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1. Introduction

The formulas used in our paper [1] its appendix and in [2], [3], are all based
on the theory given in [4] and particularly in [5]. The deduction of these for-
mulas is straightforward, but the formulas themselves are not familiar. Their
description in the text of the three papers [1], [2], and [3] would have tended
to disrupt the continuity of discussion of the substantive matters treated
therein. Therefore, it was decided to compile the present note assembling all the
formulas employed and also some extensions that may be useful.

All the techniques employed in our treatment of rain stimulation experiments
are asymptotic techniques. In particular, the normal distributions of the test
criteria were obtained under a passage to the limit as the number N of observa-
tions is indefinitely increased. As far as the distributions under the hypothesis
tested are concerned, no special comments are needed. This is not so for the
asymptotic distributions of the test criteria that lead to the approximate evalua-
tion of the power of the tests. Here the passage to the limit, invented in 1936
[6], is somewhat peculiar: in parallel with increasing the number N of observa-
tions, the parameter t, characterizing the effectiveness of the treatment, is
supposed to tend to zero so that the product tN"12 remains constant or, at least,
tends to a fixed limit different from zero. Thus, in any particular case in which
N is large and t small, the asymptotic formula for the power is obtained simply
by equating the product tN12 to its presumed limit.
As indicated in [5], this double passage to the limit, which is the basis of

what we like to call the method of alternatives infinitely close to the hypothesis
tested, while being useful in deducing optimal C(a) tests, provides simplifications
of formulas for the asymptotic power which, in some cases, are too sweeping.
In what follows, formulas obtained under this double passage to the limit will
be described as the first approximation to the power of the tests. The method
of obtaining the second approximation to the same power is also described in
[5]. The passage to the limit used to obtain the second approximation is a more
conventional one. It is based on the assumptions that tis fixed and that N m-+ .
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Each optimal C(a) criterion is a sum of N identically distributed random
variables. Ordinarily, estimates of nuisance parameters are involved in each
summand and, as a result, these summands are not mutually independent.
However, because of the fact that the estimates used have stochastic limits as
N --* Xo, the difference between the criterion actually computable and the one
that could be computed if the values of the nuisance parameters were known
tends to zero in probability. In consequence the asymptotic distribution of the
criterion, properly normed, appears normal with mean zero and unit variance.
The problem of evaluating the second approximation to the power reduces,
then, to the evaluation, under a fixed alternative hypothesis, of two quantities:
the asymptotic mean of the criterion considered and its asymptotic variance.
In principle, this is very simple. However, the process involves certain questions
that thus far have not been fully explored.
As found in [4], the first approximation to the power of the test is not depend-

ent upon the identity of the estimators of nuisance parameters, provided they
satisfy the condition of being "locally root N consistent." However, this is not
so with the second approximation to the power and, in frequent cases where
more than one locally root N consistent estimate is available, the question
arises as to which of them is preferable. This general question splits into two
more particular questions: which of the available estimates insures the larger
power of the test and which of these estimates provides the better approxima-
tion to the power attained by the test.

Several particular cases that have been investigated indicate that the answers
to these questions are somewhat unexpected. For example, contrary to our
expectation, it appears that in some cases at least a particular estimator which
is only locally root N consistent is preferable to another estimator which is
consistent in the large, and so forth.

For the above reasons the information regarding the second approximation
to power assembled below is not complete and there is no certainty that the
formulas given are optimal.
As indicated in [5], we consider a sequence {UN} of experimental units for

which precipitation amounts in the target and, perhaps, also some predictor
variables are observed. These experimental units may be storms, as in SCUD,
or fixed periods of time as in Grossversuch III. As determined by a system of
randomization, each of the units UN may be subject to seeding or not. The
randomization may be either in pairs or unrestricted, with a preassigned prob-
ability -r for seeding. As found in [5], under the assumption that, given the
predictors, the precipitation amounts corresponding to two members of a ran-
domized pair are conditionally independent, the optimal C(a) criterion corre-
sponding to randomized pairs has the same form as for unrestricted randomiza-
tion with 'r = 1/2. Therefore, only formulas for unrestrictedly randomized ex-
periments need be listed.
Our basic assumption is that, whether seeded or not, to each experimental

unit there corresponds a possibly positive probability that the target precipita-
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tion will be zero and that this probability may be affected by seeding: the
seeding may either "trigger" the rainfall which otherwise would not have fallen,
or may prevent the rainfall. Probably it is realistic to assume that the probability
of zero rain depends on the values of the predictor variables. However, thus
far, this situation has not been treated and the formulas given below depend
upon the assumption that the probability of rain in the target does not depend
upon the predictors. With these formulas, then, the effect of predictor variables
can be studied only through a partitioning of the experimental units into several
groups, each characterized by values of predictor variables in some conveniently
selected intervals, perhaps "low," "medium," and "high," and so forth.
Our further general assumption is that, given that the target precipitation

is not zero, it has a conditional probability density, joint with the l)redictors
if such are available. The specialization of this density determines the several
different cases considered below.
Our final general assumption is that, if seeding has an effect on the distribu-

tion of nonzero target precil)itation, then this effect is multiplicative. This
means that, whatever the predictors, the conditional expectation of seeded
target rainfall is e(qual to that not seeded, multiplied by a factor independent
of the predictors. It is assumed that seeding has no other effect on the distribu-
tion of the nonzero target rainfall.

Tests of three distinct hypotheses are considered, as follows.
H1 is the hypothesis that seeding does not affect the probability, say t9, of

nonzero rain in the target.
H2 denotes the hypothesis that seeding has no effect on the distribution of

nonzero precipitation in the target. In other words, H2 assumes that seeding
does not affect the target precipitation averaged per "rainy" experimental
unit, which may or may not be accompanied by a change in the frequency of
such units.
H3 meains the hypothesis that seeding does not affect the target precil)itation

averaged per experimental unit.
It will be noticed that, in a sense, H1 and H2 are indepenident: either may be

true or false and this does not imply anything on the other. On the other hand,
H3 depends on H1 and H2. If both H1 and H2 are true then H3 is true also. How-
ever, H3 may be true while both H1 anid H2 are false. For example, seeding may
trigger precipitation which would not fall otherwise but, at the same time, may
decrease the precipitation per rainy day, with the net effect on rainfall per ex-
perimental unit being zero. On the other hand, cases may exist where seeding
has a positive effect both on the frequency of some rain in the target and on the
average rainfall per rainy unit. On occasion these two effects may be slight and
difficult to detect, while their combination may be noticeable.

For testing the hypotheses H1 and H2 we give the criteria Z1 and Z2 which
are optimal C(a) criteria. The optimal C(a) criterion for testiilg H3 is rather
complicated and is not given here. Instead we give a criterion Z3 which is an
easy combination of Z1 and Z2 so adjusted that both the asymptotic significance
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probability and the asymptotic power can be obtained by following the same
rules as those for Z1 and Z2.

Thus, the three criteria Z1, Z2, Z3 are all asymptotically normal and, if the
observations yield Zi = zi, for i = 1, 2, 3, the corresponding significance prob-
ability has the asymptotic expression

(1.1) P(zi) = 1 -| e-x2/2 dx.
.\/27r J-izil

With the number of observations N of order of 50 or higher, this formula is
reasonably reliable. Its value can be obtained from any of the many published
tables of the normal integral. The asymptotic power, say 0% a), of any of the
three tests also depends upon the normal integral and we have

1 ,+a,(ce)
-x(1.2) j(C,a) = 1 - - e dx.

.\/21r -Ta, (a)

Here the symbol (4a) is the "two tail normal deviate" corresponding to the
intended level of significance a. In other words, if zi in formula (1.1) is replaced
by v(a), the result will be

(1.3) P{v(a)} = a.

The symbol T is the so called noncentrality parameter

(1.4) T = tA[Nir(1 - r)] /

where t is a conventional measure of the effectiveness of seeding and A depends
upon the hypothesis to be tested and on the design of the experiment. Finally,
a is a coefficient generally depending upon N, which requires specification in
any particular case.

It follows that, for each particular test, the following formulas are needed:
the formula for the calculation of Z from the results of the experiment, the
specification of t, the conventional measure of the effect of seeding, and the
formulas for A and a. As mentioned above, it is intended to provide two approx-
imations for the power of each test. It so happens that the first approximation
to a is always unity. Therefore, for each test considered there is need for two
formulas for A and for just one for a. The first approximation A will be denoted
by just this letter, occasionally with an identifying subscript. The second approx-
imations will be denoted by A* and a*, respectively.

2. Optimal C(a) test of hypothesis H1 that seeding does not affect the
frequency of rain in the target

In this case, the optimal C(a) criterion is a modification of the classical x,
namely,

2ll14nn4-n2n3(2.1) = [N7r(1 - 7r)(ni + n2)(n3 + ni)]I2'
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where nl, n2, n?, and n4 are the numbers of experimental units in a 2 X 2 clas-
sification as shown below.

Seeded Not Totals

With rain ni n2 nl + n2

Without rain ns n4 n3 + n4

Total N = ni +7n2 + n3 + n4

The modification is due to the fact that, in the present case, the probability 7r
is a known number.
REMARK. In the numerical computations shown in [1], Yates' correction

for continuity was applied to equation (2.1). Thus, the numerator becomes
n1n4- n2n3 h n/2, with the plus sign used when n1n4- n2n3 is positive, the
minus sign when it is negative.
The most convenient measure of the effect of seeding on the frequency of

days with rain is the difference between the probability of rain with seeding,
say t1i, and the probability of rain without seeding, say t0o. Thus, the conventional
measure of the effect of seeding may be set t = Qi- to. With this particular
convention, the first approximation A is

(2.2) A = [t~o(1 - o)l/2.
However, in defining the test of the hypothesis H3 it will be convenient to

adopt a different convention. Namely, it will be convenient to consider a factor,
say p1 = 1 + ti, by which the seeding, so to speak, multiplies the no seeding
probability of rain t0, so that t1 = tQo(l + ti). The new conventional measure
of effectiveness of seeding is then

(2.3) ti = (ti - 60160.
If ti is adopted as the conventional measure of the effect of seeding, then the

corresponding formula for A will be, say
(2.4) A1 = [,to/(l -o)]1/2.
This formula will be used in the sequel.
The second approximation formulas are

(2.5) A* = [(1- 7r)t,1(1 - +wr+o(1- #o) + (1 - 27r)2(1 - o)2]-1/2,
(2.6) a* [j(1 - j)]1/2 A*,
with j = 7r#j + (1 -7r)t7,.
Table I was constructed to illustrate the difference in precision provided by

the first and the second approximations to power, the adequacy of the second
approximation and the difficulty of detecting the effect of seeding on the fre-
quency of rain. The particular problem considered is typical for the use of the
power function: to determine the number, say N, of observations insuring a
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preassigned probability # that an indicated effect t of seeding will be found
significant at a preassigned 100a per cent significance level. The preassigned i,
a, and ,3 characterize the desired precision of the experiment. We choose t = 0.1,
a = 0.1, and ,B = 0.9, and set Xr = 1/2. Formula (1.4), combined with (2.2),
yields then

(2.7) N = (20Or)'

which, with
T =

2.927 obtained from tables of the normal distribution, yields
the numbers N1 given in the second column of table I. Column four gives the
values of N, labeled N2, obtained through the use of the second approximation
to the power. It is seen that the numbers N2 are always larger than N1. The
third column of table I gives the second approximation to power computed

TABLE I

NUMBER OF OBSERVATIONS SUPPOSED TO INSURE 0(01 = do + 0.1, a = 0.1) = 0.9;
SECOND APPROXIMATION TO POWER AND TO N; AND

EMPIRICAL VALIDATION BY MEANS OF ACTUAL FREQUENCIES OF REJECTION OF H,
IN 1000 MONTE CARLO TRIALS EACH WITH N2 OBSERVATIONS

Power Empirical Validation
(2nd

N, approx.) N2 Hi true H, false
(1st with (2nd a = too, = 00 + 0.1

'00 approx.) N, obs. approx.) a = 0.05 a = 0.10 a = 0.05 ce = 0.10
(1) (2) (3) (4) (5) (6) (7) (8)

0.1 or 0.8 308 0.794 433 0.053 0.101 0.855 0.906
0.2 or 0.7 548 0.857 639 0.052 0.108 0.827 0.906
0.3 or 0.6 720 0.880 776 0.044 0.088 0.821 0.909
0.4 or 0.5 822 0.893 849 0.054 0.089 0.833 0.900

assuming the number of observations equal to N1. It is seen that for the extreme
values of to, either 0.1 or 0.8, the result of this calculation is noticeably less than
the intended power, namely it is 0.8 against the desired 0.9. With more central
values of tYo this difference becomes negligible. Columns five and six refer to the
situation where H1 is true and indicate the precision with which the actual
distribution of the criterion Z1 is approximated by the normal. The numbers
given in these columns represent actual frequencies with which, in 1000 Monte
Carlo experiments, the criterion 1Z11, calculated using N2 observations, exceeded
either v(a = 0.05) = 1.96 or v(a = 0.10) = 1.645, respectively. It is seen that
the observed frequencies agree with those expected. Columns seven and eight
give the empirical power of the test corresponding to the case where 1 = do +
0.1. Here again the empirical frequencies resulted from 1000 Monte Carlo
experiments, each with N2 observations. It is seen that the frequencies in the
last column, corresponding to the intended level of significance a = 0.10, agree
quite well with the intended power of 0.9. This, then, validates the calculations
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based on the second approximation to the power function. The general conclu-
sion is that the second approximation formula for power is quite reliable over
a broad range of values of t%, likely to cover all cases to be encountered in
practical experimentation. The range of approximate validity of the first approx-
imation is substantially narrower.
REMARK. In the present problem there is just one nuisance parameter t7o,

the probability of some rain in the target without seeding. The criterion Z1 of
formula (2.1) was obtained through the use of a particular estimate of 0o,
namely &0 = (n1 + n2)/N. If H1 is true, then this estimator is consistent.
However, if H1 is not true and ,# td#o, then the stochastic limit of &0 is 761 +
(1 -7r)o = #o + 7r(l - Oo) and it is seen that &0 is only locally root N con-
sistent. Easy analysis shows that the estimator n2/(n2 + n3) is consistent in the
large, and we expected it to be preferable to 40. However, it is not uniformly
better than t%. Still another locally root N consistent estimator, namely
n1(1 - 7r)/(nl + n3) + n27r/(n2 + n4) may be optimal, but its apparent advan-
tage over bo appears numerically insignificant.
The final point that table I is meant to illustrate is that differences in the

probability of rain between seeded and not seeded experimental units are
rather difficult to detect. In several experiments known to us the probability to
of rain without seeding is of the order of 0.6. Table I indicates that if seeding
increases this probability by one unit in the first decimal, say from 0.6 to 0.7,
then, in order to insure the chance of nine in ten of finding this increase signifi-
cant at the conservative ten per cent, it is necessary to have close to 800 ob-
servations, which appears prohibitive. Even if seeding changes the frequency
of rain by two units in the first decimal, the requisite number of observations
would be about 200. These calculations indicate little hope that an experiment
of moderate size will detect the effect of seeding on the frequency of rain per
experimental unit. On the other hand, a combination of this effect with that on
the average rain per rainy unit may be quite substantial and, hopefully, more
easy to detect. This is the motivation for the efforts to test the hypothesis H3.

3. Optimal C(a) tests of the hypothesis H2 that seeding does not affect the
conditional distribution of rainfall, given that this rainfall is not zero

In this section, the alternative to H2 against which the indicated C(a) tests
are optimal is that the effect of seeding is multiplicative. The convenient con-
ventional measure of the effectiveness of seeding is then t = p - 1, where p
denotes the factor by which the seeding "multiplies" the precipitation that, in
any given set of conditions, would have been expected without seeding.

3.1. Case (i). No predictor variables are available. Following our own expe-
rience and that of some other authors, that, typically, the distribution of non-
zero precipitation can be satisfactorily approximated by the Gamma density

(3.1) F(') x-le-ax
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we adopt this formula as the basis for our deductions. The optimal C(a) criterion
is

(3.2 Z2 - al2n.n.(Y - Ye)
(3.2) 2-(nx,. + nYx¢)[Nwr(l -r)] /2
and the first approximation A is
(3.3) A = yl1/2
Here I denotes the maximum likelihood estimate of the shape parameter y in
(3.1) so obtained as to be consistent whether the hypothesis tested H2 is true
or not. The relevant equation is

(3.4) logf - rQ() = [n8(log -log x), + n (log -log x) ]IN,
where all logarithms are natural logarithms, while bars indicate averaging and
the subscripts s and c refer to seeded and control experimental units, respectively.
Thus, for example, n8 stands for the number of experimental units with some
rain which were actually seeded, and XJ the average amount of precipitation
per such unit. Also (log -x-lg x), means the logarithm of Y. less the mean
log x computed for seeded experimental units, and so forth.

Equation (3.4) is solved conveniently using the tables due to Chapman [7].
REMARK. The evaluation of Grossversuch III data discussed in [1] are

based on an estimate of y which is different from that resulting from equation
(3.4). As far as the significance level is concerned, both estimates are asymptot-
ically equivalent. Also, both lead to the same first approximation to the power.
However, formulas for the second approximation to power, those given below,
are much simpler for the estimate of y obtained through the solution of (3.4).

Formulas for computing the second approximation to the power of the test
are:

71/2

(3.5) A* = [(1 - r)(1 + t)2 + Ir + 7Y(l -27)22]1/2
and
(3.6) a* = (1 + 7rt)A*/,y1/2.
The maximum likelihood estimate of the quotient p of mean seeded to mean

nonseeded precipitation per rainy experimental unit is simply the quotient
x8/x¢ The estimate of the percentage change in precipitation due to seeding is
then (xc- 1)100.

3.2. Case (ii). In addition to the rainfall in the target, the observations include
some predictor variables. In this section we consider the cases where the test
of the hypothesis of no effect of seeding on the distribution of nonzero target
precipitation is performed using some predictor variables. About these predic-
tors it is specifically assumed that their distribution is not affected by seeding.
The theory developed in [5] refers to the case where either the target rainfall
itself, perhaps measured in inches, or some transformation thereof, has a certain
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property which it will be convenient to label CNL, coninoting conditional
normal distribution with linear regression. The exact definition of CNL is:
(a) linearity of regression on predictors, (b) given the predictors, conditional
normality of the distribution with constant variance.
The formulas given below refer to two alternative situations. Case (iia) is

characterized by the assumption that the property CNL is possessed by the
nonzero target precipitation itself, measured in inches or millimeters, and so
forth. In case (iib) it is assumed that the rth root of the target precipitation
(for example the square root or the cube root) has the property CNL. In order
to simplify the notation, the symbol yj will be used to denote the particular
rainfall variable that has the property CNL. The subscript j will refer to the
jth experimental unit considered, say to the jth storm, and so forth. In case
(iia) yj will mean the target precipitation from the jth storm (given that it is
not zero) measured in the original units. In case (iib) the same letter yi will
mean the rth root of the target precipitation.
The ith predictor variable referring to the jth experimental unit will be

denoted by xij, with i = 1, 2, * * , m and j = 1, 2, *.. , N. Also, it will be
convenient to use a single bold face letter xj, with subscript j, to denote the
totality of the predictors referring to the jth experimental unit, xj = (Xlj, x2j,
... , xmj). According to the basic assumptions, given xj, the expectation of the
unseeded precipitation variable is a linear combination of the predictors, say

m
(3.7) 0.(Xj) a ixij, with xoj 1,

i=O

where the ai are unknown nuisance parameters. With seeding, the same ex-
pectation is, say,
(3.8) 718(xj) = Pqc(xj),
where p = 1 + t represents the effect of seeding.

3.3. Case (iia). The target precipitation itself possesses the property CNL.
The optimal C(a) criterion for testing H3 has the form

(3.9) Z_
=

(1 - 7r) E[yj - Y(Xj)]y(Xj) -7rE yj -YX X

U[7~r(l 7r) Fy2(Xj)]1/2
where

(3.10) Y(Xj) = E aixii,
i=O

represents an estimate of 7(xj), with ai standing for a locally root N consistent
estimate of ai and a' a locally root N consistent estimate of a2, the conditional
variance of y, given the predictors.

In order to obtain the maximum likelihood estimate of the factor, say p, by
which the seeding is supposed to multiply the expected unseeded target pre-
cipitation, one has to minimize the sum

m m
(3.11) _c(Yj - bo- b,x,j)2 + F_[Yj - p(bo + E bixij)]2.

i=1 i=1
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The minimization is required with respect to the unrestricted variation of the
coefficients bi and also of p. Using the digital computer, one begins with a
sequence of trial values of p, say 1 +t 0.1, 0.2, and so forth. For each such
value p the expression (3.12) is minimized with respect to the variation of the
coefficients b, which requires only the solution of a system of m + 1 linear
equations. Let b(p) stand for the minimum of (3.11) so obtained for a given p.
Next, the values of 4)(p) are plotted against p and the minimizing A is obtained
either visually or by interpolation. The A is the maximum likelihood estimate of
the factor p. (See [3], p. 368.)
The asymptotic properties of the test as determined by the "double" passage

to the limit, with (N112 tending to a constant, do not depend upon the identity
of the estimators of the nuisance parameters, provided all of them are at least
locally root N consistent. With any such estimates the first approximation to
power is obtained with
(3.12) A2 =E[-q(x)]1af.
On the other hand, both the actual power of the test and its second approx-

imation do depend upon the estimates of the nuisance parameters. One pos-
sibility is to assume that the hypothesis H2 is true and to use all the observations,
both with seeding and without, in order to obtain the ordinary least squares
estimates of the regression coefficients ai and of the residual variance a2. Ac-
tually, the evaluation of SCUD data reported in appendix B was performed
using this method. In this case, the second approximation to the power is
obtained using

(3.13) A* = {a2E_q2 + t2r(1 -7r)[E,74 - E2n2)] + t2(1-27)2Eq1)}1'
where, for brevity, - = q(X) and the expectations E are taken with respect to
the variation of the predictors X. Also we have

(3.14) a* = a*A*/(En2)1/2
where a* denotes the stochastic limit of a.

However, if the evaluation includes the maximum likelihood estimate of p,
then one can use in (3.9) the expressions (3.10) with coefficients ai replaced by
bi, the maximum likelihood estimates of ai. Also U2 may now be the maximum
likelihood estimate of the residual variance. In both cases the estimates will be
root N consistent in the large, rather than just locally and one might expect a
beneficial effect on the power. However, calculations show that through these
changes the only modification in the expression of A* in (3.13) is that the last
term in the denominator is replaced by

(3.15) t2(1 -7r)2Er4(X)
Finally, it appears that, by a proper choice of estimates of regression coefficients,
the last terms in the denominator in (3.20) can be replaced by zero. For this
purpose it is sufficient to set ak = bk[w + (1 -7r)A]. With this choice of the
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locally root N consistent estimates of coefficients ak, as N increases, the increase
in the second approximation to the power is at least equal to that which would
result from the use of the maximum likelihood estimates of the same coefficients.
When 7r = 1/2, there is no difference. However, if 7r $d 1/2, the gain in power
may be substantial.

3.4. Case (iib). Property CNL is possessed by the rth root of target precipitation.
In this case, the multiplicativity of the effect of seeding, as defined at the
outset, implies that the seeding modifies not only the regression of y on x, but
also the conditional variance of y given x, and, with obvious notation, we have

(3.16) p8(X) = pllr -.(x) = qnc(x),
say, and
(3.17) as = q0,
where, as before, p = 1 + t.

This latter equation causes a considerable modification in the formula for
the criterion Z, namely,

(3.18) Z = (1 - 7r) E8f(xj, yj) - 7r E.f(Xj, yj) -a2(n. - N7r)
a{7r(1 - 7r)[2N2 + y2(Xj)/2

where
(3.19) f(xj, yj) = yj[yj -(xj)j,
and all other symbols have the same meaning as in case (iia), except that now
yj means the rth root of the target precipitation. In order to simplify the for-
mulas that follow, it will be convenient to use the symbol flk to denote E7k(X).
The first approximation to the power of the test is obtained using the ex-

pression
(3.20) A = {2tJ2 + 772} /2/ar.
The maximum likelihood estimate of p = 1 + t is obtained by a process

exactly similar to that indicated for the case (iia) except that in the present
situation the function to be minimized is

(3.21) P2n_/rN{ (yj- E bixi)2 + E. (yjlpllr -E bi
By substituting the minimizing values bi of bi in the expression in curly

brackets in (3.21) and by dividing the result by N the maximum likelihood
estimate a2 of U2 is obtained, which is consistent in the large. On the assumption
that all the estimates of nuisance parameters used in (3.18) are consistent in
the large, for example a2, A, and bi obtainable as just described, the formulas
for the second approximation to the power are

(3.22)~- (q + 1)a2 + qu72
(3.22) - r[A + (q-1)2(1 -7r)B]12
with

(3.23) A = 2o-4[(1 -7r)q4 + -7r] + y2fl2[(l - 7r)q2(2q - 1)2 + 7r],
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(3.24) B = (114- 2)q2 + (1 - 7r)[(q + l)oa2 + 2i]2,
and
(3.25) a* = rA*a[2U2 + '72]112/[(q + 1)a2 + qm2.

4. Combined test of the hypothesis H3 that cloud seeding does not affect
the target precipitation averaged per experimental unit

The criterion Z3 advanced for testing H3 is a linear combination of criteria
Z, and Z2 so adjusted as to be sensitive to departures from H3 but not to depart-
ures from H1 and H2, if these latter departures are jointly consistent with H3.
Let A and B denote two numbers such that A2 + B2 = 1. Then the general

form of Z3 is AZ1 + BZ2. Under the "double" passage to the limit discussed
earlier, the criteria Z1 and Z2 are independent, normal and have variances
equal to unity. As a result, under the same passage to the limit, the asymptotic
distribution of Z3 is also normal with unit variance. Consider the case where
cloud seeding has a double effect: it multiplies the probability tso of some rain
in the target by a factor P1 = 1 + {, and also it multiplies the average of non-
zero target precipitation by another factor p2 = 1 + t2. As a result, the target
precipitation averaged per experimental unit will be multiplied by the product,
say
(4.1) P3 = P1P2 1+ 6 + 62 + 66
Under the "double" passage to the limit which we now adopt, both {l and t2

are of the order of N-112 and, therefore, we may write
(4.2) P3 = 1 + ,
with 1 = ti + 6. Our problem is to determine the coefficients A and B so that
the expectation of Z3 be asymptotically proportional to q and independent of
either ti or 42.
Under the double passage to the limit the expectations of Z1 and Z2 are

proportional to 4,1A and 62A2 where A1 is given by (2.3) and A2 by either (3.3)
or (3.12) or (3.20), depending on the availability of predictor variables and, if
they are available, on the conditional distribution of the target precipitation.
It follows that, whatever A and B might be, the asymptotic mean of Z3 is
proportional to
(4.3) AAlt + BA2t2 = (AA1 - BA2)% + BA277.
In order that this expectation be independent of ti taken by itself, it is suffi-

cient to set

A = A2/(A2 + A2)1"2,
B = A,/(A2 + A2)1/2,

so that

(4.5) Z3 = (A2Z1 + AlZ2)/(Al + A2)"2.
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The first order approximation to the power of Z3 is obtained from (1.2), with

(4.6) T = qA3[r(1-)N]112
where
(4.7) A3 = BA2 = A1A2/(A1 + A\)1/2
The question that immediately arises in connection with the criterion Z3 is

whether, and under what conditions, its power exceeds that of either Z1 or Z2.
A priori it is obvious that this will not be true in all cases. For example, if the
seeding decreases the frequency of rain but increases the average amount of
precipitation per rainy observational unit, the net effect of seeding q = ti + t2
may be zero or very small in absolute value, while Itil and t2 are considerable.
Thus, the situation is interesting when t, and t2 are of the same sign, say positive.
It is also clear a priori, that the falsehood of H3 can be more easily detectable
than that of either H1 or H2, when the degrees to which these two hypotheses
are false are, so to speak, of comparable magnitude. In other words, if ti is very
small compared to t2 (or vice versa) then it is intuitively clear that the false-
hood of H2 (or that of H1) will be more easily detectable than that of H3. The
exact characterization of the situation is obtained by solving two inequalities

(4.8) \3A(31 + t2) > A161
A3(61 + t2) > A202.

The result is

(4.9) (A +A <-1< A2
A1 t2 (A1 + A2)1/2-2

If the effects of seeding on the frequency of rain, as measured by ti, and on
the target precipitation averaged per rainy unit, as measured by t2, satisfy the
double inequality (4.9), then the criterion Z3 is more powerful than either Z1 or
Z2, but not otherwise.

5. Concluding remarks

The present note summarizes the techniques developed and used in the
Statistical Laboratory. The whole problem of statistical methodology of eval-
uating rain stimulation experiments is not considered completely solved and
the techniques indicated constitute, more or less, a progress report. In addi-
tion to various problems mentioned in this note and also in our other contribu-
tions to the present Proceedings, we would like to mention the following.

Practically all our techniques are based on the assumption that the possible
effect of seeding on rainfall is multiplicative. This assumption was adopted
because of occasional pronouncements of knowledgeable meteorologists. How-
ever, it must be obvious that the assumption of multiplicativity of the effect
of seeding requires verification.
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