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1. Introduction

The problem of the detection of low order epidemicity is an old one and has
been discussed moderately frequently in epidemiological literature. The first
workable test may be that due to Knox [5], [6], [7], who, considering a swarm
of points in the three dimensions of time and space, defined somewhat arbitrarily
criteria for deciding whether points were adjacent in time and adjacent in
space. He conjectured that the small number of points adjacent in both time
and space was distributed Poissonwise. It was subsequently shown by Barton
and David [2] that his conjecture was substantially correct. In this present
paper we show that his test is very sensitive to departures from randomness in
time and space commonly associated with epidemic conditions.

Various other test criteria have been proposed. It is clear that they all may
be divided into three broad types, and that with appropriate modifications the
same ideas regarding the power function for Knox's test can be applied to
obtain power functions for any of the others.

2. Test criteria

N points {xi, yi, tJ} are supposed where {xi, yi} are the space points and {ti}
those of time. It will sometimes be convenient to write

* Now at the Institute of Computer Sciences and Queen Mary College, IUniversity of London.
** With the partial support of the National Institutes of Health, USPHS Grant GM-10525.
* With the support of National Institute of Health Research Grant 9751.

217



218 BARTON, DAVID, FIX, MER1RINGTON, AND M1USTACCHI

(2.1) A = (Xi- Xj)2 + (i -yj)2,
(2.2) tij = Iti-tjl,
where i 5d j. Two standards O and 3 are choseni. T'lhecoordiinates (xi, yi, ti) and
(xj, yj, t,) are defined as being adjacent in space if dij < a and as adjacent in
time if t,j < 3.

3. Criteria depending on both 3 and )

3.1. Knox's method of counting. Knox counlts d jj = I if it is less than O and
zero if it is greater than 2), with a similar counting procedure for tij. Let there
be N1S adjacencies in space when all possible N(N - 1)/2 comparisons are
made and NIT adjacencies in time. If nST denotes the number of adjacencies in
both time and space then under the hypothesis of riandomniess

(3.1) E(nST) =
= X-

N(N -I)

(3.2) E`(nST)2 = 2Nl N2T + N2(3 + NM [N2V. - 2N2S] [N17 -2A27NI],

where N2 denotes the number of pairs of adjacencies witlh a common poilnt.
Barton and David [2] showed that for mathematical conditions correspondinlg
to low level epidemicity nST ma.y be distributed in a IPoisson distribution as
suggested by Knox (to a good approximation).

3.2. Extensions of Knox's method. It is clear that Kiiox's method of coUnltinlg
is a special case of a much more general procedure. Thus, if we confine our atten-
tion to those pairs of points judged adjacent in time and judged adjacent in
space, we may begin by ignoring the nonadjacencies-which is e(uivalent to
counting them all zero-but what we do then is a matter of choice. W e can
take some funetionl of the dij anid of the tj, either the (luantities themselves, or
their s(quares or their reciprocals for example, and are then left with sums
such as

(3.3) Rf 3 , F f(di1) f(tij) = f(dij) f(tij).
NT Ns flST

The distributioni under randomization of any of such criteria can be obtained
and the choice of the most sensitive can only be made by a calculation of the
power of the criteria to detect departures from randomnless such as that described
below for Kinox's case. Given modern computing methods, this does not present
any intrinsic difficulty. Barton and David [2] provide tables which elnable the
first four moments of Rf under randomizationi to be computed. Firom these,
percentage points are easily obtainied by stanidard graduatioii methods.

4. Criteria depending on 3 or on O)

4.1. Group according to 3. Barton anld David [2] suggested making a division
of the N observations inito groups according to I anid then calculating the
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withinl groups variation of the space distaniees. Such a eriterioin has beenl shown
to be sensitive for many diseases where the epidemicity is reasonably wide-
spread and the contagion known to be presenit.

4.2. Group according to D. Although the proceduire under subsection 4.1 is
simple because the {tij} are arranged in natural order (over j for a giveni i),
there is no reason why the data should not be divided into groups according to
D and then within groups variation of the time distances computed.

5. Criteria depending on neither 3 nor D

We may choose a function of the space distainee aind a funetioin of the time
distance between any two points and sum their product over all possible points.
Thus, we would take

(5.1 ) E_ f(dij) f(tii) -

Mantel has put forward criteria based on f(dij) = dij, f(tj) = tlj or their recip-
rocals; David and Fix have suggested, for algebraic conveniienlce, taking the
easily computed statistic

(5.2) f(dii) = d1j, f(ti1) = t?U.
MIany other similar criteria can be suggested.

6. Criteria and data inadequacies

In studyinlg the set of N observations numerically it will often be observed
that there are very large intervals in both space and time distances. Such large
initervals are commonly regarded with suspicion, and workers in this field seem
to prefer to choose eriteria which will minimize their effect. Knox's criterion
and those allied to it (as mentioned in section 1) get over this difficulty of the
large intervals simply by ignorirng them. With ainy eriterioni, however, based oln
a division of the observations into groups, one is faced with having to decide
what values to take for 3 and/or a). While this may be done, using the simple
rule set out in Barton, David, and Merrington [3], the effect of having to make
such a choice introduces a certain arbitrary element into the analysis.
To refuse to make a division of the observatioins and to take a criterioin Rf

as ii section 3 meains that oine accepts the fact that there are these long intervals
--wlhic(h may be due to observations not havinig beeni recorded-and that one's
test will be correspondingly less senisitive inl pickinig outi the space-time iinter-
action. Tlhe device of taking

(65.1) f(dij) = 1 (tij)=-dij tij

is not to be recommended. The data are commonly such that tlj or dij can be
zero-that is, two or more cases can be recorded as occurring simultaneously-
anid to assigni anl arbitrary value to tlj oi dij ini such cases is to beg the (piestioil.
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It is worth noting that the Knox statistic is of the Rf form, f being a zero-one
(indicator) function.

7. A model for power function

Barton and David pointed out that for Knox's method of analysis the data
could be represented in terms of a space graph, a time graph, and a space-time
graph. Points which are adjacent (according to the given definition) are joined,
otherwise no join is made. Under the null hypothesis, the time and space graph
is a random intersection of the time graph with the space graph. Under the
alternative hypothesis proposed here a small number out of the N* cases have
arisen by contagion. We suppose the observed time and space graphs to be
built up in two stages.

(i) A set of N primary cases are allocated to the N time and N space points
independently. There will be NT joins in the time graph and NS joins in the
space graph, and X = nST joins in the combined space-time graph.

(ii) Assume that some of the N primary cases give rise to m secondary cases
within the adjacency space-time vicinity of a primary. Consequently we ob-
serve not X but X* > X + m actual cases adjacent in time and space, out of
the N* = N + m cases which are actually recorded. The m secondaries will
provide m extra joins with their own primaries in the space-time graph and
possibly others either within themselves or with existing primaries other than
those which gave rise to them. The total time adjacencies will also have in-
creased at least by m, say to N1T, and similarly for space adjacencies, say NMI.

(iii) It is further assumed that each secondary is equally likely to arise from
any primary and that the secondaries themselves arise independently. If each
secondary is assumed to be so close to its primary as to share all its adjacency
properties this will be equivalent for working purposes to assuming the primary
and the secondary are coincident. We should emphasize that this is for working
purposes only. In practice all that will be observed will be two cases, very close
in time and space, which share each other's adjacencies.

8. Asymptotic power function using Poisson limit

It is intuitively clear that if

2N1T N1S * 2N1T NT8
(8.1) X = N(N-1) X (N + m)(N + m-)
then under the "incoherent" limit condition [2], X* -- X and (X* - m) tends
to be distributed as a Poisson distribution with mean X. Thus, if we take Knox's
data, where X = 5/6, and write the asymptotic power function as 1(m), then
using an approximate five per cent significance level we have 3(0) = 0.052,
,B(1) = 0.203, B(2) = 0.565, 13(3) = 1.000. To study the power function more
accurately we need to investigate
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(8.2) E(X*) = A, E(X*) = A

(say), since the first approximation to the power function will be to calculate
the effect of using the percentage points of a Poisson distribution with mean A
when X* is actually distributed with (noncentral) mean ;z.

9. Use of mean A with Knox's data

Let the m secondaries be divided into mi (singles), m2 (doubles), m3 (triplets),
and so on, so that

(9.1) m= rm,.
r=1

If PjT equals the observed local degree of the jth point of the time graph given
(mI, M2, ** ), then

l N

(9.2) E(N1T) = 2_ E(pjT)
N N .~i N F2 -r2M,
EpjT + E (PjT + 1)+ [- I(2)2-1Pi +j=1 N)j 2j=1 IT N~2

where the sums on the right side refer to primary-primary joins, primary-
secondary joins, and secondary-secondary joins (in that order).

Consequently, conditional on (ml, M2, * ), we have

N 2m m2 - F-r2Mr1(9 3) E(N1T) = m + NIT L + N + N(2) J.

Now

(9.4) E E mrr2) N [MN2+ N], Var ( mrr2) = NN(2)
and it follows that

(9.5) E(X*) (N + m)(2) E(NlSNlT)

=N+rC {NC{(1 + 2m + M( 2

+ 2m )

(m 2m+ (2) (NIT +Nis) +in}

If we consider Knox's data, N = 96, X = 5/6, N1S = 152, NiT = 25 and we
let m = 3, the greatest value which was required for the ,B(m) of the power
function above, we have, on substitution
(9.6) E(X*) = 1.004 = A.
This is greater than the value for X, but it is interesting to note that the change
from X to A is not large. In particular the critical value which gives an approx-
imate five per cent level of significance is the same using 1.004 as it is using 5/6.
This question is discussed further in the next section.
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10. Validity of asymptotic power functions

To study the mean of X*, we use the fact that the nm secondaries are indepcnd-
ent and consider the distribution of secondaries for a fixed set of primary cases.
Let aj denote the number of joinls of the jth secondary to primaries anid fj
denote the joins of the jth secondary to other secondaries. Conseqiuenltly,

(10.1) =-* X + L +± E 0
j=1 -j=l

(10.2) E(aj) = m (1 +
(10.3) E(~~3~) = M(2)

(10.3) (N + 2X)

giving
2m M(2)1M_2_

(10.4) E(X*)=X 1 + + ±+ rn+
L N N2 2N

Averaging now over the primary cases, since

(10.5) Ek(X) = NlTNis
N'

we have

(10.6) E(X*) N N + N + (2) + + 2

N
_X ± m9 ± 0 )

For general values of m it is secn that X* - mn las expected value of the form
X + Em where, in the case X = 5/6, N = 96 (as for Knox's data), Em = 0.017,
0.04,5, 0.084 for m = 1, 2, :3, respectively. The chance that a P'oissoni variable
(of mean A) is 3 or more we have seen to be 0.052 wheni A is 5/6. AWhen A =
1.004 it is 0.081, while the chance the variable exceeds 3 is 0.019 in this case.
Thus, since A takes intermediate values for m = 1 and 2, the approximate five
per cent point has the value 3 for each of m = 0, 1, 2, 3. That is to say, we
should, to this degree of approximation, use the same critical values for the
whole effective range of m. IUsing this value and approximating to the distribu-
tion of X* - m by that of a Poisson variable with mean X + En,, we find the
power of the test to have the values 0.052, 0.210, 0.605, 1.000 for m = 0, 1, 2, 3,
respectively. This indicates that the "asymptotic" value of the power is anl
ade(quate approximatioii for all practical purposes.

In the foregoing, the use of m as the parameter for the power functioni for
a fixed number of primaries has meant that as rn inereases so does the iiumber
of cases (analogous to "sample number" in classical statistical theory of tests).
It is arguable that a better, if less realistic, idea of the power would be given if
the "sample number" were held constant. On the other harnd, the fundametntal
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conisideration which necessitates the ranidomization test (such as the X test)
is the fact that the time and the space graphs both have such a complicated
irregularity that it is nlot possible to specify them by a deterministic pattern
nior yet by aniy acceptable random distribution of time or space coordinates.
We have therefore preferred to keep their specification fixed as actually observed,
at the cost of allowing the "sample number" of cases to vary. In the event, we
have seen that this variation is negligible and does not arise in the "asymptotic"
power, which our results suggest gives an adequate description. It needs to be
noted, however, that there is a further factor which arises whether the sample
niumber is kept fixed oi- not and which is due to the discrete nature of the varia-
tion of X and henee of the critical value for it as a test function. That is to say,
in terms of the particular case considered, while the nominal level of significance
is held at 5 per cenit, this is only approximate. In the case eonsidered the actual
level varies from 5.2 per cent to 8.1 per cent over the range of m concerned.
This variation is only marginal in this case and does not arise in the asymptotic
lorm, but clearly has to be considered on its merits ill respect of actual time oi
space graphs when the number of cases is small.

'lhe general form for the variance of X* -1 is expressible, after some
algebraic labor by
(10.7) Var (X* - in) = ao (1 + A) + XB + X2C + DM2 + ElM3 + F,
where A, B, C, D, E, F are purely functions of m anid N (as specified below),
X aild aux are the null hypothesis meani and variance of X, and Mr is the mean
rth factorial momenit of the local degree of the time and space graph. In terms
of the corresponding moments of the time graph anid of the space graph (denoted
by suffixes S and T) ve have Mr. = 3TMSI/(N - ])(r). For the particular time
and space graphs of Kniox's data, M1,7, = 19/6, 71/1(;, 85/4; Mrs 25/48, 5/24,
0, for r = 1, 2, :3 respectively. Thus, M2 = 71/685824 and M13 = 0. The {Mr-
will genierally be as negligible as this from the incoherence of the parenit graphs.
The numbers A, B, C, D, E, anld F are all small, when m is small compared
with N as here. Thus, X*- m has substantially the same variance as X and
substanitially the same mean which provides additional confirmation of the
validity of the approximation by the asymptotic results. Explicitly,

MMl(3) 171(3) (mn - 1) 5Mn(3)

]+24N7\72 4) = m+ N(2) -4\NN(2)
4M 92n(2) 4,m(3) m(4)

A - +± + --)

N N2 N3 (N-1) N'

(108)2m 2(7n - 1)in2 (m??.(2))2 R71(3) (3N + I)M(4)
(10.8) N ^r 3 N (2) + 22 N(2)X

2m 3rnm ) 4m(3) + m.(4)
N N' \'2 V(2)A" IVN2 N\* Xr,,

1,_1(2) + 11(4) - (111(2))2
4N 4\72
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Since cx = 0.802 for Knox's data we see that Var (X* - m) = 0.802, 0.839,
0,880, 0.892, for m = 0, 1, 2, 3. These may be compared with the mean for
X*- m which takes the values 0.8333, 0.850, 0.878, 0.917. So far as agreement
of mean and variance are concerned, it is clear that the Poisson approximation
is actually better over this range of m than it is under the null hypothesis.
Since this is clearly due to a relative lengthening of the upper tail of the distribu-
tion, the improvement will be particularly in just that region of the distribution
which affects the power function.
The formulae for any m are complicated but since the power for m = 1 is of

reasonable size and since for this value the formulae are comparatively simple,
they are perhaps worth noting. Let E1 denote the operation of averaging over
all possible positions of the single secondary point. We have

+2 3___2 __2__(10.9) El(N*) = 1 + N+N1 E1(N2) = N2 + 3(N2 + 2N1).N ~~~~N
For Knox's data where N2T = 426, N2S = 6 and the other values are as previ-
ously given, we have

(10.10) E(X* - 1) = 0.85, Var (X* - 1) = 0.84,

indicating that the Poisson approximation is probably still adequate. For m
large and N small the Poisson approximation will not be a good one. The model
set up for the alternative hypothesis corresponds almost exactly with that set up
by Neyman in devising his "contagious" distributions, and we may expect the
variance in our case to become greater than the mean as m increases. Given,
however, that numerical exploration shows that this is indeed the case, there
would appear to be no difficulty in assuming a compound Poisson distribution
for X* in the alternative.
The variants on Knox's criterion may be investigated along similar lines. Let

tij be the time distance between the ith and jth points, always counted positive,
whether i < j or i > j, and di5 the corresponding space distance. Let tij equal
zero if it is greater than c and similar for di, > DO and write

(10.11) = E tij dij.
ioj

Under the null hypothesis

(10.12) E(w) = NI2) E(tij) E(djj).
The expected value of tij will just be the average over the whole set of those
distances which are counted. If we write these as Tek(e = 1, ... ,N, k = 1,
N, t 5$ k), then

(10.13) E(ti) = 1 Tk =T

say. Consequently,

(10.14) E(sp) = NO2) T1Th.
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Adding a secondary point to any point of the graph and averaging over all
points we have

E1(tij) = (N + 2)(N ) 1,
(10.15) (N -I )(2)

(10.15)E1(<)- (N + 2)2(N - 1)2El(p) =

(N + I) (2) TDl

so that the expectation of so is increased. Again, we have
(10.16) p2 = 2 E- tdt2A + 4 E: tijtikdijdik + E tijtktdijdkt.

i.j i#j5ck i#j#k#e

Under the null hypothesis

E(t?2)= T= T2, say,

(10.17) E(tiJt2k) =
1
u, Tu.Tu.,,

E(t,,tkl) = N1(4) [(N(2))2T 2- 2N(2)T2 - 4 TuvTuw],

(10.18) E(Q2) = 2N(2)T2T2 + N43 T,tvTuw E DuvDuw

+ J14) [(N2))2Ti - 2N(2)T2- 4 TuvTu

[(N2)21 - 2N2AD2-4 E DuvDu]-

Under the alternative hypothesis

2(t (N+2)(N- 1)-
E(t)=i (N + 1)(2) T2,

(10.19) E(tijt,k) = (N 1)(3) [(N -1)T2 + N+ 5 E TijTik]
(N+ I 3

N 1 L
5

E(tijtk) 1 N + F][(N(2))2TT2_ (2)7T

-4 E TuvTuw]
with the second moment of so following in the usual way. An assumption of
normality for the distribution of (p would appear to be adequate.
A criterion containing unit powers of tij and di, is perhaps preferable in that

its randomization distribution is apt to be closer to the normal approximation
than those involving higher powers. It was this, possibly, which led Mantel to
choose for his criterion (section 5)

(10.20)
'

tijdij.
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On the otlher hanid, the s(quare root signl implicit in dij imlaakes it difficullt to
express the mean, variance and higher moments of the criterion in simple form
and while the task of computing all possible space and time distances may be
carried out fairly easily by modern high speed machines, there is no doubt that
it is preferable to be able to express momeiits in terms of the original observa-
tions. To illustrate this, let us consider

(10.21) 0 =
I
E

a criterion suggested by David and lFix. For illustrative purposes suppose we
assume the conditions of section 3 which means that we consider the whole
set of data. Let

A N
ma -X (ti-t a

(10.22)
1b NT (X,* - jaq.-j)b.- h = 1 - )(1 l

T'hen,
4N2 4N2

(10.23) E(o) = ( - 1)2 m2(21120 4 ll)) = (A 1)' f12 A

say, and after some manipulation, usiIig the augmented monomial symmetric
functions of David and Kendall and the augmenited binomial symmetric func-
tions of David and Fix [4], we have

(10.24) VarO0 4N
(NV - 1)(3)(N - 1)2

{m4[B(N3 - N2 - 2N ± 4) - A2(N3 - N2 - 2N - 4)

- 8C(N - 1)] + ?n2 [-B(N3 - N2 + 6N - 12)

+ A2 (N4 - 2N3 -N2 + 6N - 12

+ 8C(N2 - 3N + 3)]},

where A, B and C are the invariants previously defined by Barton and David
[1], namely,

A = M20 + 31102,

(10.25) B = M40 + 2M22 + M04,

C = M12) + 2M2, + M22.

The higher moments are not difficult to obtain, given the necessary symmetric
function tables, although the algebraie manipulation is fairly heavy. The fact
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that they may all be expressed as simple functions of the momenits of the coordi-
nates of the set {xi, yi, ti}, with i = 1, 2, , N mak-es the numerical calcula-
tions quite straightforward.
The moments of 0 under the alternate hypothesis that there is one point

which is really a doublet follow the lines previously indicated. For example,
(10.26) ~E(t211)~, -(N + 2)(N - 1)

(10.26;) ( ij)/s, (N + 1)(2) ( tO)Ho

the other quantities required following in similar fashion. 'l'he fact that in cal-
culating the moments of this criterion it is possible to consider the points them-
selves rather than the distances makes the entire algebraic manipulation much
easier to set out.

It will be recognized that the scheme for the alternative hypothesis to random-
ness in space-time which we have set out here-primary points with secondary
points attached to them-is almost exactly that envisaged by Neyman [8]
when he derived his contagious distributions. It does, moreover, seem particu-
larly applicable to the space-time inlteraction problem, since the addition of
very few secondary points indeed seems to raise the power of detection of the
departure from randomness nearly to unity. The difficulties with the calculationl
of such a power function are introduced purely through the techni(lue of random-
izationi which, it is genierally agreed, is the appropriate method for this particular
typ)e of problem. The possibility of other alternate hypotheses, or of reframing
the present alternative so that the combinatorial processes involved are not so
intricate, is one which is at present being explored.
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