then
(7.23) sup {Gu(x): pe M (B)} = P (Vg < ).

Proor. Since B is closed, we can find compact sets B, € B, B, € B, =
U, B, = B. Then clearly, P (Vy < 0)1P (Vs < ), n = . If pe J{(B)
has compact support & < B,, then by Theorems 6.2 and 6.3,

(7.24) Gu(x) < Gug,(x) = P (Vp, < 0) = P (V5 < 0),
and thus
(7.25) sup {Gu(x): pe #(B)} £ P (Vg < o).

But Gug (x) = P, (Vg, < )T P (Vg < 0),s0
(7.26) sup {Gu(x): pe M(B)} = P (Vg < ).

This establishes the theorem.
CoroLLARY 7.1. A closed set B is transient if and only if there is a Radon
measure lg supported on 0B such that

(7.27) Gup(x) = sup {Gu(x): pe M(B)).

Proor. This follows at once from Theorems 7.2 and 7.4.

If B is a transient set the measure ug is called the equilibrium measure of B
and its potential is called the equilibrium potential, just as in the case of a compact
set. The total mass of ug is the capacity of B. Theorem 7.3 shows this is con-
sistent with the extension of C(-) from the relatively compact sets.

We are now in a position to state our results on the Dirichlet problem for ¢
in analytical terms. Note that for x € G, P (V,o = ) = P (Vge = ). We
want to know when P_(V,; = o) = 0 for all x € (. Suppose this is the case.
Then G° must be a recurrent set. For suppose P (Vi < o0) = 1 for all x € G.
It is always true that P (Vs < o0) = 1 for all x € G° except perhaps at the
points in G¢ that are irregular. But these exceptional points form a set of measure
0, and thus P (V4. < o0) = 1 a.e. Since P'@gT g as t]0, we then see that
P (Vg < o0) = 1 forall x, so G is recurrent. Conversely, if G¢ is recurrent then
P.(Vge < 0) =1, s0 P (Vog = ) =0 for all xe ¢. Thus we have the
following.
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THEOREM 7.5. Let G be an open set. The modified Dirichlet problem for 0G
with boundary function @ has ,; @ as its unique bounded solution if and only if
Gisa recurrent set. If G° is a transient set then a constant multiple of P (Vg = o©)
can be added to the solution T ,; @. These constitute the only bounded solutions to
the problem.
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