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1. Introduction to the theory

A two-stage theory of induced pulmonary carcinogenesis has been suggested
by M. B. Shimkin and M. J. Polissar [6]. In brief, the preliminary evidence and
the problem suggested by more detailed study are outlined as follows. Each
mouse of a large collection of experimental mice is administered a dose of the
carcinogenic agent, urethan. At certain times after administering the carcinogen
a small group (5 or 10 or 15) of mice were selected from the large group; they
were killed and their lungs were examined. In examinations undertaken shortly
after administering the carcinogen, small distinet growths were noticed on the
lungs which were not cancerous tumors and which Shimkin and Polissar call
“hyperplastic foci.” As time progressed these hyperplastic foci increased in both
number and size. Eventually, the individual sizes of the hyperplastic foci became
constant, while the total number of them per mouse lung began to decrease
gradually. At about the same time, or shortly after the appearance of the first
hyperplastic foci, tumors were observed on the lungs. For a while the tumors
per mouse lung increased in both number and size. A time was reached, however,
when the number of tumors on each mouse’s lungs remained fairly constant,
while continuing to increase in individual size. It was noticed at the early era of
tumor formation that the smallest tumors observed were much larger in cross-
sectional area than the smallest cross-sectional area of tumor that could still be
observed with the microscopes. In their study, Shimkin and Polissar were thus
led to consider that perhaps the hyperplastic foci and the tumors were not bio-
logically independent of each other. It seemed to them that possibly the hyper-
plastic foci were precursors to the tumors and that as some hyperplastic foci
attained a certain approximate age and size they changed into tumors. This is
the two-stage theory of carcinogenesis as formulated by Shimkin and Polissar.

This paper is a preliminary attempt toward the verification or disproof of this
theory. The method to be used is that of verifying (or, more accurately, not ex-
cluding) a particular theory by means of a mathematical model. This method is
explained here for our particular problem. We first make the basic assumption
that the number X (f) of hyperplastic foci that can be counted on a mouse’s lungs
at time ¢ after administering the carcinogen is a random variable. We make the
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same basic assumption for Y (¢), the total number of tumors that can be counted
on a mouse’s lungs at time ¢, and for Z(f), the total number of cells included in
all observable tumors on a mouse’s lungs at time . We include in these assump-
tions that the joint distribution of [X(f), Y (¢), Z(f)] is well defined. So far we
have assumed that the phenomenon behaves according to some rules of chance.
It is within this assumption that we create a particular theory that incorporates
a mechanism that the hyperplastic foci are indeed precursors to the tumors.
Under the assumption that this particular theory is true, we shall derive the
joint probability distribution of [X(¢), Y (), Z(f)]. Then we must derive a test
of hypothesis that the experimental observations are distributed according to
the joint distribution function just derived. Actual data are then needed, and
the test must be performed. If on the basis of actual data the test tells us to
reject the hypothesis, then of course the mathematical model is incorrect. In
such a case, the theory is incorrect or, if it is correct, is governed by a mathe-
matical model yet to be discovered. If on the basis of the test we do not reject
the hypothesis, then we conclude that we have no overwhe'ming evidence leuding
us to believe that the theory is incorrect. It is to be remembered that whatever con-
clusions are drawn are in terms of the basic stochastic assumption. This means
that once we have made this assumption we have removed ourselves from being
able to make purely biological statements. We may now make only biological-
mathematical assertions.

2. The stochastic model

We now state the basic assumptions behind our stochastic model for the two-
stage theory of carcinogenesis. Justification of these assumptions will be given
in the next section. It is therefore assumed that the hyperplastic foci are indeed
the precursors of the tumors and that the formation of both is governed by the
following rules.

We first assume (following Neyman [4]) that there is a nonnegative continu-
ous function f(t) which will be called the ‘“feeding function.” The function f(¢)
is determined jointly by the animal and the carcinogen except for a multiplica-
tive constant. The multiplicative constant is directly proportional to the dosage
of carcinogen administered. For every ¢ = 0 and every A > 0 it is assumed that
on one mouse’s lungs

(i) the probability that the carcinogen causes the formation of one hyper-
plastic focus during the time interval [t, ¢ 4 &) is f()h + o(h),

(ii) the probability that more than one hyperplastic focus is formed because
of the carcinogen during the time interval [¢, ¢ + k) is o(h), and

(iii) if 0 < #; < #; < t3 are any three times, then the numbers of hyperplastic
foci formed because of the carcinogen in the two intervals [#, t2) and [t t;) are
independent.

When a hyperplastic focus is first formed, it is assumed to be unobservable.
An unobservable hyperplastic focus can remain unobservable or can undergo one
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of two possible changes: (1) it can vanish (die, or disappear) or (2) it can become
observable (under the microscope). We shall assume that there exists a positive
constant y, such that for every time ¢ = 0 and every h > 0, (i) the probability
that any particular unobservable hyperplastic focus will die during the time
interval [¢, t 4+ k) is uoh + o(h), and (ii) that all unobservable hyperplastic foci
act independently of each other with regard to dying. It is also assumed that
there is a positive constant », such that for every time ¢t = 0 and every h > 0,
(i) the probability that a particular unobservable hyperplastic focus will become
observable during the time interval [¢, ¢ + h) is wh 4 o(h), and (ii) that all un-
observable hyperplastic foci act independently of each other with respect to
becoming observable or dying. We further assume that the values of uo and »,
depend only on the carcinogen and the animal and not on the dosage.

Once a hyperplastic focus is observable, again we assume that one of two
possible changes (if any) can occur to it: (1) it can die, or (2) it can be instan-
taneously transformed at some time thereafter into a tumor. We shall assume
that there exists a constant 4 > 0 and a nonnegative continuous function »(f)
such that for every ¢t = 0 and every & > 0 the following holds true:

(i) the probability that any particular observable hyperplastic focus will die
during the time interval [¢, ¢ + h) is uh + o(h),

(ii) the probability that any particular observable hyperplastic focus will
change into a tumor during the time interval [¢, ¢ + k) is »(£)h + o(h), and

(iii) all observable hyperplastic foci act independently of each other with re-
spect to dying or becoming tumors.

Once a tumor is formed (or born) we shall assume that it cannot die or be
transformed into something else. We shall assume that when a tumor is born it
is composed of N cells, where N is a random variable. We shall assume that the
distribution of N is one which is completely specified by its expectation; in the
model considered here we shall consider it to be Poisson, but if this does not work
one might try the binomial distribution, B(1/2, m). We shall assume that there
is a nonnegative continuous function p(f), where p(?) is asymptotically a positive
constant such that the increase of cells of a tumor is a Poisson process with
intensity p(f). It should be noted here that the ¢ in p(f) denotes the time since
administering the carcinogen and not the time since the tumor was born. We
shall assume all tumors to be independent of each other, and the number, N,
of cells of the newborn tumor to have the same distribution independent of the
tumor and the time it was born. Also, for each tumor, N is assumed to be inde-
pendent of the number of cells subsequently added.

At each time ¢ we shall denote the number of observable hyperplastic foci, the
number of tumors, and the total number of cells in all the tumors on a mouse’s
lungs by X (f), Y(t), Z(t) respectively. We assume that, at each of a finite num-
ber of times, independent observations can be taken on the random vector
[X®), Y(t), Z(t)], and that these sets of observations are independent of each
other for different values of time.

It is to be noted at this point that although [X(¢), Y(¢), Z(t)] is a vector
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stochastic process, and its probabilistic treatment is for a stochastic process,
the statistical inference cannot treat it as such. This is because one cannot ob-
serve the same sample function at more than one value of time. The particular
kind of sampling involved and the inference problem it creates, will be discussed
in greater detail in sections 5 and 6.

3. Justification of the model

On the basis of experimental results already reported (see Polissar and Shimkin
[5], [6], [7]) there is considerable justification for the assumptions made in the
preceding section. Also certain mathematical results deduced from the assump-
tions made are corroborated by experimental evidence, but this shall be reported
in a later section. In this section an outline will be made of just the experimental
evidence for the mathematical model.

The function f(t), and its properties which were assumed, is not new to the
study of carcinogenesis. It is called the ‘“feeding function,” and it has been used
by Neyman [4] and Kendall [3] in their papers on this subject, in precisely the
same way as it is used in this paper. The essential idea seems to be that the rate
at which the hyperplastic foci are formed on a mouse’s lungs is proportional to
the amount of carcinogenic agent in the animal’s body at time ¢. This amount
is not usually constant. In the case of urethan (which was used by Shimkin and
Polissar in their experiments) it is eliminated from the body rather quickly, but
injections of S,-90 are eliminated at a very slow rate. Since Shimkin and Polissar
used urethan, it is expected that f(¢) is large for values of ¢ close to zero and de-
creases rather rapidly to zero as ¢ increases. A further justification for the use
of f(t) as the intensity function of a Poisson process lies in the fact that recent
evidence (see [8]) indicated that cell nuclei of a vast number of cells are modified
by the carcinogen and each such cell has therefore a very small chance of trans-
forming itself into the nucleus of a hyperplastic focus. Thus the formation of
hyperplastic foci is more realistically governed by the following process. At
time ¢ = 0 there are M elements of the population, where M is a very large
integer. One assumes the existence of a nonnegative function g(¢) such that if
at any time ¢ > 0 and for every & > 0 the conditional probability that an ele-
ment of the population will leave the population during [¢, ¢ + k) given that n
have left it prior to tis (M — n)g()h + o(h). Further, the conditional probability
that more than one element leaves the population during [¢, ¢ 4+ h) given that n
have left it prior to ¢ is o(h). If M is very large and if Mg(¢) is of moderate size,
then for small values of n, we have ng(f) negligible. Thus the process of elements
leaving the population is approximately a Poisson process with intensity f(f) =
Mg(¢). In the model used in this study, we see that the Poisson process describ-
ing the size of the population of hyperplastic foci is just a reasonable approxima-
tion to a realistic model.

In assuming the existence of »(t) and its properties, we need not have been so
general and could actually have assumed that »(t) = ¢f(¢), where c is a constant.
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For large values of ¢, »(t) then should be close to zero, and this is verified by
table 3, page 82 in Polissar and Shimkin [6], which shows that after 49 days the
number of tumors remains relatively constant. We are justified in taking u as a
constant by noting on the same table referred to above that shortly after the
38th day after administering urethan the number of hyperplastic foci per mouse
lung decreased linearly. Since by that time the value of f(f) should be negligible,
and so should »(¢), it is safe to assume that any change thereafter in the number
of hyperplastic foci on a mouse’s lungs is due to their dying. Thus u very realistic-
ally is constant.

In both [6] and [7], Polissar and Shimkin noted that the rate of growth of
the individual tumors does not depend on the amount of carcinogen administered.
Actually, the number of tumors eventually formed was proportional to the car-
cinogen dosage, but the growth rate of a tumor, once it was born, was completely
independent of the size of this dose. In addition, a tumor had a rapid rate of
growth when it was first formed, but after a while its rate of growth became
constant. Thus it seemed most reasonable to consider a tumor as starting with
a random number N of cells and with cell additions being governed by a Poisson
process with a time-dependent intensity p(f) which is eventually constant py > 0.
(One should note that the ¢ in p(f) denotes time beginning with the adminis-
tering of the carcinogen and not beginning from the time the hyperplastic focus
changed into a tumor.)

The theory (model) formulated in section 2 and justified in section 3 is perhaps
the simplest theory that can be used to explain the phenomena. Indeed, this
model could be made more realistic by letting uo, », and u depend on the time
since the particular hyperplastic focus was born and p(f) depend on the time
since the particular tumor was born. Such concern for complete reality can pre-
vent the mathematician from obtaining ‘‘answers’” because of the complexity
of the resulting mathematical model. In the model used in this study, some
‘‘answers” are obtainable. Whether the model is approximately correct and the
answers meaningful will depend on gathering more data of the type indicated
in [6] and applying the methods of inference of section 6 to this data.

4, Mutation processes

Before we proceed to derive the distribution of [X(¢), Y (¢), Z(t)], we shall dis-
cuss the general process of which [U(f), X (), Y(f)] is a particular case, where
U(t) is the number of unobservable hyperplastic foci on a mouse’s lungs. This
process will be referred to here as a mutation process.

A mutation process is a finite dimensional stochastic process

(4.1) X(@) = [Xu(®), - -+, X:(0)], rz2,
where X;(t) is a nonnegative integer-valued random variable for every ¢ and

denotes at time ¢ the number of particles of the 7th kind. We now define this
process. Particles of type 1 are formed according to a Poisson process with time-
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dependent intensity A(¢). Each of the particles of type 1 is stochastically inde-
pendent of all others; for every ¢ = 0 and every & > 0, it will die during [t, ¢ 4+ h)
with probability w(f)h + o(h) and will change into a particle of type 2 with
probability ».(t)h 4 o(h) where p(f) and »12(f) are nonnegative continuous
functions of £. For every ¢, with 2 < 7 < r — 1, each particle of type ¢ is sto-
chastically independent of every other particle of type ¢ and all particles of type
1,2,.--,2— 1. Forevery t Z 0 and every & > 0 a particular particle of type ¢
will die during [¢, ¢ 4+ h) with probability u:({)}h + o(h) and will change into a
particle of type ¢ 4 1 during [t, ¢ + h) with probability »; ;.1(t)h + o(k), where
ri(t) and »;,:411(t) are nonnegative continuous functions of ¢. Finally, every par-
ticle of type r is independent of every other particle of type r and all particles
of type 1,2, --- ,r — 1, and, for every ¢t = 0 and every h > 0, will die during
the time interval [¢, ¢ 4 h) with probability u.({)h + o(h), where u,(f) is a con-
tinuous function of ¢. It is assumed that P{X(0) = 0} = 1, where 0 denotes an
r-dimensional vector composed entirely of zeros.

The problem treated here is to find the joint distribution of X(f) =
[Xi(t), -+ -, X«(¢)] and to investigate its properties. For the sake of simplicity
and economy of words in deriving this joint distribution in the general case, we
do it first for the case r = 2. If we let

4.2) p(m,n, t) = P{Xi(t) = m, Xo(t) = n},

then, by the same method as that used in the last chapter of Feller [7], one ob-

tains the infinite system of differential equations

43)  Lpm+ 1410 = —(m+ Dl + wOpm + 1,0+ 1,9
— (n+ Dpa()p(m + 1,m + 1,8) — At)p(m + 1,1 + 1, 1)
+A®)p(m, n + 1,8 + m@)(m + 2)p(m + 2,n + 1, 1)
+ re(t)(m + 2)p(m + 2, n, &) + w(t)(n + 2)p(m + 1,n + 2,¢)

form,n = —1,0,1,2, - --. Let us denote the joint probability generating func-
tion of [X,(¢), X:(t)] by

(4.4) Wz, y, ) = E[aXi0y%0],
If we multiply both sides of (4.3) by 2™*'y**! and sum both sides fromm = —1,
n = —1 to «, we obtain the partial differential equation

(45 W50 + O — D +mOE - 9} =¥ Y

+m®@ - 1) ;.,% W, 5, 8) = MO @ — DU, 3, 0).

In order to solve (4.5) we begin by considering the system of differential equa-
tions
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W )y - 1)

(4.6) B m®@ =1 + O — )

g—‘f 2Oz — Dy

‘We shall also make use of the notation
t T
F@) = ﬁ) A7) dr, G@t) = fo 7A(7) dr,
@4.7) NO = [(m)dr, RO = [ w() dr,

M) = /;: wm(r) dr.

One easily solves the system of equations (4.6) in the order in which they are
presented to obtain

C1 = (y — 1)e~ kO,
(48) €y = (z — 1)e"MO+NOI 4 (y — 1)e—E® /0  yia(r) RO - MO =N g

Cs = ¥z, y, e~ w0,

where Cy, Cs, C; are the so-called arbitrary constants, and where

(49) V(@ y,1) = (@ — DeMONO! [LMOTNON(r) dr

+ (y — De=RO [ [FeMO+NONG) dr | [ [ m(nero-mo-N0) g

— (y — 1)ek® ﬁ)t eM(a)+N(a)>\(a)[ﬂ)°‘ p1a(r) R = M@ = N() dr] de.
The general solution of (4.5) is obtained as
(4.10) Cy = Q(Cy, Cy),

where Q(C;, C;) is an arbitrary function of C; and C.. The precise form of Q is
obtained in the following way. One first notices that, by (4.7),

(4.11) F) = G(0) = N(0) = R(0) = M(0) = 0;

using this fact in (4.9) we obtain

(4.12) V(z,y,0) =0 for all (z, y).
In (4.8), if we let ¢ = 0 we obtain

(4.13) Csy =1, Co=z-—1, Ci=y—1

If we substitute (4.13) into (4.10) we obtain 1 = Q(y — 1, z — 1), from which
we deduce that C; = Q(C;, C;) = 1. At last we obtain
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414) Wz, y, ) = eVewd

where V(z, y, t) is defined in (4.9).
We briefly investigate the expression for V(x, y, t) in (4.9). We notice that
V(z, y, t) is a linear combination of x — 1 and ¥ — 1. The coefficient of 2 — 1 is

4.15) 0(t) = e~ MO-N® Lt eM@+NO)\(7) dr.
By integration by parts the coefficient of ¥y — 1 may be more conveniently ex-

pressed by

416)  o(t) = e7BO [uy(r)erI-M@-N0 [ [ M@)eM@+¥@ 4y | dr.
Thus we may write the joint probability generating function of X;(f) and X,(¢) as
(4.17) ¥(z,y,t) = exp {0()(z — 1) + () (y — D},

where 06(f) and ¢(¢) are given by (4.15) and (4.16).

It is seen immediately at each time ¢ that X;(f) and X.(f) are independent
random variables, each distributed according to a Poisson distribution with
parameters 8(f) and ¢(f) respectively. It should be emphasized at this point that
Xi1(f) and X,(t) are not independent stochastic processes.

We now find the joint distribution of Xi(¢), - -- , X,(¢) for arbitrary r = 2.
For this purpose, let n = (ny, ---, n,) denote an r-tuple of integers, let 1 =
(1,1, ---,1),andlet N; = (0, ---,0,1,0, ---,0), where 1 is in the 7th place
and the jth component is 0 if 7 # ¢. Then if we let

(4.18) p(n,f) = P {Q [X;: = n,.]},
we obtain in the same way we derived (4.1) the system
(4.19) (%p(n +1,0)
= MO + @+ D) + E, 00+ DGO + 90000 | 00 + 1,0

+AOP@ +1 = Ny, §) + T (s + us®p(a + 1+ Ny )
n—1
+ igl (ni + 2piin(®p(n + 1 + Ny — Ny, 0).

It should be understood that if any m; in m is negative, then p(m, {) = 0. Now
let us multiply both sides of (4.19) by

(4.20) I =+t
i=1
and sum up both sides for all n; from n; = —1 to «. Let us denote the joint

probability generating function of X(¢) = [Xi(t), - -+, X:(¢)] by

(4.21) v, ) = E []'[ xif“"]-

i=1
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After some rearranging we obtain the linear partial differential equation

(4.22) 6% v(x, t) + :z: i,in(®) (@i — zipa) + pa(t) (@ — 1)] 5%{‘1’(& t)

a
+ w0 — 1) - ¥(® ) = M@ — DY(x, o).
We solve (4.22) by solving the system

L o O — 1)
@
B = wiO@ = 1)+ ran®le = 1) = @ — 1]

fore=r—1,r—2,---,2,1 and

(4.24) % = N8 (z1 — 1)y

One first observes that the variables z; always occur in (4.23) and (4.24) in the
form (z; — 1). On solving the first equation of the system, we obtain that z, — 1
equals an arbitrary constant times a nonzero function of ¢. If, then, the system
(4.23) is solved successively when s =r — 1,4 =7 — 2, --- ;¢ = 1, it is easily
seen that each (z; — 1) is a linear combination of C;, C;yy, - -+, C,, the coeffi-
cients being certain functions of ¢. Also, when { = 0, then C; =2; — 1, 1 =
1,2, .-+, r. The last equation in (4.23) is solved to yield

some linear combination
(425) log ¥(a, & — log Co = {37 et 5

If we start with each C, in the right side of (4.25) and in turn replace each C; by
what it is equal to in terms of the (z; — 1) and functions of £, we obtain

(4.26) log ¥(x,8) —log Co = V(x, t)
where V (X, t) is a linear combination of 2, — 1, --- , 2, — 1, or
(4.27) v(x,t) = Coexp [V(x, 8)].

In obtaining (4.25) it is seen that if ¢ = 0, then Cy = 1. Thus, as in the case of
r = 2, we know that V(x, 0) = 0. The general solution of (4.23) is

(4.28) Co = QCy, ---, Cy),

where @ is an arbitrary function. If we let ¢t = 0, this equation becomes
(4.29) 1=%r, — L,2e— 1, ,2, — 1),

and thus we deduce that

(4.30) v(x,t) = exp [V(x, )],

where V(x, t) may be represented as

(4.31) Vx,f) = ):_1 0,(t) (z: — 1),
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and where the 6;(f) have continuous derivatives with respect to ¢. Thus we have
shown that for each ¢, the X,(t), - -+ , X,(f) are independent random variables,
each distributed according to a Poisson distribution and where the Poisson
parameter for X;(¢) is 0;(f). As was remarked before in the case for r = 2, these
r stochastic processes are not independent but are dependent. It is just that the r
random variables at each time ¢ are independent.

The problem remains to find the functional form of each 8;(t). These could ke
obtained by the tiresome procedure of solving system (4.23). However, we may
obtain each 6;(tf) more easily by reasoning with expectations. Indeed, one may
write
(4.32) 0.t + k) = 6:(t) + E[AXu(8)],
where AX () = X (¢ + h) — X(¢). For any nonnegative integer =, if it is known
that X,(f) = n, then AX;(¢) takes values 1, 0, and —1 with probabilities A(¢)h +
o(h), 1 = MOk — nlm(t) + v2(t)] + o(h), and nlm(t) + va()]h + o(h) respec-
tively, and takes any other value with probability o(h). Thus
(4.33)  E[AXi()|Xa(t) = n] = {\®) — n[m(®) + v() R + o(h),
and
(4.34) E[AX,(t)]

T EBXOIX(0 = nPX(@) = n)

@ — 6O m®) + v}k + o(h).

This gives us the differential equation

(4.35) L o) + [ult) + (10 = 20,

Fori =2, ---,r — 1 we again consider
(4.36) 8:(¢ + k) = 6:(¢) + E[AX:(D)],
where AX;(t) = X:(t + h) — X;(t). In this case let us note that if X ,({) = m
and X;(t) = m, then AX(¢) takes values +1, 0, and —1 with conditional prob-
abilities my;_1,4(O)h + o(h), 1 — mw;1,i() — nlui(t) + vii1(®) ]k + (k) and
nlui(t) + v:,i4(t)]h respectively, and all other values with probability o(h).
Since X;1(t) and X () are independent we may write
(4.37) E[AX(t)]

= Z_:O ioE[AX;(t)IX;_l(t) = m, X;(f) = n]P{X;4(t) = m}P{X(}) =n}.

Thus we obtain, forz =2,3, -+ ,r — 1,

d
(4.38) 7 0:(8) + [ui(t) + vi,ira(®)]0:(t) = vioa,i(8)0: 1(2).
In a similar manner,

(4.39) L 6.0) + w080 = 11 D81(0).
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Under conditions of continuity imposed on the parameters of the process, the
system of linear differential equations (4.35), (4.38) and (4.39) are easily solved.
Since 6,(0) = -+ = 6,(0) = 0, then

(4.40)
8i(t) = exp {— L () + va(®)] df} L “A(r) exp { ﬁ) " (@) + ()] dw} dr.

Fori=2,---,r — 1, we have
@41 0t) = exp {— [ [ui(r) + wsna(n)] dr)
/(')t vi1,i(1) 0:i1(7) exp {/: [wi(w) + vii1(w)] dw}d‘r

and

(442)  6,(0) = exp [— ﬁ) L () dr] ﬁ) et (r)ea(r) exp | ﬁ) " ) dw] dr.

It might be of interest to find the limiting expectations of X(¢) as t — « when
the pi(t), the »;,,1(¢) and N(¢) are constant (or asymptotically constant). Accord-
ingly, let u(t) = pi, vii1(t) = viip1, M) = N, that is, these 2r functions become
nonnegative constants. Then

) m+ e =0,
(4.43) 6,(t) = A (
m + e

In the case that u; + v;,ip1 = 0, then X;1(f), - -+, X.(f) are all identically zero
in ¢. We exclude this case from now on. Thus

A .
e 2T

1 — exp [—(u + »)tl}, m+ vz > 0.

(4.44) lim 6,(t) =
t— o0

One could perform the successive laborious integrations on the expressions in
(4.41) and (4.42) and obtain lim;—. 6;(f) for 2 = 2, --- , r. We find these limits
by a different and easier method. This easier method depends on the

LemMA: If g(t) is Lebesgue integrable over every bounded interval [0, T, and if
lim;—. g(t) = K, then

(4.45) lim e~ ﬁ) ! g(nerdr = K.

t—ro0

Proor. It is clearly sufficient to prove this only in the case K = 0. Let ¢ > 0
be arbitrary, and let Ty > 0 be large enough so that |g(r)| < ¢/2 for all 7 > T.
If g(t) = 0 over [0, To), let Ty, = Ty; if not, let Ty > T, be large enough so that
forallt > T4,

To —1
4.46 0<e f[ / rdr | -
(4.46) <ot <3| [Tole ]

Hence for all ¢ > T4,
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t To
(4.47) Ie“ﬁ) g(n)e drléle“ﬁ) g(r)em dr|+]et /1:, g(r)er dr|

+ 56_'(6' — eT) < ¢

which proves the assertion.

Using the above lemma and (4.44) in (4.41) and (4.42), we obtain for
1=2,3,+,r—1,

(4.48) lim 0,(f) = B Picki,
t—>r00
II1 (45 + vii41)
i=
and

A H Vic1,i
(4.49) lim 6,(t) = =2 .

t—® =1

Br III (&5 + vii11)
i=

Thus we have shown that the expected numbers of particles of each kind is
asymptotically constant when the parameters are constant.

6. Derivation of the joint distribution of X(¢), ¥(¢), Z(¢)

It should be recalled that although the subject of this study is a stochastic
process with continuous time, it cannot be observed as such. In other words, the
experimenter cannot observe an entire sample function over a time interval.
Even worse, he cannot make more than one observation on a particular sample
function. In the stochastic process considered here each mouse constitutes a
sample function. Thus, in the experimentation described in section 1, the experi-
menter selects m values of ¢, 8ay 0 < t, < --+ < ¢, and decides to select n; mice
at random at time ¢;. If W(t) = [X(¢), Y(t), Z(t)], then he observes W, 4, - -+,
Wi n, n; independent observations on W(¢;). The totality of random vectors
{W;;,1<1=m,1=j=ng are independent. These are the only observa-
tions possible, and the problems of estimating the parameters and verifying the
model can only be in terms of these observations. From these considerations, it
is seen that our sole distributional problem is that of deriving the joint prob-
ability distribution of [X(¢), Y (¢), Z(t)] at any time ¢. The purpose of this section
is to derive this joint distribution by finding the formula of the joint probability
generating function.

An immediate application of the results developed for mutation processes in
section 4 to the model for the two-stage theory of carcinogenesis constructed in
section 2 yields the joint probability generating function of U(t), X(¢), Y (t) to be

(6.1)  E[uVOzX®y¥®] = exp [0(t)(u — 1) + 0(t)(z — 1) + o()(y — D],
where U(?) denotes the number of unobservable hyperplastic foci at time ¢, and
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6o(t) = EU(?). Using (4.35), (4.38) and (4.39) the expectations 6,(¢), 6(¢) and o(t)
are related by the following differential equations:

% + (p,o + v0)00(t) = f(t))

(5.2) B 1 L+ w(0)100) = wholt),
U‘Ztﬂ = w(1)0(2).

The solutions for 6o(t), 0(f) and (¢) are obtained easily using (4.40), (4.41), and
(4.42). We shall have no need for these solutions and shall only make use of (5.2).
Let Z;(t) denote the number of cells at time ¢ in the jth tumor to be formed
on a mouse’s lungs. If the jth tumor was formed (or born) after time ¢, then
Y ;(t) = 0. Because of our assumptions that these tumors are stochastically in-
dependent, it follows that {Z(f), Z,(¢), - - -} are independent. Further

(53) Z@) = Zu(t) + Zo(8) + -+ + Zy (D)

is the total number of cells in all the tumors at time . Let r; denote the time at
which the jth tumor was born, and let the event H be defined as follows:

(5.4) H=[X(t) =mY(@t)=n,m1=1t, 70 =ta,

where 0 < #; < -+ < i, <& Also, let g(z) denote the probability generating
function of the random variable N discussed in section 2. If fy(z) denotes the
conditional probability generating function of Z(t) given H, then easily

(55) ) =@ e =) & [ pte de,

where p(a) is as described in section 2. Also, the conditional probability density
of 7y, -+, 7, given that X(¢) = m and Y(¢) = n is given by

(5.6) Sy, -+, WlX(@Q) =m, Y() =n)

n! 1:11 S ()

e"(?)
0, otherwise.

’ if 0<th< -+ <t, <Y,

Using this, one finally arrives at the expression for y(z, y, 2), the joint probability
generating function of X(t), Y (), Z(1),

(67 ¥ev,2)
= exp {00)(z — 1) + v9(a) [[exp [ = 1) [/ o) dv] /() dw — 0(®)}-

It will be useful in the sequel to have formulas for the expectation and variance
of Z(t), their corresponding derivatives, and the covariance of Y (¢) and Z(¢).
From (5.7) we therefore deduce the following formulas
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(5:8) Ez0] = [/ o0 dv] ') do + B0,
or, using integration by parts,

(5.9) E[Z(®)] = ﬁ; o(w)p(w) dw + E(N)e(t).
Thus

(5.10) (%E[Z(t)] = o(t)p(t) + E(N)¢' (D).

The variance of Z(¢) is given by

(5.11) 2[Z(t)] = /0 ‘ ( ﬁ” “ o(v) azu)2 Mw) dw
+ {E[Z())] — E(N)e(1)} [2E(N) + 1]
+ *(N)e(t) + [E(N)]e(?).
The covariance of Y (¢) and Z(¢) is obtained by the formula
62

(512 Cov[Y(),Z0)] = 3,2 ¥(L,uA| = EIYOIBIZO).
Applying this formula we obtain
(5.13) Cov [Y(8), 2] = EMe(® + [, (w)p(w) dw.
An important relationship to note is that
Cov [Y(1),Z(1)] _
(5.14) BZ(0)] = 1.

6. Tests of the model and estimates of the parameters

In order to suggest tests for the model developed in the previous sections, the
type of experimental observations should be specified. The mice involved in the
experiment should be divided into two populations which we shall call popula-
tion I and population I1. The mice in population I should each be given the same
heavy dose of urethan (or whatever carcinogen is being used), and the mice of
population IT should each be given the same light dose of urethan. The ‘“‘princi-
pal times” for sampling each of the two populations may be denoted by 0 <
h < -++ < tn, where the ¢ are more or less equally spaced, with the ¢ being (per-
haps) a little more frequent during the first 60 days. However, each ¢; really
refers to three successive days of sampling. (The units of ¢ are in days.) To be
more specific, the 3m days of samplingarety — 1,4, 6+ 1, - -+, — 1,8, tm + 1.
On each of these days, n mice should be selected from each population. They
should all be sacrificed at the same time and at the same time of day for each
day’s sampling experiment. Each mouse’s lungs should be examined in order to
determine the following three numbers: the number of hyperplastic foci, the
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number of tumors, and the total number of cells in (or the total volume of) the
tumors. Then at each ¢; the parameters 8(¢.), ¢(t;), EZ(t;) and their derivatives
can be estimated in the obvious way for each of the two populations.

The first test to make is that X(¢;) and Y (¢;) are independent and each with
a Poisson distribution. Polissar and Shimkin [5] report that for low doses of
carcinogen Y (¢,) is approximately Poisson distributed, while the fit does fall off
for large doses. They suggest, however, that this might be due to the hetero-
geneity of the mice and conclude that if a pure strain were used, then at larger
doses the distribution of tumors would be Poisson. The tests for independence
and for a sample being from a Poisson distribution are standard and need not
be elaborated on here.

Once this is done and the conclusion of it is successful, one should compute
estimates for Cov [Y(t.), Z(t))]/E[Z(t:)], for ¢ = 1, --- , m in the obvious way
and verify that these estimates “hover” around unity. [See (5.13) for this re-
quirement.] We shall call this the second test of the model despite the fact that
it is not exactly a test of hypothesis. If the first and second tests prove to be
successful, then one may proceed to test the entire model.

In order to test the model itself, we must first estimate EN and the function
p(t). We do this by using equation (5.10). In this equation, estimates can be con-
structed in the obvious manner for dEZ(¢)/dt at t = t;, ¢(t;) and ¢'(¢;) for each
of the two populations. Since p(f) and EN do not depend on the dosage (see
section 2), we have at each ¢; two equations in the two unknowns p(¢;) and EN.
Thus p(t;) and EN can be estimated at each ¢;. The function p(t) can then be
estimated through appropriate curve fitting, and EN can be estimated in an
over-all manner.

Let (xo, %o, 20) be a triplet of numbers, each unequal to unity. Suggested values
are for those greater than unity. Now it is possible to consider (a0, %o, 2|t;, &)
This is ¥(xo, Yo, 20) of (5.7) with 6(), ¢(t), ¢'(), p({) and EN in g(z) =
exp (EN)(20 — 1) {or g(z) = [(1 + 2)/2]*6¥} replaced by their estimates for
population ¢, for ¢ = 1, 2. At time ¢;, let [X}, Y?, Z$], with 1 < j < =, denote
n independent observations on [X(¢;), Y (t;), Z(t,)] on the kth population. Let

n
(6.1) JP@G a) = nt 3 285 Fyex ¥ g7 ¥
i=1

and let, for each 7,
_ J(z)(iy 1) - ’I’k@g; Yo, Zolt.‘, Q)

©2 Watao, wo 2lks 1) = 20180, 2) — UG, DI

For large values of n, this statistic should be approximately normally distributed
with mean zero and variance unity, provided that the model is correct. (For de-
velopment of the theory behind the use of this statistic and for an application,
see [1].) The inference made is as follows. Compute W, for each population at
each of the ¢; and for convenient values of (z, y, ). If the array of these values
appears to have come from a normal population with mean zero and variance
possibly even a little greater than unity, then we conclude that there is no over-
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whelming evidence for rejecting the model. If, on the other hand, the values of
W. are nowhere in or near the interval (—3, +3), then we conclude that this
model does not adequately fit the mechanism for which it was intended, and
consequently it must be altered. The test just described will be called the third
test of the model.

If the results of the first, second and third tests seem promising and do not
give us violent cause for rejecting the model, we may proceed to obtain crude
estimates for »(t), u and f(f). From the third equation in (5.2) we can estimate
»(t;) in an obvious way for each 7 and each population, and from this, »(f) can be
approximated by drawing a smooth curve through the points.

In order to estimate u, we first must settle a question concerning 6y(¢), the ex-
pected number of unobservable hyperplastic foci at time ¢. It is safe to assume
that for large values of ¢, say ¢ = 100 days, 8,(t) vanishes. If one looks at column 3
on page 80 of Polissar and Shimkin [6], and if one keeps in mind that 10 square
cellular units is still visible under the microscope, then this assumption becomes
a reasonable one to make. Thus, for a ¢; = 100 days, and assuming 6,(¢;) = O for
both populations, one can use the second differential equation of (5.2) to obtain
an estimate for u in the obvious way. Then one can estimate v9y(¢;) for all ¢; by
using the second differential equation of (5.2).

We now estimate »,f(f). Let s; = (t;-1 + ¢;)/2. Then wf5(s;) and vefy(s;) can be
estimated by

(6.3) voo(s;) = Voeo(t;)j : Z)i»(tj—l),
(6.4) vobo(s;) = % [¥ofo(ti—1) + wobo(t;)].

The first equation in (5.2) can be rewritten
(6.5) v di;gﬂ + (uo + )vobo(t) = wof (D).

At each s; we have estimates now for »0s(s;) and »8(s;) for each population. Let
us suppose that the dosage of urethan in population II is K times the dosage of
urethan administered to each mouse in population I. Then for every s; we may
write the two equations

— (1o + o) veo(s;) + vof (s;) = vobo(s;)
—(uo + vo)wobo(s;) + nKf(s;) = vofo(s;)

for populations I and II respectively. A word of explanation is necessary now.
The number f(s;) refers to the value of the feeder function at time s; for popula-
tion I only. The pair of numbers »8y(s;) and »85(s;) are not the same for the two
equations of (6.6). In the first equation these have the values computed for popu-
lation I, and in the second equation they have the values computed for popula-
tion II. Thus (6.6) gives us two equations in the two unknowns, p, + » and

(6.6)
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nf(s;). In this way estimates are obtainable for both uy + v, and »f(s;). Thus
we can estimate the curve of f(¢) except for a multiplicative constant.
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