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Al. Introduction

The general principles of the theory of experimentation were established by
R. A. Fisher in his memorable book The Design of Experiments [1], and then
developed by Fisher’s innumerable followers and coworkers of whom we shall
particularly mention Frank Yates [2]. Primarily, the designs studied by these
scholars refer to experimentation in biology and, more particularly, in agricul-
ture. Naturally, each domain of experimentation presents certain particularities
and, while the general principles of experimental design remain the same for all
domains, each particular domain imposes its own limitations and requires special
designs. In particular, experimentation with clouds or storms involves specific
difficulties not encountered, for example, in the experiment with the Lady
Tasting Tea, the famous problem used by Fisher to illustrate his ideas.

Each of the experiments reported in these Proceedings involved a substantial
amount of planning and the experience gained will be most useful in designing
future experiments. The purpose of the present appendix is to contribute to this
goal by reviewing the problem as a whole and by focusing attention on several
subproblems which appear to us of particular importance. This should be done
with reference to as many already completed experiments as possible. Unfortu-
nately, our familiarity with quite a few of these experiments is of a very recent
date and some of the very important problems raised by them, including the
problem of possible after effects of seeding noticed in Australia, must be left
out of consideration.

Numerical illustrations given below are based, predominantly, on data col-
lected by project SCUD [3]. Here, the achievements of the planners, a meteoro-
logical group headed by Dr. Jerome Spar cooperating with a statistical group
headed by Dr. John W. Tukey, seem to have received less attention than they
deserve.
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In general, planning an experiment has two aspects: the substantive, in our
case meteorological, and the statistical.

A2, Meteorological aspects of planning an experiment with cloud seeding

The meteorological aspects of planning an experiment with cloud seeding
depend upon past experience, upon what the experimenter is prepared to adopt
as a working hypothesis and upon the questions that one wishes to have answered
by the experiment.

Most of the experiments reported in this volume appear to have been designed
with the idea that the seeding of clouds by particular methods favored by par-
ticular experimenters, the seeding in some specified conditions visualized by
these experimenters as particularly favorable, will produce a specified desired
effect: an increase in precipitation in some cases, suppression of hail or lightning
in some others, and so forth. The purpose of such an experiment was, invariably,
to prove that the ideas of the experimenters concerned are correct.

This attitude, ‘“to prove’’ occasionally contrasted with the statements that
the purpose of the experiment is to explore, is manifested in the tendency to
define in advance the presumed conditions of ‘“seedability’’ and to select for
experimentation only such units (storms, and so on) that conform with the
given definition.

The following quotations illustrating the attitude ‘““to prove”’ must suffice.

(i) “. . . designs of future experiments which would . . . give definite
evidence as to the rainfall increases which may be achieved.”

(ii) “Experiments were performed only on cumulus clouds which complied
to a fixed specification; they had to be supercooled, reasonably isolated, deep,
of long duration, and without excessive sheer, and not within 30 km of any
other cloud which is raining or glaciated.”

(iii) “Cumulus clouds with tops warmer than —10°C will not be seeded.”

In addition, the difference between the two randomized experiments in
Arizona might be mentioned. Here, after four years of experimentation, it was
decided to continue with a stricter selection of experimental units.

The record of experimentation assembled in the present Proceedings seems to
indicate that guesses as to the conditions in which cloud seeding by the different
methods would produce this or that hoped for effect were frequently unsuccess-
ful. In most American experiments it was hoped to demonstrate that the seeding
will increase precipitation. Contrary to this, there is evidence that, if anything,
the precipitation was decreased. The purpose of the Swiss experiment Grossver-
such III was to demonstrate that hail may be suppressed by seeding. Contrary
to this, Paul Schmid produces evidence [4] that the frequency of days with hail
was increased by seeding. At the same time, our own analysis of the Swiss data
brought out the fact that, at least in some sections of the target in Switzerland,
the overall effect of seeding on precipitation was a significant and sizable increase.

In these circumstances, the realistic working hypothesis to adopt in planning
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a future experiment is that cloud seeding can affect both hail and precipitation
in one way or another, probably depending upon the method of seeding and
upon local orographic conditions, and to stop at that. With this working hypoth-
esis, the object of an experiment would be precisely to determine the conditions
under which cloud seeding has this or that effect. Here, the loosely used term
“conditions’” refers to three different categories of factors: method and rate of
seeding, locality of the experiment (determining the orographic conditions),
and the synoptic situation.

Because of the particular purposes of experimentation, the policy behind
future experiments should be contrary to that reflected in some of the above
quotations. Rather than restrict the experimenting to occasions satisfying some
preconceived conditions, perhaps to those when the “precipitable water”” exceeds
a certain limit, or when cloud tops are colder than a given limit, and so forth,
the future experiments should include cases with conditions varying within the
broadest possible limits, perhaps all cases where there is any appreciable chance
of natural rain.

What should be the definition of these ‘‘broadest possible” conditions is, of
course, a strictly meteorological problem. It is mentioned here as a matter of
general principle, analogous to the familiar statistical result that, in order to be
able to estimate the regression of Y on X, the nature of which is not known
a priori, one should observe Y with reference to X varying within broadest
possible limits. In retrospect, it is not an accident that the only unambiguous
indication that seeding with silver iodide can increase rain comes from Grossver-
such III. The reason is that in this particular experiment the forecasters were
concerned with predicting thunderstorms and nothing else. Also, it appears that
the several forecasters concerned had somewhat different tendencies in their
work. As a result, the seven year long experiment accumulated a large number
of 292 experimental days, about 42 per year, and these days involved a variety
of weather patterns, apparently conditioning different effects of seeding.

To be informative, the suggested inclusive program of seeding must be
accompanied by an extensive program of collateral observations on all those
factors that may conceivably be related to the conditions of seedability. James
Hughes’ idea of winds aloft (see figure 1 in the main body of this paper), Jerome
Spar’s invention {3] of his predictor variables and considerations of temperature
and humidity of the upper air indicate the desirability of radiosondes, pre-
sumably sent out locally and more frequently than is done in routine observa-
tions. Also, Henderson’s report [5] on unpredictability of silver iodide plumes
indicates that similar observations might be very useful in future experiments.
Undoubtedly, many other observations will be indicated by knowledgeable
meteorologists.

Given a comprehensive experimental program, involving a broad variety of
meteorological conditions, and given an equally broad program of collateral
observations, there will be a meteorological problem to use the latter in order
to split the totality of meteorological conditions into a reasonable number of
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categories, hopefully each category determining a different effect of seeding.
What these categories should be is a matter for cloud physicists to determine
and here the experience with already completed experiments is likely to be very
useful. Just as a matter of illustration, the experience with Grossversuch IIT
indicates the relevance of winds aloft, of thus far vaguely defined “‘incipient”
and “dissipating” storms and of a particular kind of storm situation described
as “Barrage’” ([4], table III). These identifiable categories of weather patterns
would be included in a comprehensive evaluation designed to test the tentative
hypotheses underlying the definitions of the categories.

Compared with the old style experiments, characterized by the attitude ‘‘to
prove,” the proposed experiment would be substantially richer. In fact, it would
include all the experimental units (experimental days, or storms) as would an
old style experiment, but, in addition, it would include other units which in an
old style experiment would not have been included because of the lack of com-
pliance with the preset fixed specifications. The subsequent evaluation would
not be concerned with a single summary overall effect of seeding, but with
effects of seeding (we emphasize the plural) in the different sets of conditions
included in the experiment. This, then, will implement the attitude ‘“to explore”
contrasted with that “to prove.”

While advocating comprehensiveness with regard to weather patterns, we
would like also to advocate similar comprehensiveness with regard to methods
of seeding and of orographic conditions. With regard to the latter, the situation
is simple. In order to investigate the effectiveness of seeding in several different
sets of orographic conditions, it is unavoidable to organize several different
experiments. With regard to testing several different methods of seeding in
some fixed orographic conditions, the situation is more complicated. One is
tempted to organize a single experiment with several methods of seeding, as is
successfully done in agriculture and elsewhere. However, such simultaneous
study of several treatments involves a risk which should be taken into account.
Suppose, for example, that in a single experiment it is desired to study the
effectiveness of some two methods of seeding, A and B. Unavoidably, this would
involve splitting the totality of experimental units into at least three, and pos-
sibly four, categories: controls, without any seeding, units with seeding by
method A4, those with method B and, possibly, those with both methods A and
B being used simultaneously. This is a method, labeled factorial design, that
appears very efficient in biology and that may prove efficient in cloud seeding
experimentation. The limitation is the possibility of interaction between the
treatments A and B. That is, if the effectiveness of B in the presence of A4 is not
(approximately) the same as in the absence of A, then, in order to have a reason-
able chance of detecting the effectiveness of either A or B the duration of the
experiment as originally planned may not be sufficient. Naturally, dangers of
this kind exist in agricultural experimentation and elsewhere. However, in
weather modification experiments these dangers are more important because,
as the current experience indicates, an informative experiment with cloud seeding
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must take several years where as an ordinary agricultural trial takes just one
season. Also, the costs involved are not comparable. Here, then, there is a dif-
ference in the desirability of comprehensiveness. The comprehensiveness with
regard to weather conditions would not increase the duration of the experiment,
though, of course, it would increase the amount of labor expended. Contrary
to this, an attempt at comprehensiveness in the variety of treatments may
increase the duration of the experiment. On the other hand, if one adopts a
strong limitation on the study of methodology of seeding, one is in obvious
danger of putting all the eggs in a single basket and of having this basket
smashed. Here, then, every decision involves a risk and the only safe prescrip-
tion that one can formulate is that it be a “‘calculated risk.”

With the motivation of learning how to increase rain by seeding, it is natural
to include in future experimentation those methods for which unambiguous
evidence exists that they did increase precipitation. In Grossversuch III the
seeding was done with silver iodide from ground based generators.

A3. Statistical aspects of planning an experiment

The basic concept in any experiment involving substantial and unpredictable
variation is that of an experimental unit. In biology the experimental unit may
be a rat. In rain modification experiments this may be a conventionally defined
“storm” extending perhaps from a few hours to several days, or some period of
fixed duration, perhaps 12 or 24 hours, for which some rain is forecast, and so
forth. Whatever the actual definition of the experimental unit, frequently it
will be convenient to speak in terms of storms.

The basic question which an experiment is expected to answer may be formu-
lated in several ways, of which the simplest is as follows.

We visualize a certain number N of experimental units, say w, us, - - -, un,
which may be subject to experimentation. These may be storms passing over
the given locality during the next five years. Alternatively, these may be storms
satisfying certain conditions of seedability, and so forth. With each forthcoming
storm, say u,, we associate a number, say v,, representing the average precipita-
tion to be recorded in a certain number of raingages in the target area, the
precipitation delivered by the storm u. without seeding. Next, we visualize
another number, say w,, representing the similarly calculated average precipita-
tion from the storm u, with seeding. Thus, we consider two sequences of numbers

(A?).l) 2)1, 1/'2’ ey, v”’ e UN

(A3.2) Wy, Wy *+ -, Wny =+ WN

and their averages ¥ and , respectively. The simplest (but the narrowest)
question that we would like to have answered is whether % equals 7 or not. If
@ = v, then we would say that, in the conditions of the experiment, the average

effect of seeding is nil. If w > 7 we would say that, on the average, the seeding
increased the precipitation, and so forth.
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Unfortunately, this fundamental question, as to whether @ = ¥, cannot be
answered. It is easy to learn the values of all the numbers v, of the sequence
(A3.1): just refrain from seeding and service the raingages. Then 7 could be
calculated without error. It is equally easy to learn all and every number w, of
sequence (A3.2). However, the important thing is that the numbers v, and w,
cannot both be known for the same nth storm and that, therefore, it is impossible
to learn the exact values of both 7 and . All that is possible is to seed some
storms, thus learning some of the numbers w, of sequence (A3.2), and let go
without seeding the remaining storms of the period, thereby learning some of
the numbers v, of sequence (A3.1), always with m > n. Then the samples of
the v and the sample of w could be used in order to form judgments about the
unknowable 7 and . It is here that mathematical statistics comes in, but even
so there are important limitations.

A scientist would like to know the values of ¥ and @ referring to his own
experiment just performed. Contrary to this, with reference to any particular
experiment, mathematical statistics, or indeed any other discipline, is powerless
to determine whether 7 = w. On the other hand, methods of mathematical
statistics are helpful with reference to long series of experiments. These may be
experiments all of the same kind, say cloud seeding experiments, or all different,
provided they satisfy the important condition of being randomized. This means
that the observational units must be assigned to treatments (for example, the
storms to be seeded or not) using some mechanism that insures a preassigned
probability for each observational unit to be given this or that treatment and
preassigned dependence properties of such assignments of treatments. In par-
ticular, each forthcoming storm may be given the same probability, say one
half, of being seeded and the seeding of one storm may be made independent
of whether the preceding storm was seeded or not. This is what is called unre-
stricted randomization. Alternatively (and this is preferable), the succeeding
storms may be randomized in pairs, and so forth.

Given the randomization, statistical theory provides methods of dealing with
experimental data which refer to two related, but different problems. One is the
problem of testing hypotheses [6], providing answers to such questions as:
should one assume that @ = »? The other problem is that of statistical estima-
tion [7], [8] attempting to answer the questions such as the following: (i) if one
has to assume some value £ for the difference @ — 7, what is the ‘‘best” assump-
tion to make? Also (ii) since the true value of ¢ = W — 7 is unknowable, can
one at least use the observations, say X, in order to assign to £ two bounds, say
&(x) and &(x) such that the probability that these two bounds will cover the
true &, so that &(x) < £ £ &(x) has a calculable high value? Also, if more than
one pair of bounds [£(z), &(x)] are available, can one find the one that is the
narrowest? This is the problem of confidence limits, [8]. (See also [9].)

The following are the important properties of methods of testing hypotheses.

(i) In a long series of experiments in which the tested treatment has no effect,
so that W = 7, the frequency of cases where the method leads to the fallacious
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judgment that % # ¥ has a preassigned value «, such as o« = 0.1, 0.05, 0.01,
and so forth.

(ii) In a long series of experiments in which the effect of the tested treatment
exists, and where W — 7 = £ 5 0 the frequency of cases, say B(¢, «) in which
the method will bring out the judgment that @ # 7 is calculable.

As is well known to most experimenters with weather modification, the pre-
assigned « is called the level of significance. The probability 8(¢, ) called the
power of the test, is somewhat less familiar. Its study was introduced in [6].

When the problem of testing a statistical hypothesis is solved, so that an
appropriate test is available, the level of significance « can be chosen in advance
and the actual frequency of false assertions @w = 7 will be, at least approximately,
equal to @, whether the number of observations, say N, is relatively small or
large, and irrespective of the various details of the experiment. Ordinarily, this
is not true of the power. When « is fixed and the use of the test is adjusted to
insure the frequency of erroneous judgments that @ # 7 be approximately «,
the value of 8(%, @) depends very much both on the number N of observations
and on the various details of the experiment. Also, and this must be intuitively
clear, for fixed £ and fixed conditions of the experiment the smaller the adopted
level of significance o (one would naturally want it to be small!), the smaller
the power 8(£, @). On many occasions this circumstance places the experimenter,
so to speak, between a Scylla of low chance of detecting the effects that his
experiment is supposed to detect, and a Charybdis of a high risk of asserting
the existence of the effects of treatment when, in fact, these effects are absent.
In an effort at caution, the experimenter may wish to insist on a rather strict
level of significance, say @ = 0.01. Then it may happen that, with the fixed
conditions of the experiment, including the number of observations, the chance
of detecting the increase in precipitation if it is as large as, say, 40 per cent, is
very low, perhaps only 8 = 0.2. By readjusting the statistical test the value of
8 may be increased say to 8 = 0.8. However, invariably, this would lead to an
increase in o, frequently to an inordinate increase.

It follows that the question about the attainable values of « and 8 must be
asked at the time when the experiment is planned. This would involve a statis-
tical study of climatological conditions in and about the prospective target.
The study, somewhat analogous to uniformity trials familiar in agricultural
experimentation, would run on the general lines of the investigation by Changnon
and Huff [10] published in this volume. Broadly speaking, the purpose of such
studies is to provide the information necessary for the calculation of simulta-
neous values of « and 8, depending upon the various possibilities in defining the
experimental unit and the target. The basic question here is about the distribu-
tion of the unseeded rainfall in the target, and perhaps also in some control
areas, for variously defined experimental units and for several conceivable mod-
ifications in the target, all this in conjunction with some predictor variables.
The following illustrations must suffice.

(i) Huff and Changnon provide the rainfall distribution per ‘‘storm” defined
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in a particular manner. Here, then, the storm is a contemplated experimental
unit. The published data are then used to investigate the performance of a
particular test of effectiveness of seeding. While this is very valuable informa-
tion, it could be usefully supplemented by similar results relating to units of
observation defined differently, perhaps as 24 hour periods. As is well known,
one of the main difficulties of experimentation with rain stimulation is the
notorious variability in natural rainfall. As defined by Changnon and Huff,
the concept of a storm is quite narrow and, frequently, during a period of 24
hours there will be not just one, but several “storms.” Intuition suggests that
if one adopts as the unit of observation the 24 hour period, rather than a ‘‘storm,”
the variability of precipitation amounts might be decreased. However, this
intuitive idea must be verified empirically.

ReEmark. It is hoped that the Changnon and Huff data will be used to
answer the above and several other similar questions.

(ii) The variability of precipitation per observational unit must depend
upon the target chosen and also upon the number of raingages in the target.
Among other things, the second of the two experiments in Arizona differs from
the first by size of the target chosen and by the density of gages: in the second
experiment the target was smaller than in the first and the density of gages was
higher. When the experimental results are published, it will be very interesting
to examine whether this contraction of the target increased the power of the test.

(iii) The experiments already performed differ in the following important
characteristic of the target chosen: some targets are fixed areas, large or small.
For example, two targets in SCUD were fixed. The same was true in Arizona
and in Switzerland. In other cases the ‘“‘target” was adjusted separately for
each experimental unit, according to the prevailing wind direction, and so forth.
This was the case in the Washington-Oregon and in the White Top experiments.
Convincing a prior: arguments might be adduced in favor of either arrangement.
However, this is a question of empirical conditions and a reliable answer may
be obtained only through an empirical study. If the general area of an experi-
ment is uniform with regard to the rain pattern, a target adjustable to wind
direction and velocity is likely to be preferable to a fixed target. On the other
hand, if the general area of an experiment includes a variety of orographic con-
ditions with widely different normal precipitation amounts, a reasonably large
fixed target may be preferable.

(iv) The already completed experiments differ considerably in the use of
predictor variables. In Arizona and in Switzerland no predictor variables were
used. In many other experiments, in the United States and abroad, it was more
or less customary to use rain in some control areas as predictor variables. In
Project SCUD three nonprecipitation predictor variables were used.

The effectiveness of predictor variables in contributing to the precision of an
experiment is illustrated below in some detail. Here we wish to point out the
desirability of including the search for predictor variables into the planning
phase of the experiment. Studies of this kind, as well as studies indicated above
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under (i), (ii), and (iii), may be hampered by the low density of raingages in an
area contemplated for the future experiments. However, a few raingages are
likely to be found operating routinely over several years in the past and an
effort to use these in planning an important experiment is fully justified.

The importance of reliable empirical information about the distribution of
target precipitation from one experimental unit to the next is connected with
the existence of a variety of statistical tests, all possible to adjust to the same
arbitrarily chosen level of significance. One particular category of such tests,
labeled nonparametric, maintains the level of significance irrespective of the
underlying distribution of the observable variables. However, these tests differ
considerably in their power which depends very much on the distribution of
precipitation and on the character of the possible effect of seeding. The situation
is illustrated in figure 6 in the main body of this paper, p. 320. Depending upon
the test used, always with the same intended level of significance a = 0.1, the
probability of detecting the effect of seeding when this amounts to a 40 per cent
increase varies from about 0.22 to about 0.45. In other conditions, the effective-
ness of the tests considered might be the reverse. Thus, when planning the
experiment it is essential to have some idea of the distributions likely to be
encountered so as to be able to select the statistical test with the greatest possible
power and, finally, in order to estimate the number of experimental units, or
the duration of the experiment, which would insure a reasonable chance of
detecting the effects that one wishes to detect.

Before concluding this section, we must return to randomization as a pre-
requisite to planning a proper experiment. As is well known, ordinarily, com-
mercial cloud seeding experiments are not randomized and yet their results are
being subjected to statistical evaluations and reevaluations. The question may
be asked why should randomization be considered so necessary for what we call
“experiments.”’

For a detailed discussion of the question we cannot do better than refer the
reader to the book by Fisher [1] already quoted. Here it must suffice that,
without randomization, any apparent effects of the experiment, no matter how
“statistically significant,”” cannot be unambiguously attributed to seeding.
Reliance on nonrandomized operations places the scientist in the position of
the Court of King Arthur so easily misled by the indomitable Connecticut
Yankee [11].

The very possibility of being misled should be sufficient to concentrate the
attention on randomized experiments where, with proper care, misattribution
of the noted effects is impossible. However, it is no doubt interesting to put one’s
finger on some actual source of bias. With reference to the so called historical
regression method used to evaluate nonrandomized cloud seeding operations
one source of substantial bias was actually discovered [12]. This is the existence
of several at least roughly identifiable types of storms, each with a different
target-control regression line. The frequency of the particular types of storms
varies from year to year. Thus, the normal target precipitation observed in a
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particular year may, and in some cases does, differ from the prediction based
on a regression line calculated for a given epoch. Cases are on record [13] where
a change in the epoch of reference causes a change in the conclusion regarding
the effect of seeding: from a highly optimistic one to zero.

The existence of the types of storms with different regression lines has been
verified twice. First this was done, somewhat grudgingly, by Thom ([14], p. 34).
More recently this was done by Rapp and Schutz in an article [15] published
by the National Academy of Sciences and National Research Council. The
equivocations surrounding the admission of the existence of different types of
storms and of their likely influence on the historical regression method present
an interesting reading. The two authors state that they performed a “cursory”
study (we agree) ‘“to see whether there were obvious natural reasons’ for the
observed increases in target precipitation, other than seeding. Specifically, they
performed a classification of storms by an approach about which: “It is admitted
that the synoptic approach used here is not definitive (we agree), but is empir-
ically sound” (we are not sure). After studying the regression lines for the two
types of storms and comparing them with the seeded target precipitation the
authors state: “We believe that there is a hint in these studies that a good
portion of the deviation of the (seeded) precipitation from the regression line
could be explained”’ (by the variability of types of storms). However, the final
conclusion is that: . . . it seems fair to postulate . . . that August 1962 does
represent a month in which cloud stimulation did increase the precipitation . . .”

The more realistic conclusion is that the apparent excess precipitation of
August 1962: (i) may be due to cloud seeding; (ii) that it may be due to the
effect of storm types which a “cursory” study only indicated but which could
have been established through a more ‘“definitive” approach; and that also (iii)
this apparent excess may be due to some causes of bias that are thus far unsus-
pected, or indeed (iv) to chance.

It will be remembered that prior to the work of the statistical Berkeley group,
work conducted in cooperation with Mr. Edward Vernon, the existence of types
of storms with different target-control regression lines, was not suspected.
While we have mild regrets that the authorship of this discovery is not acknowl-
edged, we do not contend that the type of storms is the only possible source
of bias.

The role of randomization in the planning of an experiment is to eliminate
the possibility of any unsuspected bias and to reduce the frequencies of erro-
neous judgments to levels that are both calculable and verifiable empirically.
Naturally, mere inclusion of the randomization is no guarantee of soundness of
an experiment. However, it is an important prerequisite.

A4, Statistical theoretical background

In the last section it was suggested that the planning of a future experiment
with weather control be preceded by an examination of historical climatological
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data collected for the contemplated general area of the experiment. This exami-
nation, covering a substantial period of time, perhaps as much as a decade,
would have the purpose of establishing the most advantageous elements of the
design of the prospective experiment, such as the definition of the observational
unit, the desirable predictor variables and the details of the target. The general
method of procedure would be, essentially, by trial and error.

Substantive meteorological considerations would suggest several alternative
possibilities of observational units (for example “storms” or periods of 24 hrs,
and so forth), a target (its size, location, and whether fixed or adjustable) and
some predictor variables (perhaps none or, alternatively, precipitation amounts
in some comparison areas or, indeed, some nonprecipitation data). In other
words, meteorological considerations would bring out several alternative designs
for the planned experiment.

The next step in planning is to use the historical data in order to estimate
(i) which of these designs would be the most effective if the future experiment
were performed in conditions exactly similar to those reflected in the historical
data, and (ii) what would the duration of the experiment have to be in order to
insure that it will detect, with a reasonable degree of precision, what it is sup-
posed to detect. ’

Naturally, the weather conditions of the historical period need not be dupli-
cated during the future period contemplated for the experiment, and therefore,
the precision of the future experiment will not be exactly as calculated. How-
ever, in this respect experiments with weather control are in no worse condition
than, for example, experiments in medicine and in many other domains where
one has to deal with uncontrollable observational units. In spite of the irregular
and frequently serial variability of these units, progress in these domains is
achieved customarily through projections of past experience into the future.
Incidentally, this past experience indicates also the order of magnitude of errors
to be expected in the projections.

The purpose of the present section is to introduce certain concepts and to
indicate certain formulas relevant to the particular phase of planning an experi-
ment just deseribed. Numerical calculation based on these formulas are given
in the next section. In both sections we shall pretend that a historical climato-
logical study has been completed, providing data on precipitation in a contem-
plated target for some tentatively defined observational units, and also data
for several contemplated predictors. The range of possibilities that a study of
this kind may present is tremendous and in many cases the statistical treat-
ment of the data is likely to require new methods. Also, an a priori treatment
of the problem of projections may easily involve discussions of totally unrealistic
situations. For these reasons further discussion will be concerned with real data
and be limited to conditions reflected therein.

There is a notorious scarcity of easily available climatological data suitable
for the present purposes. Essentially, we have at our disposal a single set pro-
vided by Project SCUD [3]. Here there were only 37 observational units, some
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of them with seeded and others with not seeded precipitation, much too few
for a proper historical study. Nevertheless, we shall pretend that the hypothet-
ical historical study of perhaps 370 units provided information coinciding with
that in the 37 units of SCUD, all of which will be treated as if there were no
seeding.

As described elsewhere by Marcella and John Wells [16] the observational
data of Project SCUD, referring to the more interesting region Ia, have the
following properties.

(i) Forecasting was so good that for each of the 37 observational units there
was some rain in the target. Projecting this into the future, it will be assumed
that the problem of the probability ¢ that there will be some rain in the target
will not arise. The important problem relating to the frequent cases where a
noticeable proportion of experimental units have zero precipitation is treated
in a separate paper [17].

(ii) As is usually the case in our experience with nonzero precipitation, the
precipitation amounts per observational unit appear to follow a Gamma distribu-
tion with density

(A4.1) pr(yly, ) = 3

o v—1lg—dy
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In the original paper, the precipitation amounts considered here are denoted by
RI. We shall adopt the conventional notation Y and proceed on the assumption
that in the future experiment ¥ will have the probability density (A4.1) with
parameters v and § as estimated for SCUD.

(iii) The observations involved three predictor variables M, T and L. Also,
it was found (see [16]) that the regressions of RI on M, T and L are approxi-
mately linear and that the conditional distribution of RI given M, T, L is
approximately symmetric and has a constant variance. As is well known, in
these conditions the assumption that the conditional distribution of RI given
the predictors is normal, with a fixed variance, leads to tests that are ‘“‘robust.”
This means that the deviations from the assumption of normality do not signifi-
cantly affect the performance of the tests.

In our projection into the future we shall assume that there are some s pre-
dictors, say Xi, X, ---, X,.. Regarding the conditional distribution of target
precipitation given the predictors, we shall consider two alternative situations.
One of them coincides with what was found for SCUD, with Y, measured in
inches, having a linear regression on the predictors and having, approximately,
a normal conditional distribution with a fixed variance. The alternative assump-
tion will be that the properties of linear regression, and of approximately normal
conditional distribution with a fixed variance, are possessed not by the target
precipitation Y measured in inches but, as is frequently the case, by a trans-
formation of Y. More specifically, we shall assume that some rth root of Y
possesses these properties. This may be the square root of Y or the cube root
of Y, and so forth.
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Our final assumption will be that, as expected by Spar, if there is an effect of
seeding, this effect will be multiplicative. In more precise terms, this means
that, with seeding, for any combination of values of the predictors z,, @3, - - - , s,
the expected value of the target precipitation is equal to that without seeding,
multiplied by a factor independent of i, x,, - -+ , z,, all other properties of the
conditional distribution of ¥ remaining unchanged.

In our calculations we found it convenient to represent this factor by 6 so
that 8 represents a conventional measure of the effect of seeding. If § = 1 then
seeding has no effect. If 6 > 1 then, on the average, seeding increases precipita-
tion by a factor 6, and so forth.

The discussion in the earlier sections indicates the importance of being able
to estimate the chance that the planned experiment will detect the effects that
it is supposed to detect. This means the importance of being able to calculate
the power of the statistical test that will be used.

For many statistical tests in frequent use, the calculation of power is still an
unsolved problem. However, in a broad category of cases, including those
reflected by the assumptions (i), (ii), and (iii), the experiment can be evaluated
by any test of a special class, named C(«a) tests [18], for which the asymptotic
power can easily be calculated. The steps involved are as follows.

First the intended significance level « is arbitrarily selected. Next the normal
deviate, say »(«), is read off from tables of the normal integral so as to satisfy
the condition
(A4.2) L f T gy =1 — a

’ Vor —(a) '
Then the asymptotic power of any C(a) test, the power corresponding to any
preassigned @ is given by

7+ v(a)

(A4.3) B, a) =1— :/%r['—»(a) e~=/2 dz,
where 7 represents the so called noncentrality parameter, depending upon 6,
upon the number N of experimental units, on the randomization, on the par-
ticular distributions of the observable variables, and, of course, on the particular
C(c) test used. The calculation of 7 will be discussed presently. Now we refer
to figure A1l illustrating the relation between the level of significance « and the
power (8, &) prevailing for a fixed 7.

It is seen that, when = is small, say = = 0.5, and if this value is calculated for
the effects of seeding (as measured by 6) that are really important to detect,
then the experiment planned is without value. Even if one adopts a level of
significance as “liberal’” as & = 0.1, the chance of detecting the effect of seeding
that is judged important will be only 8 = 0.14. In other words, even if we agree
to assert the existence of an effect, when none exists with a frequency of one in
ten, the existing important effect will be detected only in about one in seven
cases. On the other hand, if we insist that 8 be of some more favorable value,
say B8 = 0.8, we would have to put up with a = 0.77, meaning that, on the
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average, out of 100 similar experiments in which the treatment has no effect
(thus § = 1), the test will lead to the assertion that an effect exists in about
77 cases!

Figure Al indicates that anything like reasonable precision of the experiment
is attained when 7 is of the order of 2.5 or higher. With 7 = 2.5 and the level
of significance o = 0.1, the chance of detecting the hoped for effect would be
about 8 = 0.8. With o = 0.05 we shall have 8 = 0.7, and so forth. What is an
acceptable chance of detecting what one wishes to detect is, of course, a sub-
jective matter. In our opinion, for an important piece of experimentation, this
chance should not be lower than about 0.8 and this is our reason for advocating
some liberalism in selecting the level of significance.

The all important noncentrality parameter is given by the formula

(A4.4) r = A[N%(1 — =)]"2log. 6,

which, in a rather attractive manner, relates = to the several characteristics of
the planned experiment, so that the role of each can be judged separately. Here,
as explained earlier, 8 is the factor multiplying the average normal precipitation
in the target, a factor representing the hoped for effect of seeding that s judged
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important to detect. Thus, if it is judged important to detect the effect of seeding
if it amounts to a 20 per cent or to a 40 per cent increase, then § = 1.20 or
6 = 1.40, respectively, and so forth. As formerly, N stands for the contemplated
number of experimental units involved in the experiment. The symbol = refers
to the randomization. If the experimental units are randomized in pairs, then
x = 1/2. On the other hand, if unrestricted randomization is adopted, then =
represents the probability that an experimental unit will be seeded. Here then,
we come to a factor under control of the experimenter which influences the
effectiveness of the experimental design and the optimal value of 7 maximizing
the product #(1 — =), and thereby 7, is # = 1/2. In some of the already per-
formed experiments the value of = selected was » = 2/3, which resulted in a
mild loss of precision of the experiment.

The most important factor in (A4.4) is that designated by A. The reason is
that it is independent of either 6, N, or = and reflects all other characteristics of
the experiment, namely the local conditions, the contemplated design and the
statistical test used. While the local conditions, represented by the distributions
of the observable random variables, are imposed on the experimenter, the other
factors influencing A are at the experimenter’s disposal and an effort to increase
A is clearly indicated.

First, it is important to realize that, all other things being equal, the use of
an inappropriate statistical test may reduce A to zero. The so called optimal
C(c) test insures a value of A that is maximum compared to other tests of this
class and, as shown by LeCam [19], this maximum frequently coincides with
the absolute maximum. The formulas for the calculation of A for the optimal
C(a) tests are as follows.

(1) If no predictor variables are used, and the target precipitation follows
the Gamma distribution (A4.1), then

(A4.5) A =yl

(2) If some s predictor variables X;, X, - - - , X, are used and if, as in SCUD,
the target precipitation Y has a linear regression on the predictors

8
(A4.6) E(Y|xy, 2 -+« , ) = a0+ El %,
s

combined with approximate conditional normality and constant conditional
variance, then

(A4.7) A = E[ao + ilajxj]2 / o,
| p2

Here, the expectation is taken over the variability of the predictors, and the
symbol ¢ represents the square root of the conditional variance of Y, given the
predictors.

(3) Finally, if the properties of linearity of regression, as in (A4.6), of condi-
tional normality and constant conditional variance are possessed not by the
target precipitation itself but by its rth root, then
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(A4.8) A? = {2 + %E[ao + Za,-XjP} / 3

with an obvious change in the meaning of the symbols involved.

As mentioned, the C(a) tests are asymptotic tests and the conformity of real
frequencies with those calculated from the above formulas can be expected
when N is sufficiently large. Checks already performed indicate that with N of
the order of 50 or more the performance of the tests satisfactorily agrees with
predictions. For the method of deducing the above formulas, as well as for the
details of criteria to be used in evaluations of the experiments, the reader is
referred to [18].

All the above discussion refers to what might be called the mechanism of
precision of an experiment. Turning to the very notion of precision, we wish to
propose its measure, say N*, defined as the minimum number of experimental
units which insures that, with the adopted level of significance «, with optimal
randomization = = 1/2, with the given distributions of the observable variables,
and with the use of the optimal C(e) test, the effect of seeding 6 that is judged
important to detect will be detected with the preassigned probability 8.

In order to obtain N* it is sufficient to solve equation (A4.4) for N and to
substitute in the right side the requisite values of r (as determined by the pre-
assigned values of a and 8) and of the other parameters involved:

(A4.9) N+ = @r/log ),

It will be noticed that the numerator in this formula depends only on «, 8,
and 6 which the experimenter is at liberty to choose in conformity with his own
opinions of the desired precision of the experiment. Contrary to this, the de-
nominator A? depends on the conditions prevailing in the target area and on the
design. It will be convenient to describe the chosen e, 8, and 6 as the desired
‘“‘precision of the experiment.” Then N* might be described as the number of
experimental units, or simply as the “size” of the experiment, insuring that,
in conditions characterized by A? it will have the desired precision.

Tables Al and AII are intended to facilitate the computation of the numerator
in (A4.9). Table AI gives directly 472 corresponding to several combinations of

TABLE AI

VALUEs OF 472 IN TERMS OF o AND f3

B a 0.10 0.05 0.02 0.01
0.70 18.82 24.69 32.51 38.45
0.80 24.73 31.40 40.14 46.72
0.90 34.26 42.03 52.07 59.52
0.95 43.29 51.98 63.08 71.26
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a and 8. Table AII gives 1/2 log. 6 as a function of the percentage change in
precipitation that the experimenter might consider ‘“important to detect.”

TABLE AIl

1/2 log, 8 1IN TErMs OoF PERCENTAGE CHANGE IN MEAN RAIN Dur TO SEEDING

Per cent change | —80 —40 —20 -10 +10 +20 +40 +80

1/2log. 0 0.386 3.83 20.08 90.08 110.1 30.08 8.83 2.89

It will be noticed that a given percentage increase in rain due to seeding is
more difficult to detect than the same percentage decrease.

Ab6. Number of experimental units required to attain the preassigned
precision of a planned experiment

In this section we perform numerical calculations leading to estimates of the
size N* of an experiment insuring a preassigned precision. In other words, we
shall estimate the number N* of experimental units insuring a preassigned
probability 8 that an effect of seeding, which is considered important, will be
found significant at a preassigned level a. As indicated earlier, this will be done
under the assumption that the planned experiment will be performed in physical
conditions coinciding exactly with the estimates obtained for all the 37 units
in SCUD data and ignoring the fact that some of them were seeded. Considera-
tions of alternative designs of the planned experiment will be limited to (i) the
possibility of using no predictor variables and (ii) the possibility of using one
or more predictor variables M, T and L, which were actually used in Project
SCUD.

As mentioned before, the exact definition of ““desired precision” is subjective.
Our own choice is

(A5.1) a=01 $=09, and 6=14

In other words, the calculations are performed to determine the minimum size
N* of an experiment in which the chance of finding a 40 per cent increase in rain
significant at 10 per cent is equal to 0.9. Using tables AI and AII, the numerator
of formula (A4.9) is found to be 2r2/log. 8 = 34.26 X 8.83 = 302.5. Thus, for
each of the possibilities contemplated we shall have to compute

302.5
(A5.2) N* = AT

We begin by considering the possibility (i) of using no predictor variables in
the planned experiment. The formula for computing A? appropriate for the
situation considered is (A4.5). It was found that the RI precipitation data of
Project SCUD are satisfactorily fitted by the Gamma distribution with the
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shape parameter v = 1.70. Referring to (A4.5) and substituting in (A5.2), we
found

302.5
*
(A5.3) N* = 170

say 178. Taking into account that it required two years to accumulate 37
observations, N* = 178 means about 10 years.

At this point it is appropriate to mention that, probably due to the immense,
1000 mile long, target and to the particular type of storms studied in SCUD,
the corresponding value of v = 1.70 is unusually large. Table AIII gives a
sample of values of v as estimated for several sets of data.

= 177.9,

TABLE AIII

SAMPLE OoF ESTIMATES OF v

No. of Observations

Source of Data No. of Observations per Season v =+ S.E.
SCUD 37 19 1.70 £ 0.36
Grossversuch I11a 105 15 0.78 + 0.09
Arizona I 89 22 0.66 + 0.08
Grossversuch IIIb 242 35 0.54 + 0.04
Little Egypt, Il 231 46 0.44 + 0.03
East Central, Il 377 38 0.39 + 0.02

The values given in table AIII are the maximum likelihood estimates obtained
for each of the six sets of data. For Grossversuch IIT many such estimates were
obtained corresponding to different subtargets and to different categories of
experimental units. The two values given in the table are the extremes of those
based on at least 100 observations. The estimate obtained for the first of the
two Arizona experiments (for which the data are now available) happens to be
exactly in the middle between these two extremes. The last two lines in the
table refer to two sets of data kindly furnished to us by Mr. S. A. Changnon, Jr.
[20]. They represent average precipitation amounts in many gages in two distinct
areas in the State of Illinois, one labeled Little Egypt and the other East Central.

It is seen that the estimated shape parameters fall, roughly, into three groups.
The top value corresponds to SCUD. For Grossversuch IIT and for Arizona the
typical value appears to be 0.66. For the two targets in Illinois, v is about 0.4.
If the planned experiment were to be performed without predictors either in
conditions of Arizona or of Grossversuch III, or in conditions of Illinois, the
requisite number of experimental units would have to be more than double that
computed for SCUD, in one case, and more than four times as large as for SCUD,
in the other. However, in judging these numbers it is important to take account
of the number of experimental units of a given kind that one may expect per
season.

Leaving aside SCUD because of its nontypical target, it is interesting to
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speculate about the reasons for the difference between the conditions in the
Arizona experiment and the Grossversuch III, on one hand, and in the two
areas in Illinois, on the other. The two categories of conditions differ in the
definition of the experimental unit. In Arizona and in Grossversuch III the
experimental units were of fixed duration. On the other hand, the experimental
units chosen in Illinois were storms, some of which lasted more than two days
while some others were of very short duration so that during one single day
there may have been as many as three different storms, each counted as a sepa-
rate observational unit. Referring to formula (A4.1), it will be seen that the
smaller the parameter v > 0, the more frequent must be experimental units
with minute amounts of target precipitation. This suggests that the smallness
of v for the Illinois data may be due to the particular choice of the experimental
unit. It is possible that, if the ‘“storm” is replaced, say, by a properly chosen
12 hour period, the value of ¥ would be increased with an increase in the pre-
cision of the experiment. On the other hand, this change in the experimental
unit may well decrease the number of experimental units per season, which may
increase the requisite duration of the experiment. The choice of the experimental
unit must be done after appropriate examination of the historical data leading
to a complete summary evaluation of all the factors in their conflicting influences
on the duration of the experiment.

The result (A5.3) and the data in table AIII indicate that, unless one is pre-
pared to relax considerably the definition of the desirable precision of the experi-
ment, now characterized by = 0.1, 8 = 0.9 and by considering that a 40 per
cent increase in precipitation is important to detect, rain stimulation experi-
ments without predictor variables must be of distressingly long duration. In
conditions of SCUD this would be about a decade. In conditions of Arizona
about two decades would be needed, and so forth. Accordingly, we now turn to
the examination of the effects of predictor variables. This means the evaluation
of formula (A5.2) with A? evaluated from (A4.7).

The numerator in this formula, say Y2(z) may be estimated by averaging,
over all the experimental units in the hypothetical historical study, the square
of the ordinate of the regression plane (or line, or hyperplane) of the target
precipitation on the predictor variables contemplated. The denominator is,
simply, the corresponding residual variance. For Project SCUD the relevant
calculations are given in [1). Using these results, and considering in turn the
possibilities of using only one predictor variable, either M or T or L, any two
of them, or all three, estimates of the required size of the planned experiment
were obtained. All the results, including some intermediate stages, are sum-
marized in table AIV.

It is seen that the inclusion of the predictor variables has an effect on the
precision of the experiment that cannot be described with less emphasis than
dramatic. In fact, the use of all three predictors, and for that matter, the use
of only two of them, M and 7, reduces the required size of the experiment from
178 units to only 42, by a factor of 4.2! In considering this result, it is important
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TABLE AIV

REQUIRED SizE N* oF THE EXPERIMENT IN RELATION TO PREDICTOR VARIABLES USED

Predictors Mean Estimated Residual Required Size
Used Y3(x) Variance N*
none — —_ 178
M 0.113 0.029 78
T 0.119 0.022 57
L 0.106 0.036 102
M, T 0.125 0.017 42
T, L 0.121 0.022 56
L, M 0.116 0.027 71
M, T, L 0.125 0.018 42

to remember that, while the numerical estimates of N* in the last column de-
pend on the definition of the desired precision of the experiment, that is, on
a=0.1,8 = 0.9 and § = 1.4, ratios like 178/42 = 4.2 are independent of this
definition. Thus, in conditions coinciding with those of Project SCUD, the
inclusion of the predictors M and T would decrease the required size of the
experiment by a factor of 4.2, irrespective of what one chooses to consider as a
satisfactory precision of the experiment.

Table AIV indicates that the effectiveness of the three predictors M, T, and L
is very unequal. The best predictor is undoubtedly 7'. The least satisfactory is L,
so much so that the addition of L to the two other predictors M and T does not
increase the precision of the experiment.

The results of table AIV appeared to the present authors as a most pleasant
surprise. From past experience we became accustomed to the idea that precipita-
tion amounts in some two not very distant areas are correlated, which is the
basis for the use of control areas. However, the variables M, T, and L are not
precipitation amounts but are functions of observations concerned with weather
conditions that to a layman may seem remote. The variable M is a somewhat
elaborate measure of the east-west pressure gradient. The variable T is de-
scribed by Spar as the influx of water vapor into the target area, and L is,
essentially, the latitude of the cyclone center estimated for the zero hour. With
these definitions one source of our surprise is the effectiveness of M and 7. The
other source of surprise is that, for given M and 7, the value of L is irrelevant.

It would be most satisfactory if the effectiveness of predictors invented for
SCUD could be immediately generalized for other experiments, organized in
other localities and with much smaller targets. Regretfully, because of the
disparity between the target area in SCUD and the areas of targets that have
now become customary, no such generalization is justifiable without prior
empirical verification. As things stand now, the only general conclusions that
the above analysis suggests are: (i) with relatively brief units of observations
and without the use of any predictor variables, in order to satisfy modest require-
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ments of precision, experiments with rain stimulation must last a discouragingly
long time; and (ii) in some conditions at least, the inclusion of properly selected
collateral observations, yielding one or more predictors, may increase the
precision of the experiment dramatically.

Before concluding this section, the following two remarks are in order. The
first remark is that the results just discussed, interesting as they are, are subject
to considerable uncertainty. This is due to the very small number, only 37, of
observations in SCUD, which underlie all the calculations exhibited in table
AIV. Qur attitude to these results would have been quite different if they were
based on a real historical study covering perhaps 400 experimental units. In
particular, it is quite possible that, as a result of such study, it would appear
that the predictor L is not valueless.

Our second remark relates to the validity of calculations based on historical
data leading to results such as those exhibited in table AIV. This question of
validity splits into two subquestions. One is whether the calculated N* really
insures that in a long series of experiments conducted strictly in conditions
revealed by the historical study, the application of the test at the preassigned level
of significance a will detect the effect with frequency g if this effect corresponds
to the chosen 6. This is a very important question which, particularly because
of the asymptotic character of the optimal C(a) tests, should be asked and
should be answered empirically. Following the lines which led to figure 6 in the
main body of this paper, or the lines of Changnon and Huff, this is not a difficult
question. As a general rule, the frequencies of errors resulting from the applica-
tion of the optimal C(«) tests agree reasonably with expectation even when the
number of observations is only of the order of a few tens.

The other subquestion is whether and to what extent the conditions revealed
by the historical study are likely to be duplicated during the time period of the
future experiment. No definitive answer to this question can be given. All that
is possible to do is to use the data of a rather long historical study to determine
the variability of the estimate of N* if it is based on a single year, on two con-
secutive years, on three, and so forth.

Because of the lack of data involving predictor variables and referring to
several years in the past, the illustration of the above study is only possible for
the case of no predictor variables. Figure A2 gives the variability of estimates
of N* based on varying numbers of consecutive years calculated from Grossver-
such III data for zone III.

It is seen from figure A2 that estimates of N* based on just one year of obser-
vations vary in very broad limits, from about 350 to about 550 units of observa-
tion. With a six year period the variation is reduced very markedly. However,
it must be remembered that in this case there are only two estimates of N* and
that, by their structure, they are very strongly correlated.

Of the six graphs in figure A2, the first two are substantially more interesting
than the others. In the first the consecutive values of N* are estimated each
from a separate set of data, without overlap. In the second graph, there is an
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overlap between the first estimate and the second, but not the third, and so
forth. Both graphs illustrate the striking phenomenon of what may be called
serial variability in the weather pattern which must be taken into account in
weather control experimentation. In fact, the first graph suggests something
like a periodicity of about ten years cycle (sunspots?). If any such periodicity
is detected, then it could perhaps be used to tighten the estimates of N*.

As mentioned, similar calculations could and should be done using predictors.
However, here the situation is likely to be a little more favorable than figure A2
suggests. The point is that the serial variability exhibited in figure A2 would
affect not only the target precipitation, but also the predictor variables which
would decrease the variability of estimated N*. Also, our experience indicates
that the correlation between target precipitation and that in control areas
seems to depend on identifiable types of storms. Of two comparison areas C,
and C,, the first appears to correlate strongly with the target with storms of
one type, when C; is ineffective, and vice versa.

Before concluding we wish to express our hearty appreciation to Miss Kang
Ling, Mrs. Jeanne Lovasich, and Mrs. Marcella Wells for the infinite patience
and care in performing the many computations that underly the numerical
results given in this paper.
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